Package ‘timetools’

May 22, 2025
Type Package

Title Seasonal/Sequential (Instants/Durations, Even or not) Time
Series

Version 1.15.5

Date 2025-05-22

Imports methods

Author Vladislav Navel [aut, cre]

Maintainer Vladislav Navel <vnavel@yahoo. fr>

Description Objects to manipulate sequential and seasonal time series. Sequential time se-
ries based on time instants and time duration are handled. Both can be regularly or un-
evenly spaced (overlapping duration are allowed). Only POSIX* for-
mat are used for dates and times. The following classes are provided : POSIXcti', 'POSIX-
ctp', "TimelntervalDataFrame', "TimelnstantDataFrame', 'SubtimeDataFrame' ; meth-
ods to switch from a class to another and to modify the time support of series (hourly time se-
ries to daily time series for instance) are also defined. Tools provided can be used for in-
stance to handle environmental monitoring data (not always produced on a regular time base).

License GPL
LazyLoad yes

URL https://sourceforge.net/projects/timetools/
Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.2.3

Repository CRAN

Date/Publication 2025-05-22 15:00:02 UTC

Contents

timetools-package L
asdataframe
changeSupport

https://sourceforge.net/projects/timetools/

2 timetools-package
compute.lim e e e e e 7
CONLIMUOUS . . . v v v v v v e 8
duration L e e e e 9
homogeneous L e 9
interval e e 10
OPS.UMETIC &« v v v v v v v e e e e e e e e e e e e e e e e e e 10
OTIZIN . . . v v o vt it e e e e e e e e 11
overlapping e e 11
periodo e 12
POSIXcti e e 13
POSIXctp o e e e 16
POSIXSt e e 21
TEEUIAT L e e e e e 26
SPIit . . L e e 27
SubtimeDataFrame 29
tapply . .o e e 34
TimelnstantDataFrame 36
TimelntervalDataFrame 41
HMEZONE v o v v e e e e e e e e e e e e e e e 48
UNDE . . L e e e e e e 49
When e e e e e e 50
Yoincluded% e 50
PointerSeCtPo o e e e e e e e e e 51

Index 52

timetools-package Seasonal/Sequential (Instants/Duration, Even or not) Time Series

Description

Objects to manipulate sequential and seasonal time series. Sequential time series based on time
instants and time duration are handled. Both can be regularly or unevenly spaced (overlapping
duration are allowed).

Only POSIX* format are used for dates and times.

The following classes are provided : POSIXcti, POSIXctp, TimelntervalDataFrame, Timelnstant-
DataFrame, SubtimeDataFrame ; methods to switch from a class to another and to modify the time
support of series (hourly time series to daily time series for instance) are also defined.

Tools provided can be used for instance to handle environmental monitoring data (not always pro-
duced on a regular time base).

Author(s)

Vladislav Navel <vnavel @yahoo.fr>

as.data.frame 3

See Also

TimeInstantDataFrame, TimeIntervalDataFrame, changeSupport, SubtimeDataFrame, POSIXcti,
POSIXctp

Examples

ti1 <- TimeIntervalDataFrame (
c('2010-01-01", '2010-02-01'), c('2010-02-01"', '2010-02-02'),
'UTC', data.frame(ex1=1:2))

ti2 <- TimelIntervalDataFrame (
c('2010-01-01"', '2010-02-01', '2010-02-02'), NULL,
'UTC', data.frame(ex1=1:2))

all.equal (til, ti2)

ti3 <- TimelIntervalDataFrame (
c('2010-01-01"', '2010-01-02', '2010-01-04'), NULL,
'UTC', data.frame(ex3=c(6, 1.5)))

weighted mean over a period of 3 days with at least 75% of
coverage (NA is retunr if not)

ti3

d <- POSIXctp(unit='day"')

changeSupport (ti3, 3Lxd, 0.75)

ti4 <- TimeIntervalDataFrame (

c('2010-01-01"', '2010-01-02', '2010-01-04',
'2010-01-07', '2010-01-09', '2010-01-10'), NULL,

'UTC', data.frame(ex4=c(6, 1.5, 5, 3, NA)))

weighted mean over a period of 3 days with at least 75% of
coverage (NA is retunr if not) or 50%

ti4

changeSupport (ti4, 3L*d, 0.75)

changeSupport (ti4, 3L*d, 0.5)

as.data.frame Convert an object to a data.frame

Description

Convert an object to a data. frame.

4 changeSupport

Usage

S3 method for class 'TimelInstantDataFrame'
as.data.frame(x, row.names=NULL, optional=FALSE,
include.dates=FALSE, ...)
S3 method for class 'TimeIntervalDataFrame'
as.data.frame(x, row.names=NULL, optional=FALSE,
include.dates=FALSE, ...)
S3 method for class 'SubtimeDataFrame'
as.data.frame(x, row.names=NULL, optional=FALSE,

include.dates=FALSE, ...)
Arguments
X TimelntervalDataFrame, TimelnstantDataFrame or SubtimeDataFrame
row.names ‘NULL’ or a character vector giving the row names for the data frame. Missing

values are not allowed.

optional logical. If “TRUE’, setting row names and converting column names (to syntac-
tic names: see ‘make.names’) is optional.

include.dates should time properties be included in the data.frame as a column ? (or 2 columns
for TimelntervalDataFrame)

additional arguments to be passed to or from methods.

Value

adata.frame

changeSupport Function to change time support of TimelntervalDataFrame

Description

Methods that allows to aggregate AND disaggregate homogeneous AND heterogeneous time data.

Usage

changeSupport(from, to, min.coverage, FUN = NULL,
weights.arg = NULL, split.from = FALSE,
merge.from = TRUE, ...)

S4 method for signature 'TimelntervalDataFrame,POSIXctp,numeric'
changeSupport(from, to, min.coverage, FUN=NULL,

weights.arg=NULL, split.from=FALSE,

merge.from=TRUE, ...)

S4 method for signature
'TimelIntervalDataFrame,TimeIntervalDataFrame,numeric'
changeSupport(from, to, min.coverage,

changeSupport 5

FUN=NULL, weights.arg=NULL,
split.from=FALSE, merge.from=TRUE, ...)
S4 method for signature 'TimeIntervalDataFrame,character,numeric
changeSupport(from, to, min.coverage, FUN=NULL,
weights.arg=NULL, split.from=FALSE,

merge.from=TRUE, ...)
Arguments
from TimeIntervalDataFrame for which the time support is to change
to an object indicating the new support, see specific sections

min.coverage a numeric between O and 1 indicating the percentage of valid values over each
interval to allow an aggregation. NA is returned if the percentage is not reach. In
changeSupport, when values are aggregated, intervals are not allowed to overlap.
When a function (FUN) has a na.rm argument, the na.rm=TRUE behaviour is
met if na.rm is set to TRUE and min.coverage to 0 (zero) ; the na.rm=FALSE
behaviour is met if na.rm is set to FALSE whatever is the value of min.coverage.
If min.coverage is as.numeric(NA), the function FUN is apply on all data within
the interval, without checking if there is any overlapping. In this case, the result
of the transformation must be analysed carefully.

FUN function use to aggregate data of from. By default mean if ‘from’ is homogeneous.
weighted.mean otherwise.

weights.arg if FUN has a ‘weight’ argument, this parameter must be a character naming the
weight argument. For instance, if FUN is weighted.mean, then weights.arg is
'w'.

arguments for FUN or for other methods

split.from logical indicating if data in ‘from’ can be used for several intervals of the new
time support (see ‘details’).
merge.from logical indicating if data in ‘from’ can be merged over interval of the new time
support.
Details

Agreggating homogeneous data is for example to calculate daily means of time series from hourly
time series.

Agreggating heterogeneous data is for example to calculate annual means of time series from
monthly time series (because each month doesn’t have identical weight).

In above cases, the min.coverage allows to control if means should be calculated or not : for the
monthly case, if there are NA values and the time coverage of ‘not NA’ values is lower min. coverage
the result will be NA ; if time coverage is higher than min.coverage, the annual mean will be
‘estimated’ by the mean of available data.

Disaggregating data is more ‘artificial’ and is disabled by default (with the split.from argument).
This argument is also used to precise if one value can be use for aggregation in more than one
interval in the resulting TimelntervalDataFrame (for sliding intervals for instance). Here are some
examples of time disaggregration :

6 changeSupport

* A weekly mean can be dispatched over the days of the week. By default, the value attributed
to each day is the value of the week, but this can be changed by using a special function (FUN
argument).

* The value of a variable is known from monday at 15 hours to tuesday at 15 hours and from
tuesday at 15 hours to wednesday at 15 hours. To ‘evaluate’ the value of the variable for
tuesday can be estimated by doing a weigthed mean between the two values. Weights are
determined by the intersection between each interval and tuesday. Here weights will be 0.625
(15/24) and 0. 375 (9/24) (In this case, disaggregation is combined with a ‘reaggregation’).

These are ‘trivial’ examples but many other usage can be found for these methods. Other functions
than weighted.mean or mean can be used. The Qair package (in its legislative part) gives several
examples of usage (this package is not available on CRAN but see ‘references’ to know where you
can find it).

Value

TimeIntervalDataFrame

from=TimeIntervalDataFrame, to=TimelIntervalDataFrame

to is a TimelntervalDataFrame. The method will try to adapt data of from over interval of to. The
returned object is the to TimelntervalDataFrame with new columns corresponding of those of from.

If merge.from is TRUE, values affected for each interval of to will be calculated with all data in the
interval. If split.from is TRUE, values partially in the interval will also be used for calculation.

If merge.from is FALSE, values affected for each interval of to will be the one inside this interval.
If several values are inside the interval, NA will be affected. If split.from is TRUE, a value partially
inside the interval is considered as being inside it. So if there is no other values in the interval, this
value will be affected, else NA will be affected.

from=TimelntervalDataFrame, to=character

to is one of ’year’, 'month’, ’day’, "hour’, 'minute’ or ’second’. It defines the period (POSIXctp) to
use to build the new TimelntervalDataFrame on which from will be aggregated (or disaggregated).

So first, an ‘empty’ (no data) TimelntervalDataFrame is created, and then, the aggregation is done
accordingly to the ‘from=TimelntervalDataFrame, to=TimelntervalDataFrame’ section.

from=TimelIntervalDataFrame, to=POSIXctp

to is period (see POSIXctp). It defines the base of the new TimelntervalDataFrame on which from
will be aggregated (or disaggregated).

So first, an ‘empty’ (no data) TimelntervalDataFrame is created, and then, the aggregation is done
accordingly to the ‘from=TimelntervalDataFrame, to=TimelntervalDataFrame’ section.

References

Qair-package : https://sourceforge.net/projects/packagerqgair/

https://sourceforge.net/projects/packagerqair/

compute.lim 7

See Also

TimeIntervalDataFrame, POSIXcti

Examples

ti3 <- TimeIntervalDataFrame (
c('2010-01-01"', '2010-01-02', '2010-01-04'), NULL,
'UTC', data.frame(ex3=c(6, 1.5)))

weighted mean over a period of 3 days with at least 75% of
coverage (NA is retunr if not)

ti3

d <- POSIXctp(unit='day')

changeSupport (ti3, 3L*d, 0.75)

ti4 <- TimelIntervalDataFrame (
c('2010-01-01"', '2010-01-02', '2010-01-04',
'2010-01-07', '2010-01-09', '2010-01-10'), NULL,
'UTC', data.frame(ex4=c(6, 1.5, 5, 3, NA)))

weighted mean over a period of 3 days with at least 75% of
coverage (NA is retunr if not) or 50%

ti4

changeSupport (ti4, 3L*d, 0.75)

changeSupport (ti4, 3Lxd, 0.5)

use of split.from

ti1 <- RegularTimelntervalDataFrame('2011-01-01"', '2011-02-01', 'hour')
til$value <- T:nrow(til)

we can calculate sliding mean over periods of 24 hours.

first lets build the corresponding TimeIntervalDataFrame

ti2 <- RegularTimelntervalDataFrame('2011-01-01', '2011-02-01', 'hour', 'day')
if we try to 'project' til over ti2 it won't work :

summary (changeSupport (ti1[1:200,]1, ti2[1:200,], 0))

all data are NA because 'spliting' is not enabled. Let's enable it :

summary (changeSupport (ti1[1:200,], ti2[1:200,], @, split.from=TRUE))

compute.lim Calculate limits for plotting

Description
This function return a 2 elements vectors (numeric) which can be use as graph limits (xlim, ylim,
rlim, etc.)

Usage

compute.lim(x, na.rm = FALSE)

8 continuous

Arguments

X ‘numeric’ for which limits must be calculated

na.rm boolean should NA values be removed before calculation ?
Value

numeric of length 2

continuous Test if a time object is continuous/set an time object continuous.

Description

For Time objects.

Usage

continuous(x, ...)
continuous(x) <- value

Arguments
X object to test
value logical indicating whether x must be ’continuify’ or not.
arguments to or from other methods
Details

For objects based on time intervals. After ordering intervals, test if the end of an interval is the start
of the next interval. If any interval overlap another one, it returns FALSE.

If not any interval overlap another, and the object is not continuous, the object can be set ’continu-
ous’ with

continuous(obj) <- TRUE
Intervals will be added such as the object can pass the test describe below. The data is filled with

NA values.
Value

Logical indicating if the object is continuous or not.
or

The object set continuous.

See Also

TimelntervalDataFrame, POSIXcti

duration 9

duration Extract duration of a Time object

Description

For Time objects.

Usage
duration(x, ...)
Arguments
X object from which get the duration
arguments to or from other methods
Value

For time intervals it returns a vector of integers indicating, for each time interval, the duration of
the interval in seconds.

For time periods it returns a vector of integers indicating the duration of each time period using its
own time unit. For instance :

duration(POSIXctp(1:2, c('month', 'year')))>12

See Also
POSIXcti, POSIXctp

homogeneous Test if a time object is homogeneous

Description

For objects based on time intervals (POSIXcti). Test if intervals of the object are ‘homogeneous’ :
if the period of each interval is the same.

Usage
homogeneous(x, ...)
Arguments
X object to test for homogeneity

arguments to or from other methods

10 ops.numeric

Value

logical indicating if *x’ is homogeneous or not.

See Also

TimelntervalDataFrame, POSIXcti

interval Extract time intervals of a time object.

Description

For objects based on time intervals. Return POSIXcti.

Usage
interval(x, ...)
Arguments
X object from which get time intervals
arguments to or from other methods
See Also

TimelntervalDataFrame, POSIXcti

ops.numeric define generic function to compare anything to a numeric

Description

define generic function to compare anything to a numeric

origin 11

origin 1970-01-01 GMT

Description
Origin is the date-time for 1970-01-01 GMT in POSIXct format. This date-time is the origin for
the numbering system used by POSIXct, POSIXIt, chron, and Date classes.

Usage

origin

Format

POSIXt[1:1], format: "1970-01-01 01:00:00"

Details

The original implementation of this ’object’ is in the lubridate package.

Author(s)

Garrett Grolemund "grolemund at rice.edu", Hadley Wickham "h.wickham at gmail.com'

Examples

origin
"1970-01-01 GMT"

overlapping Test if any interval of a time intervals object intersect another

Description

For objects based on time intervals. Test if any interval overlap another one. Because the test can
be ressource consuming, it stops at the first case encountered that does not satisfy this condition.
The two indices corresponding are printed.

Usage
overlapping(x, idx, ...)
S4 method for signature 'TimelIntervalDataFrame,ANY'
overlapping(x, idx, ...)

S4 method for signature 'TimelIntervalDataFrame,logical'’
overlapping(x, idx, ...)

12 period

Arguments
X object to test for overlapping
idx Logical set to TRUE if indexes of all overlapping intervals are to retrieve.
arguments to or from other methods
Value

logical indicating if x’ has any overlapping time interval.

See Also

TimelntervalDataFrame, POSIXcti

period Test or extract different properties of Time objects

Description

For objects based on time intervals. Return POSIXctp of the object if it is homogeneous and con-

tinuous.
Usage
period(x, ...)
Arguments
X object from which get the period
arguments to or from other methods
Value

a time period object if possible. An error occur if not.

See Also

TimelntervalDataFrame, POSIXctp

POSIXcti

POSIXcti Class "POSIXcti”

Description

S4 class that defines ’time interval” objects.

Usage

POSIXcti(start, end, timezone='UTC', ...)
as.POSIXcti(from, ...)

S3 method for class 'POSIXcti'
x[i, ...]

S3 replacement method for class 'POSIXcti'
x[i] <- value

S3 method for class 'POSIXcti'
c(...)

S3 method for class 'POSIXcti'
split(x, f, drop=FALSE, ...)

S3 method for class 'POSIXcti'
rep(x, ...)

S3 method for class 'POSIXcti'
unique(x, incomparables=FALSE, ...)

S3 method for class 'POSIXcti'
i1 %intersect% i2

S3 method for class 'POSIXcti'
start(x, ...)

S3 method for class 'POSIXcti'
end(x, ...)

S4 method for signature 'POSIXcti'
duration(x, ...)

S4 method for signature 'POSIXcti'
length(x)

S3 method for class 'POSIXcti'

print(x, ...)
S3 method for class 'POSIXcti'
format(x, format = "%Y-%m-%d %H:%M:%S", ...)
S3 method for class 'POSIXcti'
summary (object, ...)
S3 method for class 'POSIXcti'
head(x, ...)

S3 method for class 'POSIXcti'
tail(x, ...)

14

POSIXcti

S4 method for signature 'POSIXcti'

show(object)

S4 method

match(x, table,

S4 method
X %in% table

S3 method
Ops(el, e2)

S3 method

for signature 'POSIXcti,POSIXcti'
nomatch = NA_integer_, incomparables=NULL)
for signature 'POSIXcti,POSIXcti'

for class 'POSIXcti'

for class 'POSIXcti'

i1 %included% i2
S4 method for signature 'POSIXcti,POSIXctp'
el + e2
S4 method for signature 'POSIXctp,POSIXcti'
el + e2
S4 method for signature 'POSIXcti,POSIXctp'
el - e2
Arguments
start POSIXct object indicating the beginning of the time interval.
end POSIXct object indicating the end of the time interval.
timezone character indicating the timezone in which the time interval is set. See timezone.
from Object to convert to a time interval (actually works only for NA).
X POSIXcti object on which the method has to be applied.
i index (logical or numeric) of the time interval objects.
value New POSIXcti object.
f factor used to group the POSIXcti elements.
drop Argument specific to the split method. See link[basel{split} documenta-
tion.
format character indicating the format to use to represent the time interval. See sec-
tion “Text representation’ below for further details.
object POSIXcti object on which the method has to be applied.
table The values (POSIXcti vector) to be matched against. See match for further
details.
nomatch The value to be returned i nthe case when no match is found. See match for
further details.
incomparables A vector of values that cannot be matched. See match for further details.
el For (<, <=, =, ==, >=,>) POSIXcti to compare ; otherwise a POSIXcti to shift
by a time period (POSIXctp) or a POSIXctp by which a POSIXcti has to be shift.
e2 For (<, <=, |=, ==, >=, >) POSIXcti to compare ; otherwise a POSIXcti to shift

by a time period (POSIXctp) or a POSIXctp by which a POSIXcti has to be shift.

POSIXcti 15

i1 POSIXcti to test/intersect. See %included% and %intersect% for further de-
tails.

i2 POSIXcti to test/intersect. See %included% and %intersect% for further de-
tails.

More arguments.

Objects from the Class

Objects of this class represent time intervals. One object is actually a vector of time intervals and
so can have a length of one for a single time interval or a length of ‘n’ for ‘n’ time intervals.

Slots

start: Object of class "POSIXct"” corresponding to the beginning of the interval.

duration: integer indicating in seconds the duration of intervals.

Accessing to POSIXcti properties

A POSIXcti has several properties. Because a POSIXcti is a vector of time intervals, the class has a
length function. Other properties are time properties : start, end and duration allow to access to
the corresponding properties. The duration of a time interval is the number of seconds for which
the interval last.

Manipulating POSIXcti

Manipulating POSIXcti means acting on POSIXctis like on classical vectors. Methods available
for this task allow to extract or replace parts of a POSIXcti (with the usual ’[* operator), and to
concatenate (c) or split POSIXcti (split). A unique and a rep method are defined to uniquify or
repeat elements of a POSIXcti.

match and %in% methods have also been defined to find POSIXctp objects among others.

Last, the %intersect% method allow to intersect two POSIXcti.

Text representation

To represent a POSIXcti available functions are print, summary, head, tail, show and format.
The five first functions work the same way that their generic definition.

POSIXcti are formatted by pasting the character strings representing both start and end of each
intervals. Start and end’s format can be specified with the format argument according to the basic
format.POSIXct function.

Testing two POSIXcti

To test two POSIXcti the different operators of comparison are used. One more is defined :
%included%. If the POSIXcti compared have a different length, the shorter is recycled over the
longer so the resulting vector (a logical vector) has length equal to the longer object.

Comparisons are made element by element. The result for a single comparison is given there :

el <e2 TRUE if end(e1) <= start(e2).

16 POSIXctp

el <=e2 TRUE if start(el1) <=start(e2) & end(el) <=end(e2).

el !=e2 TRUE if start(e1) !=start(e2) | duration(el) !=duration(e2).
el ==e2 TRUE if start(e1) == start(e2) & duration(el) ==duration(e2).
el >=e2 TRUE if start(el1) >=start(e2) & end(e1) >=end(e2).

el > e2 TRUE if end(e1) >= start(e2).

il %included % i2 TRUE if start(il) >=start(i2) &end(i1) <=end(i2).

Mathematical operations on POSIXcti

‘Mathematical’ operations are actually ‘time lagging’ for POSIXcti. A time period is added/removed
to both start and end of intervals. The available operations are :

¢ POSIXcti + POSIXctp
* POSIXctp + POSIXcti
* POSIXcti - POSIXctp

See Also

POSIXct, TimeIntervalDataFrame, POSIXst, POSIXctp

Examples

time interval : january of year 2013
jan <- POSIXcti('2013-01-01', '2013-02-01")
jan

the complete year
y2013 <- POSIXcti('2013-01-01', '2014-01-01"')
y2013

is jan in 2013 ?
jan %included% y2013

intersection
jan %intersect% y2013

POSIXctp Class "POSIXctp”

Description

Class that defines ’periods of time’ objects such as *one month’, ’two months’, "three hours’, *four
minutes’, etc.

POSIXctp

Usage

POSIXctp(duration, unit)
as.POSIXctp(from, ...)

S3 method for class 'POSIXctp'
x[i, ...]

S3 replacement method for class 'POSIXctp'
x[i] <- value

S3 method for class 'POSIXctp'
c(...)

S3 method for class 'POSIXctp'
split(x, f, drop=FALSE, ...)

S3 method for class 'POSIXctp'
rep(x, ...)

S3 method for class 'POSIXctp'
unique(x, incomparables=FALSE, ...)

S4 method for signature 'POSIXctp'
unit(x, ...)

S4 replacement method for signature 'POSIXctp'
unit(object) <- value

S4 method for signature 'POSIXctp'
duration(x, ...)

S4 method for signature 'POSIXctp'
length(x)

S3 method for class 'POSIXctp'
print(x, ...)

S3 method for class 'POSIXctp'
format(x, ...)

S3 method for class 'POSIXctp'
summary (object, ...)

S3 method for class 'POSIXctp'
head(x, ...)

S3 method for class 'POSIXctp'
tail(x, ...)

S4 method for signature 'POSIXctp'
show(object)

S4 method for signature 'POSIXctp,POSIXctp'

match(x, table, nomatch = NA_integer_, incomparables=NULL)
S4 method for signature 'POSIXctp,ANY'

match(x, table, nomatch = NA_integer_, incomparables=NULL)
S4 method for signature 'POSIXctp,ANY'

X %in% table

S3 method for class 'POSIXctp'

18

Ops(el, e2)
##
el *
##
el *
##
el +
##
el -

S4
e2
S4
e2
S4
e2
S4
e2

method

method

method

method

#i#
el +
##
el +
##
el -

S4
e2
S4
e2
S4
e2

method

method

method

S4 method
as.numeric(x,

Arguments

duration

unit

from

value
.F
drop

object
table

nomatch

incomparables
el

e2

POSIXctp

for signature 'numeric,POSIXctp'
for signature 'POSIXctp,numeric'’
for signature 'POSIXctp,POSIXctp'
for signature 'POSIXctp,POSIXctp'
for signature 'POSIXct,POSIXctp'
for signature 'POSIXctp,POSIXct'
for signature 'POSIXct,POSIXctp'
for signature 'POSIXctp'

L)

A vector integer indicating the duration of period (2 for 2 months, 1 for 1 year,
etc). If a vector of numeric is given, it will coerced to an integer. Can be
missing, see details below.

A vector of factors defined by POSIXt.units() or a vector of character corre-
sponding to the previous factors. See details below.

Object to convert to a period of time (actually works only for NA).
POSIXctp object on which the method has to be applied.

index (logical or numeric) of the POSIXctp objects.

New POSIXctp object.

factor used to group the POSIXctp elements.

Argument specific to the split method. See link[base]{split} documenta-
tion.

POSIXctp object on which the method has to be applied.
The values (POSIXctp) to be matched against. See match for further details.

The value to be returned i nthe case when no match is found. See match for
further details.

A vector of values that cannot be matched. See match for further details.
POSIXctp, numeric or POSIXct. See details.
POSIXctp, numeric or POSIXct. See details.

More arguments.

POSIXctp 19

Objects from the Class

Objects of this class are used to represent periods of times such as ‘one hour’, ‘two seconds’, ‘three
years’, etc. Partial periods of time are not allowed (‘1.5 hours’ will be coerced to an integer value
using as.integer).

POSIXctp (‘p’ stands for‘period’) has only one unit. So ‘one hour and 2 seconds’ is not defined.

One object is actually a vector of periods of time and so can have a length of one for a single period
of time or a length of ‘n’ for ‘n’ periods of time.

Slots

duration: integer corresponding to the length of the period.

unit: factor indicating the time unit of the period. See POSIXt.units to know available units.

Accessing to POSIXctp properties

A POSIXctp has several properties. Because a POSIXctp is a vector of periods of time, the class
has a length function. Other properties are time properties : unit and duration allow to access to
the corresponding properties. The duration of a period of time is an integer corresponding of the
time that the period last, in its time unit. The unit of a period of time is an ordered factor as the one
defined by POSIXt.units.

A POSIXctp can be converted to another time unit base (for instance 2 hours make 120 minutes).
For that purpose the function unit<- is defined. The conversion will be effective only if the new
unit can be exactly defined as a multiple of the old one (‘hour’ to ‘second’, ok ; ‘year’ to ‘month’,
ok ; ‘month’ to ‘minute’ , NOT ok ; etc. When conversion can not be done, the result has its unit
unchanged.

Manipulating POSIXctp

Manipulating POSIXctp means acting on POSIXctps like on classical vectors. Methods available
for this task allow to extract or replace parts of a POSIXctp (with the usual ’[* operator), and to
concatenate (c) or split POSIXctp (split). A unique and a rep method are defined to uniquify or
repeat elements of a POSIXctp.

match and %in% methods have also been defined to find POSIXctp objects among others.

Text representation

To represent a POSIXctp available functions are print, summary, head, tail, show and format.
The five first functions work the same way that their generic definition.

POSIXctp are formatted by pasting their duration (integer) with their unit (and with an ‘s’ if
relevant).

Testing two POSIXctp

To test two POSIXctp the different operators of comparison are used. If the POSIXctp compared
have a different length, the shorter is recycled over the longer so the resulting vector (a logical
vector) has length equal to the longer object.

20

POSIXctp

Comparisons are made element by element. For a single comparison, first elements are converted
into the same unit. If this is not possible, FALSE is returned if the test is ‘==", TRUE if the test is
‘1=", NA otherwise (elements can not be compared) ; else duration of elements are compared and
the result of this comparison is returned.

Mathematical operations on POSIXctp

POSIXctp can be added (or subtracted) to different type of objects : to other POSIXctp, to POSIXct,
to POSIXcti and to POSIXst. POSIXctp can also be multiplied by numeric.

For all operations, if the two arguments have a different length, the shorter is recycled over the
longer so the resulting vector (a logical vector) has length equal to the longer object.

Basic mathematical operation for POSIXctp are (negative periods of time can be defined !!) :

* integer * POSIXctp

* POSIXctp * integer

* POSIXctp + POSIXctp

* POSIXctp - POSIXctp
When POSIXctps do not have the same unit, an attempt is made to convert one to the unit of the
other, if it successes the operation is done otherwise NA is returned.

Mathematical operations with POSIXct, POSIXcti and POSIXst are actually time lagging. A
POSIXct to which a POSIXctp is added is lagged by the time periods indicated ; for a POSIXcti,
start and end are lagged by the time periods. For POSIXst, units of the POSIXst must be identical :
the object is then lagged by the time periods (if the result is higher than the maximum the result is
recycled at the beginning. For instance : saturday + 2 days = monday).

» POSIXct + POSIXctp
* POSIXctp + POSIXct
* POSIXct - POSIXctp

* POSIXcti + POSIXctp
* POSIXctp + POSIXcti
* POSIXcti - POSIXctp

* POSIXst + POSIXctp
* POSIXctp + POSIXst
* POSIXst - POSIXctp

Changing class

POSIXctp can be converted to numeric with the as.numeric method. The duration of the object is
returned.

See Also

POSIXct, POSIXcti, POSIXst

POSIXst

Examples

showClass("POSIXctp")

21

POSIXst Class "POSIXst"

Description

Class to define POSIXst object such as hours of day, seconds of year, etc.

Usage
POSIXst(x, unit, of = NULL, tz = "UTC", ...)
Default S3 method:
POSIXst(x, unit, of = NULL, tz = "UTC", ...)
S3 method for class 'integer'
POSIXst(x, unit, of = NULL, tz = "UTC", ...)
S3 method for class 'numeric'
POSIXst(x, unit, of = NULL, tz = "UTC", ...)
S3 method for class 'POSIXct'
POSIXst(x, unit, of = NULL, tz = attributes(x)$tzone, ...)
S3 method for class 'POSIX1t'
POSIXst(x, unit, of = NULL, tz = attributes(x)$tzone, ...)
S3 method for class 'TimeInstantDataFrame'
POSIXst(x, unit, of = NULL, tz = timezone(x), ...)
S3 method for class 'TimeIntervalDataFrame'
POSIXst(x, unit, of = NULL, tz = timezone(x), ..., cursor = NULL)
year(x, ...)
month(x, ...)

day(x, of, ...)
hour(x, of, ...)
minute(x, of, ...)
second(x, of, ...)

S3 method for class 'POSIXst'
x[i]

S3 replacement method for class 'POSIXst'
x[i] <- value

S3 method for class 'POSIXst'
c(...)

S3 method for class 'POSIXst'
split(x, f, drop=FALSE, ...)

S3 method for class 'POSIXst'
rep(x, ...)

S3 method for class 'POSIXst'
seq(from, to, ...)

POSIXst

S3 method for class 'POSIXst'
unique(x, incomparables=FALSE, ...)

S3 method for class 'POSIXst'
duplicated(x, incomparables=FALSE, ...)

S3 method for class 'POSIXst'
unit(x, ...)

S3 method for class 'POSIXst'
of (x, ...)

S3 method for class 'POSIXst'
timezone(object)

S4 method for signature 'POSIXst'
length(x)

S3 method for class 'POSIXst'
print(x, ...)

S3 method for class 'POSIXst'
format(x, format, ...)

S3 method for class 'POSIXst'
summary (object, ...)

S3 method for class 'POSIXst'
head(x, ...)

S3 method for class 'POSIXst'
tail(x, ...)

S4 method for signature 'POSIXst'
show(object)

S4 method for signature 'POSIXst,POSIXst'

match(x, table, nomatch = NA_integer_, incomparables=NULL)
S4 method for signature 'POSIXst,ANY'

match(x, table, nomatch = NA_integer_, incomparables=NULL)
S4 method for signature 'POSIXst,ANY'

X %in% table

S3 method for class 'POSIXst'
Ops(el, e2)

S4 method for signature 'POSIXst,POSIXctp'
el + e2

S4 method for signature 'POSIXctp,POSIXst'
el + e2

S4 method for signature 'POSIXst,POSIXctp'
el - e2

S4 method for signature 'POSIXst,POSIXst'
el - e2

POSIXst

23

S4 method for signature 'POSIXst'

as.numeric(x,

.2

Arguments

X object to convert into POSIXst or POSIXst object on which the method has to
be applied.

unit indicates the subtime part to extract ("year’, 'month’, ’day’, "hour’, *minute’,
’second’)

of used to specify the main period from which the is to extract ("year’, 'month’,
day’, "hour’, 'minute’). Not used for ‘unit in c("year’, 'month’)’.

tz if needed, specifies the timezone of POSIXst

cursor for TimelntervalDataFrame, if not NULL, the object is first coerced to a Time-
InstantDataFrame using the as.TimeInstantDataFrame method.

i index (logical or numeric) of the POSIXst objects.

value New POSIXst object.

f factor used to group the POSIXst elements.

drop Argument specific to the split method. See link[base]{split} documenta-
tion.

object POSIXst object on which the method has to be applied.

format Character string to precise the desired format. See section ‘Text representation’
below for details.

table The values (POSIXst) to be matched against. See match for further details.

nomatch The value to be returned i nthe case when no match is found. See match for
further details.

incomparables A vector of values that cannot be matched. See match for further details.

el POSIXst or POSIXctp. See details.

e2 POSIXst or POSIXctp. See details.

from, to starting and end values to sequence, see seq
More arguments.

Objects from the Class

Objects of this class are used to represent subtimes. A subtime (or a ‘POSIXst’, ‘st” stand for Sub
and Time) is a subdivision of time :

¢ second of a minute ;

¢ second of an hour ;

* second of a day ;

¢ second of a week ;

¢ second of a month ;

24

POSIXst

* second of a year ;
e minute of an hour ;

* minute of a day ;

* minute of a year ;

* month of year ;
» year AD (after death).

A POSIXst is a kind of time object composed of 2 units and a positional integer. The main unit
can be accessed via the ‘of’ function ; the sub unit can be accessed via the ‘unit’ function. The
positional integer correspond to the value of the subtime object. Consequently, a subtime st is the
valueth unit(st) of of (st).

The range of valid values for each kind of POSIXst is defined accordingly to the DateTimeClasses
definitions. For instance valid values for seconds of hour are 0 to 61, valid values for day of week
are 0 to 6, etc.

To define POSIXSst objects see POSIXst section below.

One object is actually a vector of subtimes and so can have a length of one for a single subtime or
a length of ‘n’ for ‘n’ subtimes.

Last, a POSIXst object has a ‘timezone’ slots. This is defined for compatibility reason with POSIXct
object and also with TimeInstantDataFrame, TimeIntervalDataFrame and SubtimeDataFrame.

Slots

subtime: Object of class "integer” corresponding to the actual value of each subtime.

unit: factor representing a time unit. It represents the subdvision of time (in ’second of year’ it
corresponds to ’second’). See POSIXt.units.

of: factor representing a time unit. It represents the main time unit (in ’second of year’ it corre-
sponds to ’year’). See POSIXt.units.

timezone: Object of class "character” indicating the timezone of the POSIXst object.

POSIXst

POSIXst objects can be created from various other class objects. For this purpose the POSIXst
method has been defined.

First, if ‘X’ is missing, an empty factor with the appropriated levels (according to ‘unit and of’) is
returned.

A POSIXst can be created from an integer or a numeric. If so, ‘unit’ and ‘of” must be supplied (see
arguments section above). The ‘tz’ argument can be supplied (numeric will be converted to an inte-
ger). In both cases, values of the integer/numeric must be in the right range (see DateTimeClasses.

A POSIXst can be created from a POSIXct or POSIX1t object. In this case, the subtime (POSIXst)
is extracted in the units indicated by ‘unit’ and ‘of” arguments. The ‘tz’ argument indicates the
timezone of the resulting object (it doesn’t do any conversion on the POSIX(1,c)t objects).

POSIXst 25

Finally, POSIXst can be extracted from TimeInstantDataFrame and TimeIntervalDataFrame.
For the first type of object, the method is applied to the time instants (which are POSIXct). For
the latter, because a time interval can contains several POSIXst of one kind (for instance a day
contains all *hours of day’), the result of this method TimelntervalDataFrame is a list of POSIXst.
Each element of the list contains the POSIXsts asked for corresponding to each row of the Timeln-
tervalDataFrame object. If ‘cursor’ is supplied, the TimelntervalDataFrame is first converted to a
TimelnstantDataFrame (see as.TimeInstantDataFrame for details).

year(...), month(...), day(...), hour(...), minute(...) and second(...)
year, month, day, hour, minute and second are methods defined to extract the adequat information
from a time object. These functions are wrappers to POSIXst.

Each of these methods call POSIXst replacing the unit argument with its own name : minute(x,
of="day"') will call POSIXst(x, unit="minute', of="'day"')

Accessing to POSIXst properties

A POSIXst has several properties. Because a POSIXst is a vector of subtimes, the class has a
length function. Other properties are time properties : unit, of and timezone allow to access to
the corresponding properties. The ‘unit’ and ‘of” of a subtime is an ordered factor as the one defined
by POSIXt.units.

For more informations on timezone, see the page of the manual.

Manipulating POSIXst

Manipulating POSIXst means acting on POSIXsts like on classical vectors. Methods available
for this task allow to extract or replace parts of a POSIXst (with the usual ’[* operator), and to
concatenate (c) or split POSIXst (split). A unique, a duplicated, a rep and a seq methods are
defined to uniquify, repeat or sequence elements of a POSIXst.

match and %in% methods have also been defined to find POSIXst objects among others.

Text representation

To represent a POSIXst available functions are print, summary, head, tail, show and format.
The five first functions work the same way that their generic definition.

"POSIXst’ are formatted according to the format argument which must respect the following rules.

* %v value

* %s subtime unit (slot ‘unit’)

* 9%m main unit (slot ‘of”)

* %a Abbreviated weekday name in the current locale.
* %A Full weekday name in the current locale.

* %b Abbreviated month name in the current locale.

* %B Full month name in the current locale.

* %r timezone

* %p place of subtime (ie the string part of 1st, 2nd, 10th, etc.)

26 regular

Testing two POSIXst

To test two POSIXst the different operators of comparison are used. If the POSIXst compared have
a different length, the shorter is recycled over the longer so the resulting vector (a logical vector)
has length equal to the longer object.

Comparisons are made element by element. Two POSIXst with a different ‘unit’ or a different ‘of”
are different (TRUE if test is ‘!=", FALSE if ‘==" NA otherwise). If they have identical ‘unit’ and
‘of” the comparison is made over subtime slots.

Mathematical operations on POSIXst

POSIXst can be added and subtracted to POSIXctp. POSIXst can also be subtracted (and only
subtracted) to POSIXst.

For all operations, if the two arguments have a different length, the shorter is recycled over the
longer so the resulting vector (a logical vector) has length equal to the longer object.

Mathematical operations with POSIXctp are actually time lagging. Units of the POSIXctp must be
identical to the POSIXst’s : the object is then lagged by the time periods (if the result is higher than
the maximum the result is recycled at the beginning. For instance : saturday + 2 days = monday).

* POSIXst + POSIXctp
* POSIXctp + POISXst
* POSIXst - POSIXctp

Subtracting a POSIXst to another result in a POSIXctp. For instance wednesday - monday = 2 days.

Changing class

POSIXst can be converted to numeric with the as. numeric method. The subtime slot of the object
is returned.

See Also
POSIXct, POSIXcti, POSIXctp, TimeIntervalDataFrame,

Examples

showClass("POSIXst")

regular Test if a time object is regular

Description

Test for regularity of a time object.

Usage

regular(x, ...)

split 27

Arguments
X object to test, from which get or set a property
arguments to or from other methods
Details

Test if the object is regular. A TimeInstantDataFrame is regular if all instants are equally spaced. A
TimelntervalDataFrame is regular if it is homogeneous and all interval’s starts are equally spaced.

Value

boolean indicating if x is regular or not

See Also

TimelntervalDataFrame, TimelnstantDataFrame

split Divide into Groups and Reassemble (Time*DataFrame objects and
POSIXct*)

Description

‘split’ divides the data in the vector ‘x’ into the groups defined by ‘f’. The replacement forms
replace values corresponding to such a division. Here are listed ‘split’” methods defined for Time
objects defined in the timetools package POSIXst, POSIXcti, etc.). See sections below for complete
list of methods.

Usage

S4 method for signature 'ANY,POSIXctp'
split(x, f, drop = FALSE, ...)

S4 method for signature 'ANY,POSIXcti'
split(x, f, drop = FALSE, ...)

S4 method for signature 'ANY,POSIXst'
split(x, f, drop = FALSE, ...)

S4 method for signature 'TimelntervalDataFrame,TimeIntervalDataFrame'

split(x, f, ..., split.x=FALSE, keep.f=TRUE)
S4 method for signature 'TimelIntervalDataFrame,POSIXcti'
split(x, f, ..., split.x=FALSE)

S4 method for signature 'TimelntervalDataFrame,POSIXctp'
split(x, f, ..., split.x=FALSE)

28 split

Arguments
X data frame containing values to be divided into groups. TimelntervalDataFrame
as data.frame.
f Can be of different kind. Is used to defined the grouping. See details below.
drop logical indicating if levels that do not occur should be dropped (if f is a factor
or a list).
further potential arguments passed to methods.
split.x logical indicating if data in x that are over several intervals or not completely
included in one interval of f must be ’cut’ to fit to new intervals (TRUE) or
ignored (FALSE).
keep.f logical indicating if f values must be kept on the resulting list.
Details

For each new split method defined in timetools a short description is given there.

Value

The value returned from ‘split’ is a list of vectors containing the values for the groups. The compo-
nents of the list are named by the levels of f (after converting to a factor). The class of each element
of the list is the one of the initial x structure.

Split over POSIX*t* objects

Since POSIXst, POSIXctp and POSIXcti objects are similar to vector it must be possible to split
other type of objects against those ones.

split(x, ’POSIXctp’, drop=FALSE, ...) 'POSIXctp’ is first cast as character (using format) and
then the split is done.

split(x, ’POSIXcti’, drop=FALSE, ...) 'POSIXcti’ is first cast as character (using format) and then
the split is done. The . . . argument is used to specify the format if needed.

split(x, ’POSIXst’, drop=FALSE, ...) "POSIXst’ is first cast as numeric and then the split is done.

splitTimelIntervalDataFrame’, *’TimelIntervalDataFrame’, ..., split.x = FALSE, keep.f = TRUE)

Split a TimelntervalDataFrame into another TimelntervalDataFrame.

The method takes each time interval of the first TimelntervalDataFrame (TitDF) and searches with
which time intervals of the second it intersects.

Each time interval of the first TItDF can intersect with none, one or several time intervals of the
second TItDFE. The arguments ’split.x’ is defined to tell the method what to do :
« if the time interval in the first TItDF (til) doesn’t match any in the second TItDF, nothing to
do

e if it (til) matches one in the second TItDF (ti2) and is included inside it, it (til) is entirely
taken in the final result

SubtimeDataFrame 29

« if it (til) intersects one and only one (ti2) inside the second TItDF, (til) is truncated to be
included inside (ti2) if *split.x’ is TRUE and (til) is removed if ’split.x* is FALSE

« if it (til) is over several time intervals of the second TItDF (ti2.a, ti2.b, etc.) :

— if ’split.x” is TRUE, (til) is truncated into each ti2.x to be included inside each one
— if ’split.x’ is FALSE, (til) is removed.
split(’ TimeIntervalDataFrame’, ’POSIXctp’, ..., split.x = FALSE)
Split a TimelntervalDataFrame into a time period (of length 1). A TimelntervalDataFrame is created
(cf TimelntervalDataFrame constructor) and the the above method is called.
splitC TimeIntervalDataFrame’, ’POSIXcti’, ..., split.x = FALSE)

Split a TimelntervalDataFrame into time intervals (POSIXcti). It is exactly the same as splitting a
TimelntervalDataFrame into another except that *f” has not data.

So a TimelntervalDataFrame is created according to ’f” and the the above method is called.

See Also

split, TimeIntervalDataFrame-class, POSIXcti, POSIXst-class, POSIXctp-class

SubtimeDataFrame Class "SubtimeDataFrame”

Description

Class to hold subtime data such a day of week, month of year, etc.

Usage
SubtimeDataFrame(when, data = NULL, ...)
as.SubtimeDataFrame(x, unit, of, ...)
S3 method for class 'TimeInstantDataFrame'
as.SubtimeDataFrame(x, unit, of, FUN=NULL, ...)
S3 method for class 'TimeIntervalDataFrame'
as.SubtimeDataFrame(x, unit, of, FUN=NULL, cursor=NULL, ...)

S4 method for signature 'SubtimeDataFrame'
x$name

S4 replacement method for signature 'SubtimeDataFrame'
x$name <- value

S3 method for class 'SubtimeDataFrame'
x[i, j, drop=FALSE]

S3 replacement method for class 'SubtimeDataFrame'
x[i, j1 <- value

S4 method for signature 'SubtimeDataFrame'

30

SubtimeDataFrame

x [[i, 3, ...1]
S3 replacement method for class 'SubtimeDataFrame'
x[[i, j11 <- value

S3 method for class 'SubtimeDataFrame'

merge(x, y, by, all=TRUE, sort=FALSE, ...)

S3 method for class 'SubtimeDataFrame'
split(x, f, drop=FALSE, ...)

S4 method for signature 'SubtimeDataFrame'
lapply(X, FUN, ...)

S4 method for signature 'SubtimeDataFrame'

timezone(object)

S4 method for signature 'SubtimeDataFrame'
when(x, ...)

S3 method for class 'SubtimeDataFrame'
unit(x, ...)

S3 method for class 'SubtimeDataFrame'
of (x, ...)

S4 method for signature 'SubtimeDataFrame'
dim(x)

S4 method for signature 'SubtimeDataFrame'
length(x)

S4 method for signature 'SubtimeDataFrame'
names (x)

S4 replacement method for signature 'SubtimeDataFrame'
names(x) <- value

S4 method for signature 'SubtimeDataFrame'
ncol(x)

S4 method for signature 'SubtimeDataFrame'
nrow(x)

S3 method for class 'SubtimeDataFrame'
row.names(x)

S3 replacement method for class 'SubtimeDataFrame'
row.names(x) <- value

S3 method for class 'SubtimeDataFrame'

print(x, ...)

S3 method for class 'SubtimeDataFrame'
summary (object, ...)

S3 method for class 'SubtimeDataFrame'
head(x, ...)

S3 method for class 'SubtimeDataFrame'
tail(x, ...)

S4 method for signature 'SubtimeDataFrame'
show(object)

SubtimeDataFrame 31
S3 method for class 'SubtimeDataFrame’
plot(
X, y=NULL, type='p', 1lty=1:6, lwd=1, pch=1:25, col=NULL,
x1lim=NULL, ylim=NULL, log='"', main='"', sub='"', xlab='"', ylab='",
ann=par('ann'), axes=TRUE, asp=NA, as.is=TRUE, format=NULL, ...)
S3 method for class 'SubtimeDataFrame'
points(
x, y=NULL, type='p', lty=1:6, lwd=1, pch=1:25, col=NULL, as.is=TRUE, ...)
S3 method for class 'SubtimeDataFrame'
lines(
X, y=NULL, type='l", 1lty=1:6, lwd=1, pch=1:25, col=NULL, as.is=TRUE, ...)
S3 method for class 'SubtimeDataFrame’
barplot(height, format='"', ...)
Arguments
when POSIXst.
data a data.frame with as much rows as needed for the created object. Can be NULL
(hence the data.frame has zero column and as much rows as needed).
X object to convert to a TimelnstantDataFrame or SubtimeDataFrame object (to
modify, to extract or to test)
unit indicates the subtime part to extract ("year’, 'month’, ’day’, "hour’, *minute’,
’second’).
of used to specify the main period from which the is to extract ("year’, "'month’,
’day’, "hour’, *minute’). Not used for ‘unit in c(’year’, 'month’)’.
FUN function to use for the aggregation (if wanted, see ‘details’)
cursor For TimelntervalDataFrame, it indicates where the Timelnstant must be taken.
If 0, start of each intervals is taken as instant ; if 1 end of each intervals is taken
as instant. Any other value will determine a weigthed instant between start and
end (actually, value higher than 1 or lower than 0 will give instant outside this
range).
i indices specifying elements to extract or replace. (See Extract)
h indices specifying elements to extract or replace. (See Extract)
name A litteral character string or a name. (See Extract)
drop Used for compatibility with data.frame methods.
value New value for the object designated (data.frame, names, row.names, etc.).
y SubtimeDataFrame to merge with x
all logical; see merge
by specifications of the columns used for merging.
sort logical; if TRUE the resulting merged SubtimeDataFrame is ordered according
to "when’ values.
f a ’factor’ in the sense that ‘as.factor(f)’ defines the grouping, or a list of such
factors in which case their interaction is used for the grouping. See split.
X a SubtimeDataFrame on which the FUN must be applied.

32 SubtimeDataFrame

object SubtimeDataFrame object (to modify, to extract or to test)
type plotting argument, see plot.default

1ty plotting argument, see plot.default

lwd plotting argument, see plot.default

pch plotting argument, see plot.default

col plotting argument, see plot.default

x1lim plotting argument, see plot.default

ylim plotting argument, see plot.default

log plotting argument, see plot.default

main plotting argument, see plot.default

sub plotting argument, see plot.default

xlab plotting argument, see plot.default

ylab plotting argument, see plot.default

ann plotting argument, see plot.default

axes plotting argument, see plot.default

asp plotting argument, see plot.default

as.is should data be represented incrementally (the first row is given an x-value of 1,

the second of 2, ... the last of n)(TRUE) or should data be grouped by their sub-
time (all value corresponding to monday are drawn at an x-value of 1) (FALSE)

?
height plotting argument, see barplot
format for barplot see barplot, otherwise a string to format the x-labels according to

the format method of POSIXst objects (see *Text representation’ of POSIXst).

More arguments.

Objects from the Class

Formally, the class consists of a data. frame and, for each row, a POSIXst (or subtime). This class
is provided to deal with subtime data. This class is compatible with TimeIntervalDataFrame and
TimeInstantDataFrame.

The construction of the class allows to manipulate objects as if they were data.frame (see ‘Access
to data’ and ‘Access to data properties’). Several functions are also available to access to time
properties (see ‘Access to time properties’).

Methods are also available to facilitate the representations of instances of that class : see ‘graphic
representation” and ‘text representation’.

Finally, some specific methods allow to easily deal with aggregation of data over time properties
(day, hour, week, special or specific time).

SubtimeDataFrame 33

SubtimeDataFrame constructors
Objects can be created by calls of the form

* new("SubtimeDataFrame”, ...) ...argument must be replaced by named arguments corre-
sponding to slots of a SubtimeDataFrame (see below). See also new.

e SubtimeDataFrame (when, data=NULL, ...) Arguments of the function correspond to ob-
ject slots.

* as.SubtimeDataFrame (from, representation, cursor=NULL, FUN=mean, ...) Convert-
ing object to SubtimeDataFrame. Conversion from a TimelntervalDataFrame to a Subtime-
DataFrame can be direct or after aggregation.

For a direct conversion (where date are only replaced by the desired subtime), FUN must be
NULL.

For an aggregated conversion, the function to use must be indicated by the FUN arg and all
arguments to pass to this function can be given (namely).

Slots

when: Object of class "POSIXst" corresponding to the instant of each row of the data. frame.

data: Object of class "data.frame” data contained by the object.

Accessing to and manipulating data

The SubtimeDataFrame class is defined to works like the data.frame class with the difference that a
subtime (POSIXst) is attached to each rows of the data.frame. Thus to access and manipulate data

of a TimeInstantDataFrame the following methods are defined : °$’,’$<-", ’[’, ’[<-, *[[’, ’[[<-". See
Extract for details.

Other methods have been defined to allow some operations over TimelnstantDataFrame :

* merge to join two (or more) SubtimeDataFrame (see merge),

 a SubtimeDataFrame can be splitted exactly the same way that a data.frame can (see split in
the base package),

* a function can be applied over each column of a TimelntervalDataFrame via the lapply func-
tion provided that the function return one value (in this case the resulting value is a TimeIntervalDataFrame
beginning at the first instant of the object and ending at the latest one), or as much values as
the number of rows of the object (in this case the SubtimeDataFrame given in argument in
returned with the new values calculated).

Because a SubtimeDataFrame works more or less like a data.frame, the following methods work on

a SubtimeDataFrame : dim, length, names, names<-, ncol, nrow, row.names, row.names<-.
Access to time properties

A SubtimeDataFrame can be tested for a few time properties :

timezone gives or sets the timezone of the SubtimeDataFrame ;
when returns a POSIXst object with the time instant of the SubtimeDataFrame.
unit returns the unit of the time instant of the SubtimeDataFrame.

of returns the *of” of the time instant of the SubtimeDataFrame.

34 tapply

Graphic representation

To plot a SubtimeDataFrame available functions are plot, lines, points and barplot.

These functions works more or less like their generic definition.

Text representation

To represent a SubtimeDataFrame available functions are print, summary, head, tail and show.

See Also

TimeInstantDataFrame, TimeIntervalDataFrame, POSIXst

Examples

showClass("SubtimeDataFrame")

tapply Apply a Function Over a time properties

Description

Apply a function over a Time*DataFrame that is first splitted into several sets according to time
properties specified by INDEX.

Usage

S4 method for signature 'TimeIntervalDataFrame,TimelntervalDataFrame'
tapply (X, INDEX, FUN, ...,
min.coverage=1, weights.arg=NULL, merge.X=TRUE, split.X=FALSE,
keep.INDEX=TRUE,default=NA, simplify=TRUE)

S4 method for signature 'TimelIntervalDataFrame,POSIXctp'
tapply (X, INDEX, FUN, ...,
min.coverage=1, weights.arg=NULL, merge.X=TRUE, split.X=FALSE,
default=NA, simplify=TRUE)

S4 method for signature 'TimelIntervalDataFrame,POSIXcti'
tapply (X, INDEX, FUN, ...,
min.coverage=1, weights.arg=NULL, merge.X=TRUE, split.X=FALSE,
default=NA, simplify=TRUE)

Arguments
X aTimelntervalDataFrame or a TimeInstantDataFrame
INDEX an object corresponding to or containing a time properties. Classes available

depend on X. See sections below to know all (X, INDEX) combination defined.

tapply

FUN

simplify

default

min.coverage

weights.arg

merge. X

split.X

keep.INDEX

Details

35

the function to be applied.
optional arguments to "FUN’.

if FALSE alist of ‘Time*DataFrame’ is returned ; if TRUE ‘tapply’ try to reduce
the list to a single ‘Time*DataFrame’.

argument inherited from the base function, currently unused; see tapply.

a numeric between 0 and 1 indicating the percentage of valid values over each
interval to allow an aggregation. NA is returned if the percentage is not reach.
In that configuration (min.coverage between 0 and 1, overlapping intervals are
not allowed). When a function (FUN) has a na.rm argument, the na.rm=TRUE
behaviour is met if na.rm is set to TRUE and min.coverage to O (zero) ; the
na.rm=FALSE behaviour is met if na.rm is set to FALSE whatever is the value
of min.coverage. If min.coverage is set to NA, time coverage of the resulting
interval is not checked. Moreover, overlapping of X intervals is not checked.
Thus the aggregation is done according to ‘weights.arg’ argument (if given).

if FUN has a ‘weight’ argument, this parameter must be a character naming the
weight argument. For instance, if FUN is weighted.mean, then weights.arg is

w.

logical indicating if data in ‘X’ can be merged over interval of the new time
support.

logical indicating if data in ‘X’ that are over several intervals of 'INDEX’ must
be ’cut’ to fit to new intervals (TRUE) or ignored (FALSE).

logical indicating if INDEX values must be kept on the resulting list.

These functions are equivalent to old changeSupport methods. Instead of having the core splitting
algorithm in it, it uses the split methods. Be aware that default parameters values between the two
families (‘changeSupport’ and ‘tapply’) are not necessarily the same.

Users are encouraged to use ‘tapply’ instead of ‘changeSupport’ since new versions of ‘changeSup-
port’ are only wrappers to tapply.

signature(TimelIntervalDataFrame, TimeIntervalDataFrame)

split TimeIntervalDataFrame over another TimeIntervalDataFrame and then apply a function
over each elements of the list.

signature(TimeIntervalDataFrame, POSIXctp)

split a TimeIntervalDataFrame against regular time intervals with a period defined by INDEX (a
POSIXctp). Then a function is applied over each elements of the list.

signature(TimelIntervalDataFrame, POSIXcti)

split TimeIntervalDataFrame against specified intervals (POSIXcti). and then apply a function
over each elements of the list.

36 TimelnstantDataFrame

See Also

tapply, TimeIntervalDataFrame-class, TimeInstantDataFrame-class, SubtimeDataFrame-class,
changeSupport, POSIXcti-class, POSIXst-class, POSIXctp-class

TimeInstantDataFrame Class "TimeInstantDataFrame"”

Description

Class to hold time data that ARE ’instantaneous’.

Usage
TimeInstantDataFrame(when, timezone = "UTC"”, data = NULL, sort=FALSE, ...)
as.TimeInstantDataFrame(from, ...)
S3 method for class 'TimelntervalDataFrame'
as.TimelInstantDataFrame(from, cursor = NULL, ...)

RegularTimeInstantDataFrame(from, to, by, timezone = "UTC", data = NULL)

S4 method for signature 'TimeInstantDataFrame'
x$name

S4 replacement method for signature 'TimeInstantDataFrame'
x$name <- value

S3 method for class 'TimelInstantDataFrame'
x[i, j, drop=FALSE]

S3 replacement method for class 'TimeInstantDataFrame'
x[i, j1 <- value

S4 method for signature 'TimelInstantDataFrame'
x [[i, j, ...1]

S3 replacement method for class 'TimeInstantDataFrame'’
x[[i, j11 <- value

S3 method for class 'TimeInstantDataFrame'

rbind(...)

S3 method for class 'TimelInstantDataFrame'
merge(x, y, by, all=TRUE, tz='UTC', sort=TRUE, ...)

S3 method for class 'TimelInstantDataFrame'
split(x, f, drop=FALSE, ...)

S4 method for signature 'TimelInstantDataFrame'
lapply(X, FUN, ...)

S4 method for signature 'TimelInstantDataFrame'
regular(x, ...)

S4 method for signature 'TimelInstantDataFrame'
timezone(object)

TimelnstantDataFrame 37

S4 replacement method for signature 'TimeInstantDataFrame'
timezone(object) <- value

S4 method for signature 'TimeInstantDataFrame'
when(x, ...)

S4 method for signature 'TimelInstantDataFrame'’

dim(x)

S4 method for signature 'TimeInstantDataFrame'
length(x)

S4 method for signature 'TimelInstantDataFrame'
names(x)

S4 replacement method for signature 'TimeInstantDataFrame'
names(x) <- value

S4 method for signature 'TimelnstantDataFrame'
ncol(x)

S4 method for signature 'TimelInstantDataFrame'
nrow(x)

S3 method for class 'TimelInstantDataFrame'
row.names(x)

S3 replacement method for class 'TimelnstantDataFrame'
row.names(x) <- value

S3 method for class 'TimeInstantDataFrame'

print(x, tz=NULL, ...)

S3 method for class 'TimeInstantDataFrame'
summary (object, ...)

S3 method for class 'TimelInstantDataFrame'
head(x, tz, ...)

S3 method for class 'TimelInstantDataFrame'
tail(x, tz, ...)

S4 method for signature 'TimelnstantDataFrame'
show(object)

S3 method for class 'TimelInstantDataFrame'
plot(x, y=NULL, type="p",
1ty=1:6, lwd=1, pch=1:25, col=NULL,
xlim=NULL, ylim=NULL, log, main, sub, xlab, ylab,
ann=par(”ann”), axes=TRUE, asp=NA, ...)

S3 method for class 'TimelInstantDataFrame'
points(x, y=NULL, type="p",
1ty=1:6, lwd=1, pch=1:25, col=NULL, ...)

S3 method for class 'TimeInstantDataFrame'
lines(x, y=NULL, type="1",
1ty=1:6, lwd=1, pch=1:25, col=NULL, ...)

S3 method for class 'TimelInstantDataFrame'
barplot(height, format='"', ...)

38

Arguments

when

timezone

data

from

cursor

to

by

name
drop

value

all
tz

sort

FUN
object
type
1ty
lwd
pch

TimelnstantDataFrame

POSIXct or character representing a time with a valid format (see POSIXct). It
gives the instant of each row.

character representing a valid timezone (see timezone).

a data.frame with as much rows as needed for the created object. Can be NULL
(hence the data.frame has zero column and as much rows as needed).

as.TimelInstantDataFrame object to convert to a TimelnstantDataFrame

RegularTimelnstantDataFrame POSIXct or character representing a time with
a valid format (see POSIXct). It represents the start of the object.

To convert TimelntervalDataFrame, it indicates where the Timelnstant must be
taken. If 9, start of each intervals is taken as instant ; if 1 end of each intervals is
taken as instant. Any other value will determine a weigthed instant between start
and end (actually, value higher than 1 or lower than 0 will give instant outside
this range).

POSIXct or character representing a time with a valid format (see POSIXct). It

represents the end of the object. If missing, its value is deduced from ‘from’,

‘by’ and ‘data’.

RegularTimelInstantDataFrame a POSIXctp object indicating the increment
to use between instants of the object.

merge specifications of the columns used for merging.
TimelnstantDataFrame object (to modify, to extract or to test)

indices specifying elements to extract or replace. (See Extract)

indices specifying elements to extract or replace. (See Extract)

A litteral character string or a name. (See Extract)

Used for compatibility with data.frame methods.

New value for the object designated (data.frame, names, row.names, etc.).
TimelnstantDataFrame to merge with x

logical; see merge

character representing a valid timezone (see timezone).

logical; if TRUE the resulting built/merged TimelnstantDataFrame is ordered
according to *when’ values.

a ’factor’ in the sense that ‘as.factor(f)’ defines the grouping, or a list of such
factors in which case their interaction is used for the grouping. See split.

a TimelnstantDataFrame on which the FUN must be applied.
function to apply over each columns of X.
TimelnstantDataFrame object (to modify, to extract or to test)
plotting argument, see plot.default

plotting argument, see plot.default

plotting argument, see plot.default

plotting argument, see plot.default

TimelnstantDataFrame 39

col plotting argument, see plot.default
x1lim plotting argument, see plot.default
ylim plotting argument, see plot.default
log plotting argument, see plot.default
main plotting argument, see plot.default
sub plotting argument, see plot.default
xlab plotting argument, see plot.default
ylab plotting argument, see plot.default
ann plotting argument, see plot.default
axes plotting argument, see plot.default
asp plotting argument, see plot.default
height plotting argument, see barplot

format plotting argument, see barplot

More arguments.

Objects from the Class

Formally, the class consists of a data.frame and, for each row, a POSIXct. This class is pro-
vided to deal with punctual time data. Many of such classes are defined in other packages. This
one is defined mainly to provide a ‘punctual’ class compatible with TimeIntervalDataFrame and
SubtimeDataFrame.

The construction of the class allows to manipulate objects as if they were data.frame (see ‘Access
to data’ and ‘Access to data properties’).

Slots

instant: Object of class "POSIXct” corresponding to the instant of each row of the data.frame.

timezone: Object of class "character” indicating the timezone of data both for representation
and calculation.

data: Object of class "data.frame” data contained by the object.

TimelnstantDataFrame constructors
Objects can be created by calls of the form
* new("TimeInstantDataFrame”, ...) ...argument must be replaced by named arguments
corresponding to slots of a TimeInstantDataFrame (see below). See also new.

e TimeInstantDataFrame (when, timezone='UTC', data=NULL, ...) Arguments of the func-
tion correspond to object slots.

* RegularTimeInstantDataFrame (from, to, by, timezone='UTC', data=NULL), Wrapper
to construct TimelnstantDataFrame with specific properties. Instants of the Timelnstant-
DataFrame go from *from’ to ’to’ regularly spaced by ’by’, which is a POSIXctp or an object
which can be coerced to.

* as.TimeInstantDataFrame (from, ...) Converting object to TimelnstantDataFrame.

40 TimelnstantDataFrame

Math

Every functions defined in the Ops group (see Ops) can be used width a TimeInstantDataFrame and
numeric :

e tidf x 2

e 2% tidf

e 2:10 == tidf

o 2°tidf

o tidf*2

Accessing to and manipulating data

The TimelnstantDataFrame class is defined to works like the data.frame class with the difference
that a time instant (POSIXct) is attached to each rows of the data.frame. Thus to access and manip-
ulate data of a TimeInstantDataFrame the following methods are defined : ’$’, *$<-°, °[’, ’[<-", "[[,
’[[<-’. See Extract for details.

With ‘[* operator, a selection by dates is also available. If ‘i’ and or ‘j” are POSIXt or strings that
can be converted to POSIXct (see below), they are considered as the minimal and maximal time
limits : all data between those are selected. A string that can be converted to a POSIXct is (in this
case only) a string composed of 3 parts separated by white space : *YYYY-MM-DD HH:MM:SS
tz’. The second and third parts are options, thus accepted format are :

* ’YYYY-MM-DD’
* 'YYYY-MM-DD tz’
* ’YYYY-MM-DD HH:MM:SS’
* ’YYYY-MM-DD HH:MM:SS tz’
. If timezone is not given, it is assumed to be the same as the one of the object on which the selection

is done.

Other methods have been defined to allow some operations over TimelnstantDataFrame :

* rbind and merge to join two (or more) TimelnstantDataFrame (see rbind and merge),

* a TimelnstantDataFrame can be splitted exactly the same way that a data.frame can (see split
in the base package),

* a function can be applied over each column of a TimelInstantDataFrame via the lapply func-
tion. If the function returns one value, the resulting value is a TimeIntervalDataFrame begin-
ning at the first instant of the object and ending at the latest one ; else if the function returns as
much values as the number of rows of the object, the TimelnstantDataFrame given in argument
is returned with the new calculated values ; on others cases, a non-TimelnstantDataFrame ob-
ject is returned.

Because a TimelnstantDataFrame works more or less like a data.frame, the following methods work
on a TimelnstantDataFrame : dim, length, names, names<-, ncol, nrow, row.names, row. names<-.

TimelntervalDataFrame 41

Access to time properties
A TimelnstantDataFrame can be tested for a few time properties :

regular TRUE if all time instants are equally spaced ;
timezone gives or sets the timezone of the TimelnstantDataFrame ;

when returns a POSIXct object with the time instant of the TimelnstantDataFrame.

Graphic representation

To plot a TimeInstantDataFrame available functions are plot, lines, points and barplot.

These functions works more or less like their generic definition.

Text representation
To represent a TimeInstantDataFrame available functions are print, summary, head, tail and
show.

See Also

TimeIntervalDataFrame, SubtimeDataFrame

Examples

showClass("TimeInstantDataFrame")

TimeIntervalDataFrame Class "TimeIntervalDataFrame”

Description

Class to hold time data that are NOT ’punctual’.

Usage

TimeIntervalDataFrame(start, end = NULL,
timezone = "UTC", data = NULL, period = NULL, sort=FALSE, ...)

as.TimeIntervalDataFrame(from, ...)
S3 method for class 'TimelInstantDataFrame'
as.TimelIntervalDataFrame(from, period, ...)

RegularTimeIntervalDataFrame(from, to, by, period, timezone = "UTC"”, data = NULL)

S4 method for signature 'TimeIntervalDataFrame'
x$name

S4 replacement method for signature 'TimeIntervalDataFrame'
x$name <- value

42

TimelntervalDataFrame

S3 method for class 'TimelntervalDataFrame'
x[i, j, drop=FALSE]

S3 replacement method for class 'TimeIntervalDataFrame'
x[i, j1 <- value

S4 method for signature 'TimelIntervalDataFrame'
x [[i, j, ...13

S3 replacement method for class 'TimeIntervalDataFrame'
x[[i, j11 <- value

S3 method for class 'TimeIntervalDataFrame'

rbind(...)

S3 method for class 'TimelntervalDataFrame'
merge(x, y, by, all=TRUE, tz='UTC', sort=TRUE, ...)

S3 method for class 'TimelIntervalDataFrame'
split(x, f, drop=FALSE, ...)

S4 method for signature 'TimelIntervalDataFrame'
lapply(X, FUN, ...)

S4 method for signature 'TimeIntervalDataFrame'
tapply(X, INDEX, FUN, ...,
min.coverage=1, weights.arg=NULL, merge.X=TRUE, split.X=FALSE,
keep.INDEX=TRUE, simplify=TRUE)
S4 method for signature 'TimeIntervalDataFrame'
changeSupport(from, to,
min.coverage, FUN=NULL, weights.arg=NULL,
split.from=FALSE, merge.from=TRUE, ...)

S4 method for signature 'TimeIntervalDataFrame'
continuous(x, ...)

S4 replacement method for signature 'TimeIntervalDataFrame'
continuous(x) <- value

S4 method for signature 'TimeIntervalDataFrame'
homogeneous(x, ...)

S4 method for signature 'TimeIntervalDataFrame'
period(x, ...)

S4 method for signature 'TimelIntervalDataFrame'
overlapping(x, ...)

S4 method for signature 'TimelIntervalDataFrame'
regular(x, ...)

S4 method for signature 'TimeIntervalDataFrame'
timezone(object)

S4 replacement method for signature 'TimeIntervalDataFrame'
timezone(object) <- value

S3 method for class 'TimelntervalDataFrame'

start(x, ...)
S3 method for class 'TimeIntervalDataFrame'
end(x, ...)

S4 method for signature 'TimeIntervalDataFrame'

TimelntervalDataFrame

when(x, ...)
S4 method for signature 'TimeIntervalDataFrame'
interval(x, ...)

S4 method for signature 'TimelIntervalDataFrame'

dim(x)

S4 method for signature 'TimeIntervalDataFrame'
length(x)

S4 method for signature 'TimeIntervalDataFrame'
names (x)

S4 replacement method for signature 'TimeIntervalDataFrame'
names(x) <- value

S4 method for signature 'TimeIntervalDataFrame'
ncol(x)

S4 method for signature 'TimeIntervalDataFrame'
nrow(x)

S3 method for class 'TimelntervalDataFrame'
row.names(x)

S3 replacement method for class 'TimeIntervalDataFrame'
row.names(x) <- value

S3 method for class 'TimeIntervalDataFrame'

print(x, tz=NULL, ...)
S3 method for class 'TimeIntervalDataFrame'
summary (object, ...)

S3 method for class 'TimeIntervalDataFrame'
head(x, tz, ...)
S3 method for class 'TimeIntervalDataFrame'

tail(x, tz, ...)
S4 method for signature 'TimeIntervalDataFrame'
show(object)

S3 method for class 'TimelntervalDataFrame'
plot(x, y=NULL, cursor=NULL,
type='p', 1lty=1:6, lwd=1, pch=1:25, col=NULL,
x1lim=NULL, ylim=NULL, log='"', main='"', sub='"', xlab='"', ylab='",
ann=par('ann'), axes=TRUE, asp=NA, ...)
S3 method for class 'TimeIntervalDataFrame'
points(x, y=NULL, cursor=NULL, type='p',
1ty=1:6, lwd=1, pch=1:25, col=NULL, ...)
S3 method for class 'TimeIntervalDataFrame'
lines(x, y=NULL, cursor=NULL, type='l",
1ty=1:6, lwd=1, pch=1:25, col=NULL, ...)
S3 method for class 'TimelntervalDataFrame'
barplot(height, format='"', ...)

44

Arguments

start

end

timezone

data

period

from

to

by

name
drop

value

all
tz

sort

TimelntervalDataFrame

POSIXct or character representing a time with a valid format (see POSIXct). It
gives the beginning of each interval.

POSIXct or character representing a time with a valid format (see POSIXct). It
gives the end of each interval. If NULL, see ‘Details’.

character representing a valid timezone (see timezone).

a data.frame with as much rows as the length of ‘start’ and end, or with one row
less than the length of ‘start’ if ‘end’ is NULL. Can be NULL (hence the data.frame
has zero column and as much rows as needed).

TimelntervalDataFrame if not NULL, a POSIXctp or a character that can be
converted to a POSIXctp (see argument ‘unit’ of POSIXctp function). See
Details to know how to use this argument.

as.TimelntervalDataFrame POSIXctp object indicating the period to add to
‘when’ slot of from to determine the end of the new period (the ‘when’ is
used for the start of period)

RegularTimelntervalDataFrame a POSIXctp object indicating the period of
each interval. If missing, it is given the value of by.

as.TimelntervalDataFrame object to convert to a TimelntervalDataFrame

RegularTimelntervalDataFrame POSIXct or character representing a time
with a valid format (see POSIXct). It represents the start of the object.

changeSupport see changeSupport

RegularTimelntervalDataFrame POSIXct or character representing a time
with a valid format (see POSIXct). It represents the end of the object. If
missing, its value is deduced from ‘from’, ‘by’ and ‘data’.

changeSupport see changeSupport

RegularTimelntervalDataFrame a POSIXctp object indicating the increment
to use between the start of each interval.

merge specifications of the columns used for merging.
TimelntervalDataFrame object (to modify, to extract or to test)

indices specifying elements to extract or replace. (See Extract)

indices specifying elements to extract or replace. (See Extract)

A litteral character string or a name. (See Extract)

Used for compatibility with data.frame methods.

New value for the object designated (data.frame, names, row.names, etc.).
TimelntervalDataFrame to merge with x

logical; see merge

character representing a valid timezone (see timezone).

logical; if TRUE the resulting built/merged TimelntervalDataFrame is ordered
according to "when’ values.

a ’factor’ in the sense that ‘as.factor(f)’ defines the grouping, or a list of such
factors in which case their interaction is used for the grouping. See split.

TimelntervalDataFrame 45

X lapply a TimelntervalDataFrame on which the FUN must be applied.
tapply see tapply for details

FUN lapply function to apply over each columns of X.
tapply,changeSupport see tapply for details

INDEX, min.coverage, weights.arg, merge.X, split.X, keep.INDEX, simplify,
split.from, merge.from
see tapply and/or changeSupport for details.

object TimelntervalDataFrame object (to modify, to extract or to test)
type plotting argument, see plot.default

1ty plotting argument, see plot.default

lwd plotting argument, see plot.default

pch plotting argument, see plot.default

col plotting argument, see plot.default

x1lim plotting argument, see plot.default

ylim plotting argument, see plot.default

log plotting argument, see plot.default

main plotting argument, see plot.default

sub plotting argument, see plot.default

xlab plotting argument, see plot.default

ylab plotting argument, see plot.default

ann plotting argument, see plot.default

axes plotting argument, see plot.default

asp plotting argument, see plot.default

cursor To convert TimelntervalDataFrame to a TimelnstantDataFrame before plotting

(see TimeInstantDataFrame, it indicates where the Timelnstant must be taken.
If 9, start of each intervals is taken as instant ; if 1 end of each intervals is taken
as instant. Any other value will determine a weigthed instant between start and
end (actually, value higher than 1 or lower than 0 will give instant outside this

range).
height plotting argument, see barplot
format plotting argument, see barplot

More arguments.

Objects from the Class

Formally, the class consists of a data. frame and, for each row, two POSIXct that can be summarize
as time interval with the POSIXcti class. This allows to manipulate at once time data without any
restriction on time representation : data can occur at different time, data can be discontinuous, data
can be heterogeneous (not lasting for a unique period), data can overlay each other, etc. There are
several methods to test/deal/ensure that these properties are respected or not, see below.

46 TimelntervalDataFrame

The construction of the class allows to manipulate objects as if they were data.frame (see ‘Access
to data’ and ‘Access to data properties’). Several functions are also available to access to time
properties (see ‘Access to time properties’).

Methods are also available to facilitate the representations of instances of that class : see ‘graphic
representation’ and ‘text representation’.

Finally, some specific methods allow to easily deal with aggregation of data over time properties
(day, hour, week, special or specific time intervals).

Slots

start: Object of class "POSIXct" corresponding to the start of each row of the data. frame.
end: Object of class "POSIXct" corresponding to the end of each row of the data. frame.

timezone: Object of class "character” indicating the timezone of data both for representation
and calculation.

data: Object of class "data.frame” data contained by the object.

TimeIntervalDataFrame constructors
Objects can be created by calls of the form

* new("TimeIntervalDataFrame”, ...) ...argument must be replaced by named arguments
corresponding to slots of a TimeIntervalDataFrame (see below). See also new.

e TimeIntervalDataFrame (start, end=NULL, timezone='UTC', data=NULL, ...) Arguments
of the function correspond to object slots. If both start and end are given, they must have the
same length. They are used to define the intervals of the object. If data is also given, it must
have a number of rows identical to the length of start and end.

If only start is given, a continuous (see continuous) TimelntervalDataFrame is built. The
first element of start is the start of the first interval, the second element is the end of the first
interval and the start of the second interval. The last element of start is only the end of the
last interval. This is why data, if given, must be one row shorter than start.

If period is given it must be a POSIXctp object (or a valid character) and ‘start’ and ‘end’ must
have length equal to 1. In that case, a TimeIntervalDataFrame will be created with start date
equal to start ‘floored’ by the unit of ‘period’, end date ‘ceiled’ by the unit of ‘period’ and
with enough intervals of ‘period’ length to fit. If ‘data’ given, it must have a number of rows
equal to the number of intervals calculated.

¢ RegularTimelntervalDataFrame (from, to, by, period, timezone="UTC', data=NULL)
Wrapper to construct TimelntervalDataFrame with specific properties (see details of each ar-
gument).

* as.TimeIntervalDataFrame (from, ...) Converting object to TimelntervalDataFrame.

Math

Every functions defined in the Ops group (see Ops) can be used width a TimelntervalDataFrame
and numeric :

e tidf %2
e 2% tidf

TimelntervalDataFrame 47

e 2:10 == tidf
e 2°tidf
e tidf*2

Accessing to and manipulating data

The TimelntervalDataFrame class is defined to works like the data.frame class with the difference
that a time interval (POSIXcti) is attached to each rows of the data.frame. Thus to access and
manipulate data of a TimelntervalDataFrame the following methods are defined : ’$’, *$<-’, ’[’,
<=7, I, '[[<-’. See Extract for details.

With ‘[* operator, a selection by dates is also available. If ‘i’ and or ‘j” are POSIXt or strings that
can be converted to POSIXct (see below), they are considered as the minimal and maximal time
limits : all data between those are selected. A string that can be converted to a POSIXct is (in this
case only) a string composed of 3 parts separated by white space : "YYYY-MM-DD HH:MM:SS
tz’. The second and third parts are options, thus accepted format are :

* 'YYYY-MM-DD’

* 'YYYY-MM-DD tz’

* 'YYYY-MM-DD HH:MM:SS’

* 'YYYY-MM-DD HH:MM:SS tz’
. If timezone is not given, it is assumed to be the same as the one of the object on which the selection
is done.

Other methods have been defined to allow some operations on TimeIntervalDataFrame :

* rbind and merge to join two (or more) TimelntervalDataFrame (see rbind and merge),

* a TimelntervalDataFrame can be splitted exactly the same way that a data.frame can (see
split in the base package) and some more possibilities have been defined (see split in the
timetools package),

* a function can be applied over each column of a TimelntervalDataFrame via the lapply func-
tion. If the function returns one value, the resulting value is a TimeIntervalDataFrame be-
ginning at the first instant of the object and ending at the latest one ; else if the function returns
as much values as the number of rows of the object, the TimelntervalDataFrame given in argu-
ment is returned with the new calculated values ; on others cases, a non-TimelnterevalDataFrame
object is returned.

* “tapply’ can split a TimelntervalDataFrame and then apply a function over each group (see
tapply),

* ’changeSupport’ act like the ’tapply’ function but with a different default behaviour (see
changeSupport).

Because a TimelntervalDataFrame works more or less like a data.frame, the following methods
work on a TimelntervalDataFrame : dim, length, names, names<-, ncol, nrow, row. names, row. names<-.

48 timezone

Access/modify to time properties
A TimelntervamDataFrame can be tested for a few time properties :

continuous see continuous ;

homogeneous see homogeneous ;

period see period;

overlapping see overlapping ;

regular TRUE if all time intervals are equally spaced ;

timezone gives or sets the timezone of the TimelntervalDataFrame ;
start returns a POSIXct object with the start time of each intervals ;
end returns a POSIXct object with the end time of each intervals ;
when returns a POSIXcti, i.e. the intervals of the object ;

interval returns a POSIXcti, i.e. the intervals of the object.

Graphic representation

To plot a TimeIntervalDataFrame available functions are plot, lines, points and barplot.

These functions works more or less like their generic definition.

Text representation
To represent a TimeIntervalDataFrame available functions are print, summary, head, tail and
show.

See Also

TimeInstantDataFrame, SubtimeDataFrame, POSIXcti, POSIXctp

Examples

showClass("TimeIntervalDataFrame")

timezone Get or set timezone property

Description

get or set the timezone of the time object (see timezone in the base package).

Usage

timezone(object)
timezone(object) <- value

unit 49

Arguments

object object to get or set timezone property.

value specify the new value for timezone. See timezone in the base package.
Details

Changing the timezone of an object consist in reprojecting time coordinates from a system of ref-
erence to another. That is to say that not only the ‘timezone’ attribute is changed : for instance
’2012-02-01 14:00 UTC’ will be changed in *2012-02-01 15:00 CET’ if ‘timezone’ is set to ‘CET’
(French local time).

unit define valid units for time objects/retrieve-set time unit of a time object

Description

The timetools package use a set of valid time units which are roughly : year, month, week, day,
hour, minute, second. They can be combined in subtime objects. For instance : month of year,
minute of day, minute of week, etc.

Usage
POSIXt.units(x = NULL, ...)
unit(x, ...)
unit(object) <- value
of (x, ...)
Arguments
X a character string representing the needed units for POSIXt.units. The object
from which the time unit is to retrieve.
object POSIXctp to which the unit is to be changed
value a character or a POSIXt.units indicating the new units of object.

arguments to or from other methods

POSIXt.units(x = NULL, ...)
With no argument, the function return a factor containing the valid time units. With an argument, it
returns the units asked for.

unit(x, ...)

Return the time unit of the object. In case ’x’ is a POSIXst, the unit is the ’left’ part of its unit : if
’x’ is a 'minute of day’, *unit’ will return *minute’.

50 %included%

of (x, ...)
For POSIXst only, it return the 'right’ part of the unit of *x’ : if ’x’ is a *minute of day’, ’of” will
return ’day’.
when Retrieve the 'timestamp’ of a Time*DataFrame
Description

For Time objects.

Usage
when(x, ...)
Arguments
X object from which get the timestamp
arguments to or from other methods
Value

If TimeInstantDataFrame, return the instants of the object ;
if TimelntervalDataFrame, return the intervals of the object.

if SubtimeDataFrame, return the POSIXst of the object.

See Also

TimelntervalDataFrame, POSIXcti, TimelnstantDataFrame, POSIXct, SubtimeDataFrame, POSIXst

%included% test inclusion of 2 ‘POSIXcti’ objects

Description

This function test if the first ‘POSIXcti’ object is included in the second.

Usage

i1 %included% i2

Pintersect% 51

Arguments

i1 is this object included in the second object ?

i2 is this object include the first one ?

Value

boolean

Examples

to see all existing methods :
methods ('\%included\%')

%intersect% intersects 2 ‘POSIXcti’ objects

Description

This function allows to find the intersection of two objects of the same class.

Usage

i1 %intersect% i2

Arguments

i1 first object to intersect

i2 second object to intersect
Value

object of the same class of parameters

Examples

to see all existing methods :
methods ('\%intersect\%"')

Index

!=.POSIXcti (POSIXcti), 13
1=.POSIXctp (POSIXctp), 16
I=.POSIXst (POSIXst), 21
* chron
origin, 11
* classes
POSIXcti, 13
POSIXctp, 16
POSIXst, 21
SubtimeDataFrame, 29
TimeInstantDataFrame, 36
TimeIntervalDataFrame, 41
+ datasets
origin, 11
x data
origin, 11
* package
timetools-package, 2
*,POSIXctp,numeric-method (POSIXctp), 16
*,numeric,POSIXctp-method (POSIXctp), 16
+,P0SIXct,POSIXctp-method (POSIXctp), 16
+,P0OSIXcti,POSIXctp-method (POSIXcti),
13
+,P0OSIXctp,POSIXct-method (POSIXctp), 16
+,P0OSIXctp,POSIXcti-method (POSIXcti),
13
+,P0OSIXctp,POSIXctp-method (POSIXctp),
16
+,P0OSIXctp,POSIXst-method (POSIXst), 21
+,POSIXst,POSIXctp-method (POSIXst), 21
-,POSIXct,POSIXctp-method (POSIXctp), 16
-,POSIXcti,POSIXctp-method (POSIXcti),
13
-,POSIXctp,POSIXctp-method (POSIXctp),
16
-,P0SIXst,POSIXctp-method (POSIXst), 21
-,P0OSIXst,POSIXst-method (POSIXst), 21
<.POSIXcti (POSIXcti), 13
<.POSIXctp (POSIXctp), 16

52

<.POSIXst (POSIXst), 21
<=.POSIXcti (POSIXcti), 13
<=.POSIXctp (POSIXctp), 16
<=.POSIXst (POSIXst), 21
==.POSIXcti (POSIXcti), 13
==.P0SIXctp (POSIXctp), 16
==.POSIXst (POSIXst), 21
>.POSIXcti (POSIXcti), 13
>.POSIXctp (POSIXctp), 16
>.POSIXst (POSIXst), 21
>=,POSIXcti (POSIXcti), 13
>=_POSIXctp (POSIXctp), 16
>=,POSIXst (POSIXst), 21
[.POSIXcti (POSIXcti), 13
[.POSIXctp (POSIXctp), 16
[.POSIXst (POSIXst), 21

[.SubtimeDataFrame (SubtimeDataFrame),

29
[.TimeInstantDataFrame
(TimeInstantDataFrame), 36
[.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41
[<-.POSIXcti (POSIXcti), 13
[<-.POSIXctp (POSIXctp), 16
[<-.POSIXst (POSIXst), 21
[<-.SubtimeDataFrame
(SubtimeDataFrame), 29
[<-.TimeInstantDataFrame
(TimeInstantDataFrame), 36
[<-.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41
[[,SubtimeDataFrame-method
(SubtimeDataFrame), 29
[[,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
[[,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
[[<-.SubtimeDataFrame
(SubtimeDataFrame), 29

INDEX

[[<-.TimelInstantDataFrame
(TimeInstantDataFrame), 36
[[<-.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41
$,SubtimeDataFrame-method
(SubtimeDataFrame), 29
$,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
$,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
$<-,SubtimeDataFrame-method
(SubtimeDataFrame), 29
$<-,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
$<-,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
%in%,POSIXcti,POSIXcti-method
(POSIXcti), 13
%in%,POSIXctp,ANY-method (POSIXctp), 16
%in%,POSIXst,ANY-method (POSIXst), 21
%included%.POSIXcti (POSIXcti), 13
%intersect%.POSIXcti (POSIXcti), 13
%in%, 15,19, 25
%included%, 15, 50
%intersect%, 15,51

as.data.frame, 3
as.integer, 19
as.numeric,POSIXctp-method (POSIXctp),
16
as.numeric,POSIXst-method (POSIXst), 21
as.POSIXcti (POSIXcti), 13
as.POSIXctp (POSIXctp), 16
as.SubtimeDataFrame (SubtimeDataFrame),
29
as.TimeInstantDataFrame, 23, 25
as.TimelInstantDataFrame
(TimeInstantDataFrame), 36
as.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41

barplot, 32, 34, 39, 41, 45, 48
barplot.SubtimeDataFrame
(SubtimeDataFrame), 29
barplot.TimeInstantDataFrame
(TimeInstantDataFrame), 36
barplot.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41

53

c, 15,19,25

c.POSIXcti (POSIXcti), 13

c.POSIXctp (POSIXctp), 16

c.POSIXst (POSIXst), 21

changeSupport, 3, 4, 35, 36, 44, 45, 47

changeSupport,TimeIntervalDataFrame,character,numeric-meth
(changeSupport), 4

changeSupport,TimeIntervalDataFrame,POSIXctp, numeric-metho
(changeSupport), 4

changeSupport,TimeIntervalDataFrame,TimeIntervalDataFrame,
(changeSupport), 4

changeSupport,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41

compute.lim, 7

continuous, 8, 46, 48

continuous,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41

continuous-methods (continuous), 8

continuous<- (continuous), 8

continuous<-,TimelIntervalDataFrame-method
(TimeIntervalDataFrame), 41

continuous<--methods (continuous), 8

data.frame, 3, 4, 32, 39, 45

DateTimeClasses, 24

day (POSIXst), 21

day,ANY-method (POSIXst), 21

day-methods (POSIXst), 21

dim, 33,40, 47

dim, SubtimeDataFrame-method
(SubtimeDataFrame), 29

dim,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36

dim,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41

duplicated, 25

duplicated.P0OSIXst (POSIXst), 21

duration, 9, 15, 19

duration,P0OSIXcti-method (POSIXcti), 13

duration,POSIXctp-method (POSIXctp), 16

duration-methods (duration), 9

end, 15

end.POSIXcti (POSIXcti), 13

end.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41

Extract, 31, 33, 38, 40, 44,47

factor, 14, 18, 23

54

format.POSIXct, 15
format.POSIXcti (POSIXcti), 13
format.POSIXctp (POSIXctp), 16
format.POSIXst (POSIXst), 21

head, 15, 19, 25, 34,41, 48
head.POSIXcti (POSIXcti), 13
head.POSIXctp (POSIXctp), 16
head.P0OSIXst (POSIXst), 21
head.SubtimeDataFrame
(SubtimeDataFrame), 29
head.TimeInstantDataFrame
(TimeInstantDataFrame), 36
head.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41
homogeneous, 5,9, 27, 48
homogeneous, TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
homogeneous-methods (homogeneous), 9
hour (POSIXst), 21
hour,ANY-method (POSIXst), 21
hour-methods (POSIXst), 21

interval, 10

interval,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41

interval-methods (interval), 10

lapply, SubtimeDataFrame-method
(SubtimeDataFrame), 29
lapply,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
lapply, TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
length, 15, 19, 25, 33,40, 47
length,POSIXcti-method (POSIXcti), 13
length,POSIXctp-method (POSIXctp), 16
length,POSIXst-method (POSIXst), 21
length, SubtimeDataFrame-method
(SubtimeDataFrame), 29
length,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
length,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
lines, 34,41, 48
lines.SubtimeDataFrame
(SubtimeDataFrame), 29
lines.TimeInstantDataFrame
(TimeInstantDataFrame), 36

INDEX

lines.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41

match, 14, 15, 18, 19, 23,25

match,P0OSIXcti,POSIXcti-method
(POSIXcti), 13

match,POSIXctp,ANY-method (POSIXctp), 16

match,POSIXctp,POSIXctp-method
(POSIXctp), 16

match,POSIXst,ANY-method (POSIXst), 21

match,POSIXst,POSIXst-method (POSIXst),
21

mean, 5

merge, 31, 33, 38, 40, 44, 47

merge.SubtimeDataFrame
(SubtimeDataFrame), 29

merge.TimeInstantDataFrame
(TimeInstantDataFrame), 36

merge.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41

minute (POSIXst), 21

minute, ANY-method (POSIXst), 21

minute-methods (POSIXst), 21

month (POSIXst), 21

month, ANY-method (POSIXst), 21

month-methods (POSIXst), 21

names, 33, 40, 47
names, SubtimeDataFrame-method
(SubtimeDataFrame), 29
names, TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
names,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
names<-, SubtimeDataFrame-method
(SubtimeDataFrame), 29
names<-,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
names<-,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
ncol, 33,40, 47
ncol, SubtimeDataFrame-method
(SubtimeDataFrame), 29
ncol,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
ncol,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
new, 33, 39, 46
nrow, 33,40, 47

INDEX

nrow, SubtimeDataFrame-method
(SubtimeDataFrame), 29

nrow, TimeInstantDataFrame-method
(TimeInstantDataFrame), 36

nrow,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41

of, 25

of (unit), 49

of .POSIXst (POSIXst), 21

of .SubtimeDataFrame (SubtimeDataFrame),
29

Ops, 40, 46

Ops,ANY, numeric-method (ops.numeric), 10

Ops,numeric,ANY-method (ops.numeric), 10

Ops,numeric,TimeInstantDataFrame-method

(TimeInstantDataFrame), 36

Ops,numeric,TimeIntervalDataFrame-method

(TimeIntervalDataFrame), 41

Ops,TimeInstantDataFrame, numeric-method

(TimeInstantDataFrame), 36

Ops,TimelntervallDataFrame, numeric-method

(TimeIntervalDataFrame), 41
ops.numeric, 10
Ops.POSIXcti (POSIXcti), 13
Ops.POSIXctp (POSIXctp), 16
Ops.POSIXst (POSIXst), 21
origin, 11
overlapping, 11,48

overlapping,TimeIntervalDataFrame, ANY-method

(overlapping), 11

55

plot.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41
points, 34, 41,48
points.SubtimeDataFrame
(SubtimeDataFrame), 29
points.TimeInstantDataFrame
(TimeInstantDataFrame), 36
points.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41
POSIXct, 14, 16, 18, 20, 24, 26, 3840, 44, 45,
50
POSIXcti, 3, 7-10, 12,13, 20, 26-29, 35, 45,
47, 48, 50
POSIXcti-class (POSIXcti), 13
POSIXctp, 3,6, 9, 12, 14, 16, 16, 23, 26, 28,
35, 38, 39, 44, 46, 48
POSIXctp-class (POSIXctp), 16
POSIX1t, 24
POSIXst, 16, 20, 21, 27, 28, 31-34, 49, 50
POSIXst-class (POSIXst), 21
POSIXst.default (POSIXst), 21
POSIXst.integer (POSIXst), 21
POSIXst.numeric (POSIXst), 21
POSIXst.POSIXct (POSIXst), 21
POSIXst.POSIX1t (POSIXst), 21
POSIXst.TimeInstantDataFrame (POSIXst),
21
POSIXst.TimeIntervalDataFrame
(POSIXst), 21
POSIXt.units, I8, 19, 24, 25,49
POSIXt.units (unit), 49

overlapping,TimeIntervalDataFrame,logical-metpoiint, 15, 19, 25, 34,41, 48

(overlapping), 11

overlapping,TimeIntervalDataFrame-method

(TimeIntervalDataFrame), 41
overlapping-methods (overlapping), 11

page of the manual, 25
period, 12, 48
period,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
period-methods (period), 12
plot, 34,41, 48
plot.default, 32, 38, 39,45
plot.SubtimeDataFrame
(SubtimeDataFrame), 29
plot.TimeInstantDataFrame
(TimeInstantDataFrame), 36

print.POSIXcti (POSIXcti), 13
print.POSIXctp (POSIXctp), 16
print.POSIXst (POSIXst), 21
print.SubtimeDataFrame
(SubtimeDataFrame), 29
print.TimeInstantDataFrame
(TimeInstantDataFrame), 36
print.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41

rbind, 40, 47
rbind.TimeInstantDataFrame
(TimeInstantDataFrame), 36
rbind.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41
regular, 26

56 INDEX

regular,TimeInstantDataFrame-method split,TimeIntervalDataFrame,POSIXctp-method
(TimeInstantDataFrame), 36 (split), 27
regular,TimeIntervalDataFrame-method split,TimeIntervalDataFrame,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41 (split), 27
regular-methods (regular), 26 split.POSIXcti (POSIXcti), 13
RegularTimeInstantDataFrame split.POSIXctp (POSIXctp), 16
(TimeInstantDataFrame), 36 split.POSIXst (POSIXst), 21
RegularTimeIntervalDataFrame split.SubtimeDataFrame
(TimeIntervalDataFrame), 41 (SubtimeDataFrame), 29
rep, 15, 19,25 split.TimeInstantDataFrame
rep.POSIXcti (POSIXcti), 13 (TimeInstantDataFrame), 36
rep.POSIXctp (POSIXctp), 16 split.TimeIntervalDataFrame
rep.POSIXst (POSIXst), 21 (TimeIntervalDataFrame), 41
row.names, 33, 40, 47 start, 15
row.names.SubtimeDataFrame start.POSIXcti (POSIXcti), 13
(SubtimeDataFrame), 29 start.TimeIntervalDataFrame
row.names.TimeInstantDataFrame (TimeIntervalDataFrame), 41
(TimeInstantDataFrame), 36 SubtimeDataFrame, 3, 24, 29, 39, 41, 48, 50
row.names.TimeIntervalDataFrame SubtimeDataFrame-class
(TimeIntervalDataFrame), 41 (SubtimeDataFrame), 29
row.names<-.SubtimeDataFrame summary, 15, 19, 25, 34, 41, 48
(SubtimeDataFrame), 29 summary.POSIXcti (POSIXcti), 13
row.names<-.TimeInstantDataFrame summary.POSIXctp (POSIXctp), 16
(TimeInstantDataFrame), 36 summary.POSIXst (POSIXst), 21
row.names<-.TimeIntervalDataFrame

. summary.SubtimeDataFrame
(TimeIntervalDataFrame), 41 (SubtimeDataFrame), 29
summary.TimeInstantDataFrame
(TimeInstantDataFrame), 36
summary.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41

second (POSIXst), 21
second, ANY-method (POSIXst), 21
second-methods (POSIXst), 21

seq, 23,25
seq.POSIXst (POSIXst), 21
show, 15, 19, 25, 34,41, 48 tail, 15,19, 25, 34,41, 48
show,POSIXcti-method (POSIXcti), 13 tail.POSIXcti (POSIXcti), 13
show, POSIXctp-method (POSIXctp), 16 tail.POSIXctp (POSIXctp), 16
show, POSIXst-method (POSIXst), 21 tail.POSIXst (POSIXst), 21
show, SubtimeDataFrame-method tail.SubtimeDataFrame
(SubtimeDataFrame), 29 (SubtimeDataFrame), 29
show, TimeInstantDataFrame-method tail.TimeInstantDataFrame
(TimeInstantDataFrame), 36 (TimeInstantDataFrame), 36
show, TimeIntervalDataFrame-method tail.TimeIntervalDataFrame
(TimeIntervalDataFrame), 41 (TimeIntervalDataFrame), 41
split, 15, 19, 25,27, 29, 31, 33, 35, 38, 40, tapply, 34, 35, 36, 45,47
44,47 tapply, TimeIntervalDataFrame,POSIXcti-method
split,ANY,POSIXcti-method (split), 27 (tapply), 34
split,ANY,POSIXctp-method (split), 27 tapply, TimeIntervalDataFrame,POSIXctp-method
split,ANY,POSIXst-method (split), 27 (tapply), 34

split,TimeIntervalDataFrame,POSIXcti-method tapply,TimelntervalDataFrame,TimeIntervalDataFrame-method
(split), 27 (tapply), 34

INDEX

tapply, TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
time intervals, 9
time periods, 9
TimeInstantDataFrame, 3, 24, 25, 27, 32, 34,
36, 45, 48, 50
TimeInstantDataFrame-class
(TimeInstantDataFrame), 36
TimeIntervalDataFrame, 3, 5-8, 10, 12, 16,
24-27,32-35,39-41,41,47, 50
TimeIntervalDataFrame-class
(TimeIntervalDataFrame), 41
timetools, 28
timetools (timetools-package), 2
timetools-package, 2
timezone, 14, 25, 38, 44, 48, 48, 49
timezone, SubtimeDataFrame-method
(SubtimeDataFrame), 29
timezone,TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
timezone,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
timezone-methods (timezone), 48
timezone.POSIXst (POSIXst), 21
timezone<- (timezone), 48
timezone<-,TimelInstantDataFrame-method
(TimeInstantDataFrame), 36
timezone<-,TimelIntervalDataFrame-method
(TimeIntervalDataFrame), 41
timezone<--methods (timezone), 48

unique, 15, 19, 25
unique.POSIXcti (POSIXcti), 13
unique.POSIXctp (POSIXctp), 16
unique.POSIXst (POSIXst), 21
unit, 19, 25, 49
unit,POSIXctp-method (POSIXctp), 16
unit-methods (unit), 49
unit.POSIXst (POSIXst), 21
unit.SubtimeDataFrame
(SubtimeDataFrame), 29
unit<- (unit), 49
unit<-,POSIXctp-method (POSIXctp), 16
unit<--methods (unit), 49
units (unit), 49

weighted.mean, 5, 35
when, 50

57

when, SubtimeDataFrame-method
(SubtimeDataFrame), 29
when, TimeInstantDataFrame-method
(TimeInstantDataFrame), 36
when,TimeIntervalDataFrame-method
(TimeIntervalDataFrame), 41
when-methods (when), 50

year (POSIXst), 21
year,ANY-method (POSIXst), 21
year-methods (POSIXst), 21

	timetools-package
	as.data.frame
	changeSupport
	compute.lim
	continuous
	duration
	homogeneous
	interval
	ops.numeric
	origin
	overlapping
	period
	POSIXcti
	POSIXctp
	POSIXst
	regular
	split
	SubtimeDataFrame
	tapply
	TimeInstantDataFrame
	TimeIntervalDataFrame
	timezone
	unit
	when
	included
	intersect
	Index

