Package 'triangulation'

October 14, 2022

Type Package				
Title Determine Position of Observer				
Version 0.5.0				
Date 2016-10-22				
Description Measuring angles between points in a landscape is much easier than measuring distances. When the location of three points is known the position of the observer can be determined based solely on the angles between these points as seen by the observer. This task (known as triangulation) however requires onerous calculations - these calculations are automated by this package.				
License LGPL				
LazyData TRUE				
RoxygenNote 5.0.1				
NeedsCompilation no				
Author Mathias Milfeldt [aut, cre]				
Maintainer Mathias Milfeldt <mathias@milfeldt.dk></mathias@milfeldt.dk>				
Repository CRAN				
Date/Publication 2016-10-29 13:47:55				

R topics documented:

Index		5
	determine_region	4
	determine_position	3
	determine_angles	2

1

determine_angles Determine angles as seen by observer

Description

Determine the angles (between three known points) as seen by an observer with a known position.

Usage

```
determine_angles(A, B, C, observer_position = c(0, 0), output_plot = TRUE,
    lines_in_plot = TRUE, angles_in_plot = TRUE, decimals_in_plot = 2)
```

Arguments

A	A point defined by a vector containing an x- and an y-coordinate			
В	A point defined by a vector containing an x- and an y-coordinate			
С	A point defined by a vector containing an x- and an y-coordinate			
observer_position				
	A vector containing an x- and an y-coordinate			
output_plot	Boolean variable indicating whether a plot should be created			
lines_in_plot	Boolean variable indicating whether lines should be drawn in the plot			
angles_in_plot	Boolean variable indicating whether the angles should be printet in the plot			
decimals_in_plot				
	Integer indicating the number of decimals used			

Value

The angles as seen by the observer expressed in radians.

Examples

determine_angles(A = c(0, 0), B = c(10, 0), C = c(5, 5), observer_position=c(4,1)) determine_angles(A = c(0, 0), B = c(10, 0), C = c(5, 5), observer_position=c(4,40), angles_in_plot = FALSE) determine_position Determine position of observer

Description

Determine the position of an observer based on angles between three known points as seen by the observer. At least two angles must be provided - preferably observer_angle_AB and observer_angle_AC (since this combination allows for solutions outside the triangle formed by the points A, B and C)

Usage

```
determine_position(A, B, C, observer_angle_AB, observer_angle_AC,
    observer_angle_BC = NA, output_plot = TRUE, lines_in_plot = TRUE,
    coordinates_in_plot = TRUE, decimals_in_plot = 2)
```

Arguments

A	A point defined by a vector containing an x- and an y-coordinate			
В	A point defined by a vector containing an x- and an y-coordinate			
С	A point defined by a vector containing an x- and an y-coordinate			
observer_angle_AB				
	An angle (numeric) expressed in radians (or alternatively the symbol NA)			
observer_angle_AC				
	An angle (numeric) expressed in radians (or alternatively the symbol NA)			
observer_angle_BC				
	An angle (numeric) expressed in radians (or alternatively the symbol NA)			
output_plot	Boolean variable indicating whether a plot should be created			
lines_in_plot	Boolean variable indicating whether lines should be drawn in the plot			
coordinates_in_plot				
	Boolean variable indicating whether the coordinates should be printet in the plot			
decimals_in_plot				
	Integer indicating the number of decimals used			

Value

Coordinates indicating the observers position. Note that several solutions might exist.

Examples

determine_position(A = c(0, 0), B = c(10, 0), C = c(5, 5 * 3^0.5), observer_angle_AB = pi * 2/3, observer_angle_AC = pi * 1/2)

determine_position(A = c(0, 0), B = c(10, 0), C = c(5, 5), observer_angle_AB = pi \times 5/6, observer_angle_AC = pi \times 1/2, observer_angle_BC = NA, lines_in_plot = FALSE)

determine_position(A = c(0, 0), B = c(10, 0), C = c(5, 5), observer_angle_AB = pi * 5/6, observer_angle_AC = pi * 1/2, observer_angle_BC = pi * 2/3, lines_in_plot = FALSE)

determine_region

Description

This function is similar to determine_position()except for the fact that it is assumed that the angles are subject to measurement error. Hence a confidence region (error 'ellipse') is returned instead of an exact position.

Usage

```
determine_region(A, B, C, observer_angle_AB, observer_angle_AC,
angle_error = pi/24, number_of_points = 200, output_plot = TRUE,
lines_in_plot = FALSE, coordinates_in_plot = FALSE,
decimals_in_plot = 2)
```

Arguments

А	A point defined by a vector containing an x- and an y-coordinate			
В	A point defined by a vector containing an x- and an y-coordinate			
С	A point defined by a vector containing an x- and an y-coordinate			
observer_angle_AB				
	An angle (numeric) expressed in radians			
observer_angle_AC				
	An angle (numeric) expressed in radians			
angle_error	A numeric indicating the measurement error in radians			
number_of_points				
	A numeric indicating the number of error points tested			
output_plot	Boolean variable indicating whether a plot should be created			
lines_in_plot	Boolean variable indicating whether lines should be drawn in the plot			
coordinates_in_plot				
	Boolean variable indicating whether the coordinates should be printet in the plot			
decimals_in_plot				
	Integer indicating the number of decimals used			

Value

Coordinates indicating the outer border of the confidence region. Note that several different regions may exist.

Examples

determine_region(A = c(0, 0), B = c(10, 0), C = c(5, 5 * 3^0.5), observer_angle_AB = pi * 2/3, observer_angle_AC = pi * 1/2)

determine_region(A = c(0, 0), B = c(10, 0), C = c(5, 5), observer_angle_AB = pi * 5/6, observer_angle_AC = pi * 1/2, lines_in_plot = FALSE)

Index

determine_angles, 2
determine_position, 3
determine_region, 4