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1 Introduction

1.1 The UMP and UMPU Problems

The following is mostly taken from the first draft of the fuzzy confidence
intervals and P -values paper.

1.1.1 UMP

Lehmann (1959, pp. 68–69) says for a one-parameter model with likelihood
ratio monotone in the statistic T (X) there exists a UMP test having null hypoth-
esis H0 = {ϑ : ϑ ≤ θ }, alternative hypothesis H1 = {ϑ : ϑ > θ }, significance
level α, and critical function φ defined by

φ(x, α, θ) =


1, T (x) > C

γ, T (x) = C

0, T (x) < C

(1)

where the constants γ and C are determined by

Eθ{φ(X,α, θ)} = α.

The description of the analogous lower-tailed test is the same except that all
inequalities are reversed.

The constant C is clearly any (1−α)-th quantile of the distribution of T (X)
for the parameter value θ. If C is not an atom of this distribution, then the test
is effectively not randomized and the value of γ is irrelevant. Otherwise

γ =
α− Prθ{T (X) > C}

Prθ{T (X) = C}
. (2)

1.1.2 UMPU

Lehmann (1959, pp. 126–127) says for a one-parameter exponential family
model with canonical statistic T (X) and canonical parameter θ there exists a
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UMPU test having null hypothesis H0 = {ϑ : ϑ = θ }, alternative hypothesis
H1 = {ϑ : ϑ 6= θ }, significance level α, and critical function φ defined by

φ(x, α, θ) =



1, T (x) < C1

γ1, T (x) = C1

0, C1 < T (x) < C2

γ2, T (x) = C2

1, C2 < T (x)

(3)

where C1 ≤ C2 and the constants γ1, γ2, C1, and C2 are determined by

Eθ{φ(X,α, θ)} = α (4a)

Eθ{T (X)φ(X,α, θ)} = αEθ{T (X)} (4b)

If C1 = C2 = C in (3) then γ1 = γ2 = γ also. This occurs only in a very
special case. Define

p = Prθ{T (X) = C} (5a)

µ = Eθ{T (X)} (5b)

Then in order to satisfy (4a) and (4b) we must have

1− (1− γ)p = α

µ− C(1− γ)p = αµ

which solved for γ and C gives

γ = 1− 1− α
p

(6a)

C = µ (6b)

Thus this special case occurs only when µ an atom of the distribution of T (X) for
the parameter value θ, and then only for very large significance levels: α > 1−p.
Hence this special case is of no practical importance, although it is of some
computational importance to get every case right, no weird bogus results or
crashes in unusual special cases.

Returning to the general case, assume for a second that we have particular
C1 and C2 that work for some x, α, and θ (we will see how to determine C1 and
C2 presently). With µ still defined by (5b) and with the definitions

pi = Prθ{T (X) = Ci}, i = 1, 2 (7a)

p12 = Prθ{C1 < T (X) < C2} (7b)

m12 = Eθ{T (X)I(C1,C2)[T (X)]} (7c)

(4a) and (4b) become

1− (1− γ1)p1 − (1− γ2)p2 − p12 = α (8a)

µ− C1(1− γ1)p1 − C2(1− γ2)p2 −m12 = αµ (8b)
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which solved for γ1 and γ2 give

γ1 = 1− (1− α)(C2 − µ) +m12 − C2p12
p1(C2 − C1)

(9a)

γ2 = 1− (1− α)(µ− C1)−m12 + C1p12
p2(C2 − C1)

(9b)

Note that (9a) and (9b) are linear in α. They are valid over the range of α
(if any) such that both equations give values between zero and one.

Now we turn to the determination of C1 and C2. We present an algorithm
that determines φ(x, α, θ) for any discrete one-parameter exponential family
with canonical statistic T (X) for all values of x and α for one fixed value of θ.

1. Start with α = 1.

(a) If µ given by (5b) is an atom, then φ(x, α, θ) is given by (3) with
C1 = C2 = µ and γ1 = γ2 = γ given by (5a), (6a), and (6b) over the
range of α such that (6a) is between zero and one.

(b) If µ given by (5b) is not an atom, then choose C1 and C2 to be
adjacent atoms such that C1 < µ < C2 and φ(x, α, θ) is given by
(3) with γ1 and γ2 given by (7a), (7b), (7c), (9a), and (9b) over the
range of α such that both (9a) and (9b) are between zero and one.
[Because C1 and C2 are adjacent atoms, p12 = m12 = 0, and α = 1
gives γ1 = γ2 = 1, a valid solution.]

2. Start with the smallest α for which φ(x, α, θ) was determined in step 1 or
a previous iteration of step 2. At this point, either γ1 or γ2 is zero (or
both are).

(a) If γ1 is zero, then decrease C1 to the adjacent lower atom and set
γ1 = 1 [which does not change the value of φ(x, α, θ) for any x].

(b) If γ2 is zero, then increase C2 to the adjacent higher atom and set
γ2 = 1 [which does not change the value of φ(x, α, θ) for any x].

(c) Now φ(x, α, θ) is given by (6a) with γ1 and γ2 given by (7a), (7b),
(7c), (9a), and (9b) over the range of α such that both (9a) and (9b)
are between zero and one [because of steps (a) and (b), both γi are
now greater than zero, so α can be decreased].

3. Repeat step 2 until the whole range 0 ≤ α ≤ 1 is covered.

This algorithm is certainly unwieldy, but it does make clear that α 7→
φ(x, α, θ) is (1) continuous, (2) piecewise linear, (3) nondecreasing, and (4) onto
[0, 1]. Hence it is the distribution function of a continuous random variable (an
abstract randomized P -value). Clearly, it is differentiable on each linear piece
and the derivative is piecewise constant (a step function).
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1.2 Endpoint Behavior

The UMPU test is not well defined when the null hypothesis is on the bound-
ary of the parameter space. But equations (3), (4a), and (4b) still make sense
and define a test. Since the probability and the expectation in those equations
are continuous in θ this also characterizes the behavior as θ converges to a
boundary point (which we need to know to calculate fuzzy confidence intervals,
which involve all θ in the parameter space).

Theorem 1. Suppose the setup for a UMPU test described in the first paragraph
of Section 1.1.2. In addition suppose that T (X) has a topologically discrete dis-
tribution (concentrated on a countable set of atoms and the atoms topologically
isolated) not concentrated at one point. If the support S of T (X) has a lower
bound and L is the two-point set consisting of the two smallest atoms of the
support, then

1− φ(x, α, θ)→ (1− α)IL(x), as θ → −∞. (10)

Similarly, if the support has an upper bound and L consists of the two largest
atoms, then (10) holds with −∞ replaced by +∞.

Proof. We do the case where the support has a lower bound. The upper bound
case is entirely analogous.

The densities in the family of distributions of T (X) have the form

fθ(s) =
1

c(θ)
esθλ(s), s ∈ S, (11)

where λ is some strictly positive function, and

c(θ) =
∑
s∈S

esθλ(s). (12)

The natural parameter space of the family is the set Θ of θ such that (12) is
finite. Because S is bounded below, if c(ψ) < ∞, then c(θ) < ∞ for all θ < ψ.
Thus Θ is either the whole real line or a semi-infinite interval extending to −∞.

For every θ in the interior of Θ, the distribution with density fθ has a moment
generating function Mθ defined by

Mθ(t) = Eθ{etT (X)} =
c(θ + t)

c(θ)
,

and hence this distribution has moments of all orders, the mean and variance
being given by derivatives at zero of the cumulant generating function logMθ

µ(θ) = Eθ{T (X)} =
d

dθ
log c(θ)

σ2(θ) = varθ{T (X)} =
d2

dθ2
log c(θ)

4



Because of our assumption that T (X) is not concentrated at one point, σ2(θ) =
dµ(θ)/dθ can never be zero. Hence µ is a strictly increasing continuous function
that maps the interior of Θ to some open interval of the real line.

Write L = {s0, s1} with s0 < s1. Since

fθ(s)

fθ(s0)
= e(s−s0)θ

λ(s)

λ(s0)

the distribution clearly converges to the distribution concentrated at s0 as θ →
−∞.

Now
µ(θ)− s0
fθ(s1)

=
∑

s∈S\{s0}

(s− s0)e(s−s1)θ
λ(s)

λ(s1)

goes to s1 − s0 by monotone convergence as θ → −∞. Hence µ(θ) → s0 as
θ → −∞. Thus µ is a diffeomorphism from the interior of Θ to some open
interval of the real line, the lower endpoint of which is s0.

Now
Prθ{T (X) > s1}

fθ(s1)
=
∑
s∈S\L

e(s−s1)θ
λ(s)

λ(s1)

goes to zero by monotone convergence as θ → −∞.
And these facts together imply

Prµ{T (X) = s0} = 1− µ− s0
s1 − s0

+ o(µ− s0)

Prµ{T (X) = s1} =
µ− s0
s1 − s0

+ o(µ− s0)

Prµ{T (X) > s1} = o(µ− s0)

(13)

where µ = µ(θ) is the mean value parameter.
Now we claim that for small enough values of θ or µ we have C1 = s0 and

C2 = s1 and the UMPU test is given by equations (3.10a) and (3.10b) in the
paper with p1 and p2 given by (3.8a) in the paper and p12 = m12 = 0. Let’s
check. These equations give now

γ1 = 1− (1− α)(s1 − µ)

s1 − µ+ o(µ− s0)

γ2 = 1− (1− α)(µ− s0)

µ− s0 + o(µ− s0)

and clearly both converge to α as µ→ s0 hence both are between zero and one
for small enough θ or µ and hence define the UMPU test.

This explains the behavior of the fuzzy confidence intervals for the binomial
distribution for the two x values nearest each boundary in Figure 2 of the paper.
As θ → 0, the fuzzy confidence interval 1−φ(x, α, θ) converges to 1−α for x = 0
or x = 1 and converges to zero for all other x. And as θ → 1, the fuzzy confidence
interval converges to 1− α for x = n− 1 or x = n and converges to zero for all
other x.
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1.3 Models With Nuisance Parameters

UMP and UMPU theory extends to multiparameter exponential families
when the parameter of interest θ is one of the canonical parameters (Lehmann,
TSH, 1st ed., pp. 134–136).

Suppose the family has densities of the form

1

c(θ,η)
exp

(
θT (x) +

k∑
i=1

ηiUi(x)

)

with respect to some measure on the sample space. Then the situation is exactly
the same as described above except that the reference distribution of the test is
the conditional distribution of T (X) given U(X), which (a standard fact about
exponential families) depends only on θ and not on the nuisance parameter η.

1.3.1 UMP Tests With Nuisance Parameters

Now there exists a UMP test having null hypothesis H0 = {ϑ : ϑ ≤ θ },
alternative hypothesis H1 = {ϑ : ϑ > θ }, and significance level α, and its
critical function φ is defined by

φ(x, α, θ) =


1, T (x) > C[U(x)]

γ[U(x)], T (x) = C[U(x)]

0, T (x) < C[U(x)]

(14)

where the functions γ and C are determined by

Eθ{φ(X,α, θ) | U(X)} = α. (15)

Everything is exactly the same as for the one-parameter case except for the
conditioning on U(x). The only point of the discussion is that the test is UMP
whether considered conditionally or unconditionally.

As before, the UMP upper-tailed test is obtained by reversing all the in-
equalities above.

1.3.2 UMPU Tests With Nuisance Parameters

Now there exists a UMPU test having null hypothesis H0 = {ϑ : ϑ = θ },
alternative hypothesis H1 = {ϑ : ϑ 6= θ }, and significance level α, and its
critical function φ is defined by

φ(x, α, θ) =



1, T (x) < C1[U(x)]

γ1[U(x)], T (x) = C1[U(x)]

0, C1[U(x)] < T (x) < C2[U(x)]

γ2[U(x)], T (x) = C2[U(x)]

1, C2[U(x)] < T (x)

(16)
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where the functions γ1, γ2, C1, and C2 are determined by

Eθ{φ(X,α, θ) | U(X)} = α (17a)

Eθ{T (X)φ(X,α, θ) | U(X)} = αEθ{T (X) | U(X)} (17b)

Again, the point is that the test is UMPU whether considered conditionally
or unconditionally.

2 Models

2.1 Binomial

Let X ∼ Bin(n, p) with 0 < p < 1.
All of the quantities in (9a) and (9b) are easily calculated (in R) except

possibly m12. Actually, as Lehmann points out (TSH, 1st, ed., pp. 128–129),
this quantity is also easy to calculate

C2−1∑
x=C1+1

x

(
n

x

)
px(1− p)n−x = np

C2−1∑
x=C1+1

(
n− 1

x− 1

)
px−1(1− p)(n−1)−(x−1)

and the sum on the right is just a binomial probability for the Bin(n − 1, p)
distribution, that is, the right side can be calculated in R (with the obvious
definitions of the variables) by

n * p * (pbinom(c2 - 2, n - 1, p) - pbinom(c1 - 1, n - 1, p))

assuming pbinom(c1 - 1, n - 1, p) does not crash and produces zero when
c1 is zero (which it does in recent versions I can check).

2.2 Poisson

Let X ∼ Pois(µ) with 0 < µ.
Again, all of the quantities in (9a) and (9b) are easily calculated except

possibly m12. Does it work like the binomial case? Yes!

C2−1∑
x=C1+1

x
µx

x!
e−µ = µ

C2−1∑
x=C1+1

µx−1

(x− 1)!
e−µ

and the sum on the right is just another Poisson probability, that is, the right
side can be calculated in R (with the obvious definitions of the variables) by

mu * (ppois(c2 - 2, mu) - ppois(c1 - 1, mu))

7



2.3 Negative Binomial

Let X ∼ NegBin(r, p) with 0 < p < 1. Like R we consider the sample space
to start at zero rather than r. This also allows for non-integer r. The densities
of the family have the form

f(x) =
Γ(x+ r)

Γ(r)x!
pr(1− p)x

Note that if we are to have an exponential family r cannot be an unknown
parameter! The only unknown parameter is p.

Again, all of the quantities in (9a) and (9b) are easily calculated except
possibly m12. Does it work like the binomial case? Yes!

C2−1∑
x=C1+1

x
Γ(x+ r)

Γ(r)x!
pr(1− p)x =

1− p
p

C2−1∑
x=C1+1

Γ(x− 1 + r + 1)

Γ(r)(x− 1)!
pr+1(1− p)x−1

and the sum on the right is just another negative binomial probability, that
is, the right side can be calculated in R (with the obvious definitions of the
variables) by

(1 - p) / p * (pnbinom(c2 - 2, r + 1, p)

- pnbinom(c1 - 1, r + 1, p))

2.4 Two Independent Poisson Random Variables

Let Xi ∼ Pois(µi) with 0 < µi, for i = 1, 2 be independent random variables.
We wish to compare the means µ1 and µ2. We cannot just test or produce fuzzy
confidence intervals for a function pulled out of the air, such as µ1 − µ2. The
parameter we test must be canonical.

The canonical statistics of this exponential family are X1 and X2 and the
corresponding canonical parameters are ψi = log(µi). Linear functions of canon-
ical parameters are again canonical so we can test or produce fuzzy confidence
intervals for ψ1 − ψ2 = log(µ1/µ2).

Introduce new parameters

ψ1 = η + θ

ψ2 = η

Then
X1ψ1 +X2ψ2 = X1θ + (X1 +X2)η = T (X)θ + U(X)η

Where

T (X) = X1

U(X) = X1 +X2

(18)
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It is a standard result that the conditional distribution of T (X) given U(X)
is

X1 | X1 +X2 ∼ Bin

(
X1 +X2,

µ1

µ1 + µ2

)
So the theory says we do the UMP or UMPU test based on this distribution with
µ1/(µ1 +µ2) as the parameter of interest (Lehmann, TSH, 1st ed., pp. 140–142,
gives further details).

2.5 Two Independent Binomial Proportions

Let Xi ∼ Bin(ni, pi) with 0 < pi < 1, for i = 1, 2 be independent random
variables. We wish to compare the proportions p1 and p2. We cannot just test
or produce fuzzy confidence intervals for a function pulled out of the air, such
as p1 − p2. The parameter we test must be canonical.

The canonical statistics of this exponential family are X1 and X2 and the
corresponding canonical parameters are ψi = logit(pi). Linear functions of
canonical parameters are again canonical so we can test or produce fuzzy con-
fidence intervals for ψ1 − ψ2.

As in the Poisson case we see that we can base the test on the conditional
distribution of T (X) given U(X), where these variables are defined by (18).
This distribution is known although is is not “nice” and is not a “brand name”
distribution. It is (Lehmann, TSH, 1st ed., pp. 142–143) the exponential family
generated by the hypergeometric distribution.

Pr{X1 = t | X1 +X2 = u} =
1

c(ρ)

(
n1
t

)(
n2
u− t

)
ρt, t = 0, . . . , u, (19)

where

ρ =
p1(1− p2)

(1− p1)p2

and

c(ρ) =

u∑
t=0

(
n1
t

)(
n2
u− t

)
ρt.

So the theory says we do the UMP or UMPU test based on this distribution
with ρ as the parameter of interest

This distribution is very hairy. For starters the actual range of the random
variable X1 | X1 + X2 is not 0 to X1 + X2 as (19) seems to indicate. The
binomial coefficients can evaluate to zero.

We will leave the complexity of this model and move on to other models.
In principle it is just a one-parameter exponential family and hence “nice” in
certain respects. In practice, there is no readily available software to calcu-
late distribution and density functions, so this model requires more effort in
computer implementation.
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2.6 Two Independent Negative Binomial Variables

Let Xi ∼ NegBin(ri, pi) with 0 < ri and 0 < pi < 1, for i = 1, 2 be
independent random variables. As in Section 2.3 we are using the convention
that the sample space starts at zero. We wish to compare the proportions p1
and p2. We cannot just test or produce fuzzy confidence intervals for a function
pulled out of the air, such as p1−p2. The parameter we test must be canonical.

The canonical statistics of this exponential family are X1 and X2 and the
corresponding canonical parameters are ψi = log(1 − pi). Linear functions
of canonical parameters are again canonical so we can test or produce fuzzy
confidence intervals for ψ1 − ψ2.

As in the Poisson case we see that we can base the test on the conditional
distribution of T (X) given U(X), where these variables are defined by (18).
This distribution is not fully explained in Lehmann, although the r1 = r2 = 1
case is the subject of a homework problem in the second edition.

Let’s see what happens. The joint distribution of the X’s is

f(x1, x2) =

2∏
i=1

Γ(xi + ri)

Γ(ri)xi!
prii (1− pi)xi

= exp(x1ψ1 + x2ψ2)

2∏
i=1

Γ(xi + ri)

Γ(ri)xi!
prii

= exp(tθ + uη)
Γ(t+ r1)

Γ(r1)t!

Γ(u− t+ r2)

Γ(r2)(u− t)!
pr11 p

r2
2 (20)

where

t = x1

u = x1 + x2

θ = ψ1 − ψ2

η = ψ2

It matters not that we have not specified p1 and p2 as a function of θ and η. We
want to consider the conditional distribution anyway. Thought of as a function
of t for fixed u and dropping all terms that do not contain both parameters and
t we get

fθ(t | u) =
1

c(θ)
exp(tθ)

Γ(t+ r1)Γ(u− t+ r2)

t!(u− t)!
, t = 0, . . . , u, (21)

where

c(θ) =

u∑
t=0

exp(tθ)
Γ(t+ r1)Γ(u− t+ r2)

t!(u− t)!
.

Hmmmm. Also not a brand name family and not the exponential family gener-
ated by the hypergeometric distribution we saw in the case of two independent
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binomial proportions. Still just another one-parameter exponential family. No
big deal.

Actually, Mathematica says this has some sort of relation to hypergeometric
functions, for example

In[4]:= Sum[ rho^t Gamma[t + r] Gamma[u - t + s] /

(Gamma[t + 1] Gamma[u - t + 1]), {t, 0, u} ]

Gamma[r] Gamma[s + u] Hypergeometric2F1[r, -u, 1 - s - u, rho]

Out[4]= --------------------------------------------------------------

Gamma[1 + u]

So Mathematica knows how to calculate the normalizing function and it involves
a “hypergeometric 2F1 function. Maybe we should call this the exponential
family generated by the negative hypergeometric distribution.

According to

http://planetmath.org/encyclopedia/NegativeHypergeometricDistribution.html

there is a negative hypergeometric distribution having density

f(x) =

(
x+b−1
x

)(
W+B−b−x

W−x
)(

W+B
W

) , x = 0, 1, . . . ,W,

where W , B, and b are positive integers. The web page explains that this is
the distribution of the number of “special items” X (from W special items in
the population) present before the bth object from a population with B items
altogether.

Comparing with (21) we see that the base measure of the family does indeed
have this form when r1 and r2 are integers.

2.7 Testing Independence in a Two-by-two Table

This is the UMP/UMPU competitor for Fisher’s exact test. The data consist
of a matrix Xij , i = 1, 2, j = 1, 2, that has a multinomial distribution with
sample size n and cell probability matrix pij , i = 1, 2, j = 1, 2. This is also
called a two-by-two contingency table.

The canonical statistics are the Xij , but the canonical parameters are not
uniquely defined in terms of the pij because the model is really only three
dimensional, not four, because the Xij sum to n.

As is well known, this is a three-dimensional exponential family, the canonical
statistics being any three of the four Xij , the fourth being determined from the
other three by the requirement that the Xij sum to n.

In this problem (Lehmann, TSH, 1st ed., pp. 143–146) the marginals are the
statistics for the nuisance parameters, and we can consider any other statistic
linearly independent of the marginals and the sum of all cells as the statistic of
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interest. Lehmann chooses

T (X) = X11

U1(X) = X11 +X12

U2(X) = X11 +X21

(22)

The conditional distribution of T (X) given the marginals U1(X) and U2(X)
is well known. It is the hypergeometric distribution involved in Fisher’s exact
test under the null hypothesis of independence and under general null hypotheses
is the exponential family generated by the hypergeometric we encountered in
Section 2.5.

Pr{X11 = t | X11 +X12 = u1, X11 +X21 = u2}

=
1

c(ρ)

(
u1
t

)(
n

u2 − t

)
ρt, t = 0, . . . , n (23)

where
ρ =

p11p22
p12p21

and

c(ρ) =

n∑
t=0

(
u1
t

)(
n

u2 − t

)
ρt.

As in Section 2.5 we note that this distribution given by (23) often does not
have the full range 0 to n because the binomial coefficients may be zero.

2.8 Different Answers to the Same Question in a Poll

This section and the next give the UMP/UMPU/fuzzy competitors to the
analysis of correlated binomial proportions in Wild and Seber (pp. 343–350).
The first considers different answers to the same question on a poll. This is a
multinomial problem. Say the categories of interest have counts X1 and X2,
then we know

X1 | X1 +X2 ∼ Bin

(
X1 +X2,

p1
p1 + p2

)
and so the UMP/UMPU/fuzzy procedures are based on this distribution.

2.9 Answers to Different Questions in a Poll

Here again, like in Section 2.7, we have a two-by-two table with data Xij and
cell probabilities pij but the question of interest is different. Now we are inter-
ested in just the opposite question, whether the marginals differ. This in a sense
(a rather vague sense) interchanges the role of interest and nuisance parameters,
what were interest parameters in Section 2.7 are now nuisance parameters and
vice versa.

Ordinarily, this would be nonsense. There is exactly one interest parameter.
The rest (in this case two) must be nuisance parameters. So, strictly speaking,
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they cannot be interchanged. But a two-by-two table has a redundant canonical
statistic: there are four Xij but they sum to n so only three are linearly inde-
pendent. So if we add the redundant statistic to the statistics corresponding to
parameters of interest we two sets of two that can be interchanged.

It is clear that (22) could have been written with subscripts 1 and 2 inter-
changed, which would make X22 the statistic of interest. This tells us that here
we should condition on X11 and X22 leaving either X12 or X21 as the statistic
of interest. Thus in this case the UMP/UMPU/fuzzy procedure is based on the
distribution

X12 | X11, X22 ∼ Bin

(
n−X11 −X22,

p12
p12 + p21

)
And in hindsight we see that we have invented the conditional, exact, uni-

formly most whatever (UMW) competitor of McNemar’s test (Lindgren, Statis-
tical Theory, pp. 381–383).

3 Algorithms

3.1 Version 0.1

After a great struggle, a very simple algorithm was decided on for calculating
φ(x, α, θ). Given α and θ, calculate the appropriate c1, c2, γ1, and γ2 as follows.

First handle the special cases where α is zero or one and θ is on the boundary
of the parameter space, using Theorem 1 above and the obvious fact that φ is
identically equal to one when α = 1 and identically equal to zero when α = 0.

When in the general case 0 < α < 1 and θ not on the boundary choose some
c1 and c2 such that c1 ≤ Eθ{T (X)} ≤ c2. We pick the c1 and c2 that give, with
randomization, an equal tailed test, in the hope that this is close to correct.

Then we go into an infinite loop that does the following.

� Calculate γ1 and γ2 using the current guesses for c1 and c2 and equations
(9a) and (9b) above. If the results satisfy 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1,
then we are done and stop the loop.

� Otherwise, we change c1 or c2, the one corresponding to the γi that violates
the constraints worst. If this γi is negative, we move the ci out by one
(i. e. decrease c1 or increase c2) and if this γi is greater than one, we move
the ci in by one.

Actually we don’t do an infinite loop, because we have no theorem that says
this algorithm converges, so we have a maximum iteration count (default 10)
and just give up when it is reached. In the examples we have done, there has
been no need to increase the iteration count.

See ump/src/umpubinom.c for an example of this algorithm. See ump/

tests/umpub.R for the tests it passed.
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3.2 Version 0.3

An attempt to implement the density of abstract randomized P -values and
test the implementation shows that equations (9a) and (9b) are no good. The
exhibit catastrophic cancellation for small alpha.

So we back up to (7a), (7b), and (7c) and keep (7a) but ignore the other
two, replacing them with

P1 = Prθ{T (X) < C1} (24a)

P2 = Prθ{T (X) > C2} (24b)

M1 = Eθ{T (X)I(−∞,C1)[T (X)]} (24c)

M2 = Eθ{T (X)I(C2,∞)[T (X)]} (24d)

Then we replace (8a) and (8b) by

P1 + γ1p1 + γ2p2 + P2 = α (25a)

M1 + γ1C1p1 + γ2C2p2 +M2 = αµ (25b)

which solved for γ1 and γ2 give

γ1 =
α(C2 − µ) + (M1 − C2P1) + (M2 − C2P2)

p1(C2 − C1)
(26a)

γ2 =
α(µ− C1)− (M1 − C1P1)− (M2 − C1P2)

p2(C2 − C1)
(26b)

This seems to work better, but honesty compels us to admit that this formula
also is subject to catastrophic cancellation. Perusal of the source code reveals
several ad hoc bits of code that deal with special cases in which the code without
the adhockery fails due to catastrophic cancellation or other problems with the
inexactitude of floating point arithmetic.

It is fair to say that our code is far from an elegant and provably correct
solution to this problem. We think the algorithm presented on page 3 would
actually be better than the one we used in all respects except that it takes
time proportional to the sample size, which was deemed unacceptable (perhaps
wrongly).
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