Package 'solarPos'

October 14, 2022

Type Package
Title Solar Position Algorithm for Solar Radiation Applications
Version 1.0
Date 2016-01-07
Author Jasper Van doninck
Maintainer Jasper Van doninck <vandoninck.jasper@gmail.com></vandoninck.jasper@gmail.com>
Description Calculation of solar zenith and azimuth angles.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2016-01-07 10:24:13

R topics documented:

	solarPos-package	2
Index		5

solarPos-package Solar Position Algorithm for Solar Radiation Applications

Description

Implementation of the Solar Position Algorithm for Solar Radiation Applications of Reda and Andreas (2004, 2007) for calculation of solar zenith and azimuth angles.

Details

Package:	solarPos
Type:	Package
Version:	1.0
Date:	2016-01-07
License:	GPL-2

Author(s)

Jasper Van doninck

Maintainer: Jasper Van doninck <vandoninck.jasper@gmail.com>

References

Reda, I. and Andreas, A. (2004) Solar position algorithm for solar radiation applications, *Solar Energy* 76, 577-589.

Reda, I. and Andreas, A. (2007) Corrigendum to Solar position algorithm for solar radiation applications [Solar Energy 76 (2004) 577589], *Solar Energy* 81, 838.

julianDay

Julian Day

Description

Computes Julian Day from year, month, day and time of day.

Usage

```
julianDay(year, month, day, hour = 12, min = 0, sec = 0, tz = 0, dut1 = 0)
```

Arguments

year	Year
month	Month (1-12)
day	Day (1-12)
hour	Hour (0-23)
min	Minute (0-59)
sec	Second (0-59)
tz	Time zone (negative to the west)
dut1	Correction term (0-1)

solarPosition

Details

Astronomical year numbering is used, i.e., 0 is used for 1 BC, -1 for 2 BC, and so on.

Time is expressed as Coordinated Universal Time (UTC), or Local Standard Time (LST) if the tz argument is used. The argument dut1 is expressed as a fraction of a second and used to correct UTC to Universal Time (UT)

Value

Julian Day

Author(s)

Jasper Van doninck

Examples

julianDay(2000,1,1,12,0,0)

julianDay(2010,5,10,16,30,0,tz=-7)

julianDay(2015,1:12,1,0,0,0)

solarPosition Solar zenith and azumith angles

Description

Computes the solar zenith and azimuth for a place on Earth for a given date and time.

Usage

solarPosition(jd, lon, lat, delta_t = 32.184, elev = 0, temp = 16, pres = 1013.25)

Arguments

jd	Julian day, with decimal fraction.
lon	Longitude, in decimal degrees.
lat	Latitude, in decimal degrees.
delta_t	Difference between the Earth rotation time and the Terestrial Time (TT), in seconds.
elev	Elevation, in meters.
temp	Temperature, in degrees Celsius.
pres	Pressure, in hPa.

Details

Solar zenith and azimuth angle are give in degrees, azimuth is measured eastward from north.

Value

Matrix of solar zenith and azimuth angles.

Author(s)

Jasper Van doninck

Examples

##Julian day

jd <- julianDay(2003,10,17,12,30,30,tz=-7)

##Solar angles

solarPosition(jd,-105.1786,39.742476,delta_t=67,elev=1830.14,temp=11,pres=820)

Index

julianDay,<mark>2</mark>

solarPos-package, 1
solarPosition, 3