
Package ‘softImpute’
May 12, 2025

Type Package

Title Matrix Completion via Iterative Soft-Thresholded SVD

Version 1.4-3

Date 2025-05-12

Description Iterative methods for matrix completion that use nuclear-norm regulariza-
tion. There are two main approaches.The one approach uses iterative soft-thresholded svds to im-
pute the missing values. The second approach uses alternat-
ing least squares. Both have an 'EM' flavor, in that at each iteration the matrix is com-
pleted with the current estimate. For large matrices there is a special sparse-
matrix class named ``Incomplete'' that efficiently handles all computations. The package in-
cludes procedures for centering and scaling rows, columns or both, and for computing low-
rank SVDs on large sparse centered matrices (i.e. principal components).

License GPL-2

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Suggests knitr, rmarkdown

Depends Matrix, methods

NeedsCompilation yes

Author Trevor Hastie [aut, cre],
Rahul Mazumder [aut],
Balasubramanian Narasimhan [ctb]

Maintainer Trevor Hastie <hastie@stanford.edu>

Repository CRAN

Date/Publication 2025-05-12 13:40:02 UTC

Contents
biScale . 2
clean.warm.start . 4
deBias . 5

1

2 biScale

impute . 6
Incomplete . 7
Incomplete-class . 8
lambda0 . 9
simpute.als . 10
simpute.svd . 11
softImpute . 12
softImpute.x.Incomplete . 15
softImpute.x.matrix . 16
SparseplusLowRank-class . 18
splr . 19
Ssimpute.als . 20
Ssimpute.svd . 21
Ssvd.als . 22
svd.als . 23

Index 26

biScale Standardize a matrix to have optionally row means zero and variances
one, and/or column means zero and variances one.

Description

A function for standardizing a matrix in a symmetric fashion. Generalizes the scale function in
R. Works with matrices with NAs, matrices of class "Incomplete", and matrix in "sparseMatrix"
format.

Usage

biScale(
x,
maxit = 20,
thresh = 1e-09,
row.center = TRUE,
row.scale = TRUE,
col.center = TRUE,
col.scale = TRUE,
trace = FALSE

)

Arguments

x matrix, possibly with NAs, also of class "Incomplete" or "sparseMatrix" format.

maxit When both row and column centering/scaling is requested, iteration is may be
necessary

thresh Convergence threshold

biScale 3

row.center if row.center==TRUE (the default), row centering will be performed resulting
in a matrix with row means zero. If row.center is a vector, it will be used to
center the rows. If row.center=FALSE nothing is done. See details for more
info.

row.scale if row.scale==TRUE, the rows are scaled (after possibly centering, to have vari-
ance one. Alternatively, if a positive vector is supplied, it is used for row center-
ing. See details for more info.

col.center Similar to row.center

col.scale Similar to row.scale

trace with trace=TRUE, convergence progress is reported, when iteration is needed.

Details

This function computes a transformation

Xij − αi − βj

γiτj

to transform the matrix X . It uses an iterative algorithm based on "method-of-moments". At each
step, all but one of the parameter vectors is fixed, and the remaining vector is computed to solve
the required condition. Although in genereal this is not guaranteed to converge, it mostly does,
and quite rapidly. When there are convergence problems, remove some of the required constraints.
When any of the row/column centers or scales are provided, they are used rather than estimated in
the above model.

Value

A matrix like x is returned, with attributes:

biScale:row a list with elements "center" and "scale" (the alpha and gamma above. If no
centering was done, the center component will be a vector of zeros. Likewise,
of no row scaling was done, the scale component will be a vector of ones.

biScale:column Same details as biScale:row

For matrices with missing values, the constraints apply to the non-missing entries. If x is of class
"sparseMatrix", then the sparsity is maintained, and an object of class "SparseplusLowRank" is
returned, such that the low-rank part does the centering.

Note

This function will be described in detail in a forthcoming paper

Author(s)

Trevor Hastie, with help from Andreas Buja and Steven Boyd
, Maintainer: Trevor Hastie <hastie@stanford.edu>

4 clean.warm.start

References

Trevor Hastie, Rahul Mazumder, Jason Lee, Reza Zadeh (2015) Matrix Completion and Low-rank
SVD via Fast Alternating Least Squares, https://arxiv.org/abs/1410.2596
Journal of Machine Learning Research, 16, 3367-3402

See Also

softImpute,Incomplete,lambda0,impute,complete, and class "SparseplusLowRank"

Examples

set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
xc=biScale(x)
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
xnab=biScale(xna,row.scale=FALSE,trace=TRUE)
xnaC=as(xna,"Incomplete")
xnaCb=biScale(xnaC)
nnz=trunc(np*.3)
inz=sample(seq(np),nnz,replace=FALSE)
i=row(x)[inz]
j=col(x)[inz]
x=rnorm(nnz)
xS=sparseMatrix(x=x,i=i,j=j)
xSb=biScale(xS)
class(xSb)

clean.warm.start rdname softImpute-internal

Description

rdname softImpute-internal

Usage

clean.warm.start(a)

Arguments

a an svd object with components u, d and v or NULL

https://arxiv.org/abs/1410.2596

deBias 5

deBias Recompute the $d component of a "softImpute" object through re-
gression.

Description

softImpute uses shrinkage when completing a matrix with missing values. This function debiases
the singular values using ordinary least squares.

Usage

deBias(x, svdObject)

Arguments

x matrix with missing entries, or a matrix of class "Incomplete"

svdObject an SVD object, the output of softImpute

Details

Treating the "d" values as parameters, this function recomputes them by linear regression.

Value

An svd object is returned, with components "u", "d", and "v".

Author(s)

Trevor Hastie
Maintainer: Trevor Hastie <hastie@stanford.edu>

Examples

set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
fit1=softImpute(xna,rank=50,lambda=30)
fit1d=deBias(xna,fit1)

6 impute

impute make predictions from an svd object

Description

These functions produce predictions from the low-rank solution of softImpute

Usage

impute(object, i, j, unscale = TRUE)

Arguments

object an svd object with components u, d and v

i vector of row indices for the locations to be predicted

j vector of column indices for the locations to be predicted

unscale if object has biScale attributes, and unscale=TRUE, the imputations reversed
the centering and scaling on the predictions.

Details

impute returns a vector of predictions, using the reconstructed low-rank matrix representation rep-
resented by object. It is used by complete, which returns a complete matrix with all the missing
values imputed.

Value

Either a vector of predictions or a complete matrix. WARNING: if x has large dimensions, the
matrix returned by complete might be too large.

Author(s)

Trevor Hastie

See Also

softImpute, biScale and Incomplete

Examples

set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)

Incomplete 7

imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
fit1=softImpute(xna,rank=50,lambda=30)
complete(xna,fit1)

Incomplete create a matrix of class Incomplete

Description

creates an object of class Incomplete, which inherits from class dgCMatrix, a specific instance of
class sparseMatrix

Usage

Incomplete(i, j, x)

Arguments

i row indices

j column indices

x a vector of values

Details

The matrix is represented in sparse-matrix format, except the "zeros" represent missing values. Real
zeros are represented explicitly as values.

Value

a matrix of class Incomplete which inherits from class dgCMatrix

Author(s)

Trevor Hastie and Rahul Mazumder

See Also

softImpute

8 Incomplete-class

Examples

set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
xnaC=as(xna,"Incomplete")
here we do it a different way to demonstrate Incomplete
In practise the observed values are stored in this market-matrix format.
i = row(xna)[-imiss]
j = col(xna)[-imiss]
xnaC=Incomplete(i,j,x=x[-imiss])

Incomplete-class Class "Incomplete"

Description

a sparse matrix inheriting from class dgCMatrix with the NAs represented as zeros

Objects from the Class

Objects can be created by calls of the form new("Incomplete", ...) or by calling the function
Incomplete

Slots

i Object of class "integer"

p Object of class "integer"

Dim Object of class "integer"

Dimnames Object of class "list"

x Object of class "numeric"

factors Object of class "list"

Methods

as.matrix signature(x = "Incomplete"): ...

coerce signature(from = "matrix", to = "Incomplete"): ...

complete signature(x = "Incomplete"):...

lambda0 9

Author(s)

Trevor Hastie and Rahul Mazumder

See Also

biScale,softImpute,Incomplete,impute,complete

Examples

showClass("Incomplete")
set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
xnaC=as(xna,"Incomplete")

lambda0 compute the smallest value for lambda such that
softImpute(x,lambda) returns the zero solution.

Description

this determines the "starting" lambda for a sequence of values for softImpute, and all nonzero
solutions would require a smaller value for lambda.

Usage

lambda0(x, lambda = 0, maxit = 100, trace.it = FALSE, thresh = 1e-05)

Arguments

x An m by n matrix. Large matrices can be in "sparseMatrix" format, as well
as "SparseplusLowRank". The latter arise after centering sparse matrices, for
example with biScale, as well as in applications such as softImpute.

lambda As in svd.als, using a value for lambda can speed up iterations. As long as the
solution is not zero, the value returned adds back this value.

maxit maximum number of iterations.

trace.it with trace.it=TRUE, convergence progress is reported.

thresh convergence threshold, measured as the relative changed in the Frobenius norm
between two successive estimates.

10 simpute.als

Details

It is the largest singular value for the matrix, with zeros replacing missing values. It uses svd.als
with rank=2.

Value

a single number, the largest singular value

Author(s)

Trevor Hastie, Rahul Mazumder
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Rahul Mazumder, Trevor Hastie and Rob Tibshirani (2010) Spectral Regularization Algorithms for
Learning Large Incomplete Matrices, https://hastie.su.domains/Papers/mazumder10a.pdf
Journal of Machine Learning Research 11 (2010) 2287-2322

See Also

softImpute,Incomplete, and svd.als.

Examples

set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
lambda0(xna)

simpute.als rdname softImpute-internal

Description

rdname softImpute-internal

https://hastie.su.domains/Papers/mazumder10a.pdf

simpute.svd 11

Usage

simpute.als(
x,
J = 2,
thresh = 1e-05,
lambda = 0,
maxit = 100,
trace.it = TRUE,
warm.start = NULL,
final.svd = TRUE

)

Arguments

x An m by n matrix with NAs. For large matrices can be of class "Incomplete",
in which case the missing values are represented as pseudo zeros leading to
dramatic storage reduction. x can have been centered and scaled via biScale,
and this information is carried along with the solution.

J Trevor to document this param

thresh convergence threshold, measured as the relative change in the Frobenius norm
between two successive estimates.

lambda nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to
"hardImpute", for which convergence is typically slower, and to local minimum.
Ideally lambda should be chosen so that the solution reached has rank slightly
less than rank.max. See also lambda0() for computing the smallest lambda
with a zero solution.

maxit maximum number of iterations.

trace.it with trace.it=TRUE, convergence progress is reported.

warm.start an svd object can be supplied as a warm start. This is particularly useful when
constructing a path of solutions with decreasing values of lambda and increasing
rank.max. The previous solution can be provided directly as a warm start for
the next.

final.svd only applicable to type="als". The alternating ridge-regressions do not lead
to exact zeros. With the default final.svd=TRUE, at the final iteration, a one
step unregularized iteration is performed, followed by soft-thresholding of the
singular values, leading to hard zeros.

simpute.svd rdname softImpute-internal

Description

rdname softImpute-internal

12 softImpute

Usage

simpute.svd(
x,
J = 2,
thresh = 1e-05,
lambda = 0,
maxit = 100,
trace.it = FALSE,
warm.start = NULL,
...

)

Arguments

x An m by n matrix with NAs. For large matrices can be of class "Incomplete",
in which case the missing values are represented as pseudo zeros leading to
dramatic storage reduction. x can have been centered and scaled via biScale,
and this information is carried along with the solution.

J Trevor to document this param

thresh convergence threshold, measured as the relative change in the Frobenius norm
between two successive estimates.

lambda nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to
"hardImpute", for which convergence is typically slower, and to local minimum.
Ideally lambda should be chosen so that the solution reached has rank slightly
less than rank.max. See also lambda0() for computing the smallest lambda
with a zero solution.

maxit maximum number of iterations.

trace.it with trace.it=TRUE, convergence progress is reported.

warm.start an svd object can be supplied as a warm start. This is particularly useful when
constructing a path of solutions with decreasing values of lambda and increasing
rank.max. The previous solution can be provided directly as a warm start for
the next.

... sink argument for unwanted arguments

softImpute impute missing values for a matrix via nuclear-norm regularization.

Description

fit a low-rank matrix approximation to a matrix with missing values via nuclear-norm regularization.
The algorithm works like EM, filling in the missing values with the current guess, and then solving
the optimization problem on the complete matrix using a soft-thresholded SVD. Special sparse-
matrix classes available for very large matrices.

softImpute 13

Usage

softImpute(
x,
rank.max = 2,
lambda = 0,
type = c("als", "svd"),
thresh = 1e-05,
maxit = 100,
trace.it = FALSE,
warm.start = NULL,
final.svd = TRUE

)

Arguments

x An m by n matrix with NAs. For large matrices can be of class "Incomplete",
in which case the missing values are represented as pseudo zeros leading to
dramatic storage reduction. x can have been centered and scaled via biScale,
and this information is carried along with the solution.

rank.max This restricts the rank of the solution. If sufficiently large, and with type="svd",
the solution solves the nuclear-norm convex matrix-completion problem. In this
case the number of nonzero singular values returned will be less than or equal
to rank.max. If smaller ranks are used, the solution is not guaranteed to solve
the problem, although still results in good local minima. rank.max should be
no bigger than min(dim(x)-1.

lambda nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to
"hardImpute", for which convergence is typically slower, and to local minimum.
Ideally lambda should be chosen so that the solution reached has rank slightly
less than rank.max. See also lambda0() for computing the smallest lambda
with a zero solution.

type two algorithms are implements, type="svd" or the default type="als". The
"svd" algorithm repeatedly computes the svd of the completed matrix, and soft
thresholds its singular values. Each new soft-thresholded svd is used to re-
impute the missing entries. For large matrices of class "Incomplete", the svd
is achieved by an efficient form of alternating orthogonal ridge regression. The
"als" algorithm uses this same alternating ridge regression, but updates the im-
putation at each step, leading to quite substantial speedups in some cases. The
"als" approach does not currently have the same theoretical convergence guar-
antees as the "svd" approach.

thresh convergence threshold, measured as the relative change in the Frobenius norm
between two successive estimates.

maxit maximum number of iterations.
trace.it with trace.it=TRUE, convergence progress is reported.
warm.start an svd object can be supplied as a warm start. This is particularly useful when

constructing a path of solutions with decreasing values of lambda and increasing
rank.max. The previous solution can be provided directly as a warm start for
the next.

14 softImpute

final.svd only applicable to type="als". The alternating ridge-regressions do not lead
to exact zeros. With the default final.svd=TRUE, at the final iteration, a one
step unregularized iteration is performed, followed by soft-thresholding of the
singular values, leading to hard zeros.

Details

SoftImpute solves the following problem for a matrix X with missing entries:

min ||X −M ||2o + λ||M ||∗.

Here || · ||o is the Frobenius norm, restricted to the entries corresponding to the non-missing entries
of X , and ||M ||∗ is the nuclear norm of M (sum of singular values). For full details of the "svd"
algorithm are described in the reference below. The "als" algorithm will be described in a forthcom-
ing article. Both methods employ special sparse-matrix tricks for large matrices with many missing
values. This package creates a new sparse-matrix class "SparseplusLowRank" for matrices of the
form

x+ ab′,

where x is sparse and a and b are tall skinny matrices, hence ab′ is low rank. Methods for efficient
left and right matrix multiplication are provided for this class. For large matrices, the function
Incomplete() can be used to build the appropriate sparse input matrix from market-format data.

Value

An svd object is returned, with components "u", "d", and "v". If the solution has zeros in "d",
the solution is truncated to rank one more than the number of zeros (so the zero is visible). If the
input matrix had been centered and scaled by biScale, the scaling details are assigned as attributes
inherited from the input matrix.

Author(s)

Trevor Hastie, Rahul Mazumder
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Rahul Mazumder, Trevor Hastie and Rob Tibshirani (2010) Spectral Regularization Algorithms for
Learning Large Incomplete Matrices, https://hastie.su.domains/Papers/mazumder10a.pdf
Journal of Machine Learning Research, 11, 2287-2322
Trevor Hastie, Rahul Mazumder, Jason Lee, Reza Zadeh (2015) Matrix Completion and Low-rank
SVD via Fast Alternating Least Squares, https://arxiv.org/abs/1410.2596
Journal of Machine Learning Research, 16, 3367-3402

See Also

biScale, svd.als,Incomplete, lambda0, impute, complete

https://hastie.su.domains/Papers/mazumder10a.pdf
https://arxiv.org/abs/1410.2596

softImpute.x.Incomplete 15

Examples

set.seed(101)
n=200
p=100
J=50
np=n*p
missfrac=0.3
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
ix=seq(np)
imiss=sample(ix,np*missfrac,replace=FALSE)
xna=x
xna[imiss]=NA
###uses regular matrix method for matrices with NAs
fit1=softImpute(xna,rank=50,lambda=30)
###uses sparse matrix method for matrices of class "Incomplete"
xnaC=as(xna,"Incomplete")
fit2=softImpute(xnaC,rank=50,lambda=30)
###uses "svd" algorithm
fit3=softImpute(xnaC,rank=50,lambda=30,type="svd")
ximp=complete(xna,fit1)
first scale xna
xnas=biScale(xna)
fit4=softImpute(xnas,rank=50,lambda=10)
ximp=complete(xna,fit4)
impute(fit4,i=c(1,3,7),j=c(2,5,10))
impute(fit4,i=c(1,3,7),j=c(2,5,10),unscale=FALSE)#ignore scaling and centering

softImpute.x.Incomplete

rdname softImpute-internal

Description

rdname softImpute-internal

Usage

softImpute.x.Incomplete(
x,
J,
lambda,
type,
thresh,
maxit,
trace.it,
warm.start,
final.svd

)

16 softImpute.x.matrix

Arguments

x An m by n matrix with NAs. For large matrices can be of class "Incomplete",
in which case the missing values are represented as pseudo zeros leading to
dramatic storage reduction. x can have been centered and scaled via biScale,
and this information is carried along with the solution.

J Trevor to document this param

lambda nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to
"hardImpute", for which convergence is typically slower, and to local minimum.
Ideally lambda should be chosen so that the solution reached has rank slightly
less than rank.max. See also lambda0() for computing the smallest lambda
with a zero solution.

type two algorithms are implements, type="svd" or the default type="als". The
"svd" algorithm repeatedly computes the svd of the completed matrix, and soft
thresholds its singular values. Each new soft-thresholded svd is used to re-
impute the missing entries. For large matrices of class "Incomplete", the svd
is achieved by an efficient form of alternating orthogonal ridge regression. The
"als" algorithm uses this same alternating ridge regression, but updates the im-
putation at each step, leading to quite substantial speedups in some cases. The
"als" approach does not currently have the same theoretical convergence guar-
antees as the "svd" approach.

thresh convergence threshold, measured as the relative change in the Frobenius norm
between two successive estimates.

maxit maximum number of iterations.

trace.it with trace.it=TRUE, convergence progress is reported.

warm.start an svd object can be supplied as a warm start. This is particularly useful when
constructing a path of solutions with decreasing values of lambda and increasing
rank.max. The previous solution can be provided directly as a warm start for
the next.

final.svd only applicable to type="als". The alternating ridge-regressions do not lead
to exact zeros. With the default final.svd=TRUE, at the final iteration, a one
step unregularized iteration is performed, followed by soft-thresholding of the
singular values, leading to hard zeros.

softImpute.x.matrix Internal softImpute functions

Description

These functions are not intended to be called directly, but they can be useful for understanding the
structure of the models used. rdname softImpute-internal

softImpute.x.matrix 17

Usage

softImpute.x.matrix(
x,
J,
lambda,
type,
thresh,
maxit,
trace.it,
warm.start,
final.svd

)

Arguments

x An m by n matrix with NAs. For large matrices can be of class "Incomplete",
in which case the missing values are represented as pseudo zeros leading to
dramatic storage reduction. x can have been centered and scaled via biScale,
and this information is carried along with the solution.

J Trevor to document this param
lambda nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to

"hardImpute", for which convergence is typically slower, and to local minimum.
Ideally lambda should be chosen so that the solution reached has rank slightly
less than rank.max. See also lambda0() for computing the smallest lambda
with a zero solution.

type two algorithms are implements, type="svd" or the default type="als". The
"svd" algorithm repeatedly computes the svd of the completed matrix, and soft
thresholds its singular values. Each new soft-thresholded svd is used to re-
impute the missing entries. For large matrices of class "Incomplete", the svd
is achieved by an efficient form of alternating orthogonal ridge regression. The
"als" algorithm uses this same alternating ridge regression, but updates the im-
putation at each step, leading to quite substantial speedups in some cases. The
"als" approach does not currently have the same theoretical convergence guar-
antees as the "svd" approach.

thresh convergence threshold, measured as the relative change in the Frobenius norm
between two successive estimates.

maxit maximum number of iterations.
trace.it with trace.it=TRUE, convergence progress is reported.
warm.start an svd object can be supplied as a warm start. This is particularly useful when

constructing a path of solutions with decreasing values of lambda and increasing
rank.max. The previous solution can be provided directly as a warm start for
the next.

final.svd only applicable to type="als". The alternating ridge-regressions do not lead
to exact zeros. With the default final.svd=TRUE, at the final iteration, a one
step unregularized iteration is performed, followed by soft-thresholding of the
singular values, leading to hard zeros.

18 SparseplusLowRank-class

SparseplusLowRank-class

Class "SparseplusLowRank"

Description

A structured matrix made up of a sparse part plus a low-rank part, all which can be stored and
operated on efficiently.

Objects from the Class

Objects can be created by calls of the form new("SparseplusLowRank", ...) or by a call to splr

Slots

x Object of class "sparseMatrix"

a Object of class "matrix"

b Object of class "matrix"

Methods

%*% signature(x = "ANY", y = "SparseplusLowRank"): ...

%*% signature(x = "SparseplusLowRank", y = "ANY"): ...

%*% signature(x = "Matrix", y = "SparseplusLowRank"): ...

%*% signature(x = "SparseplusLowRank", y = "Matrix"): ...

as.matrix signature(x = "SparseplusLowRank"): ...

colMeans signature(x = "SparseplusLowRank"): ...

colSums signature(x = "SparseplusLowRank"): ...

dim signature(x = "SparseplusLowRank"): ...

norm signature(x = "SparseplusLowRank", type = "character"): ...

rowMeans signature(x = "SparseplusLowRank"): ...

rowSums signature(x = "SparseplusLowRank"): ...

svd.als signature(x = "SparseplusLowRank"): ...

Author(s)

Trevor Hastie and Rahul Mazumder

See Also

softImpute,splr

splr 19

Examples

showClass("SparseplusLowRank")
x=matrix(sample(c(3,0),15,replace=TRUE),5,3)
x=as(x,"sparseMatrix")
a=matrix(rnorm(10),5,2)
b=matrix(rnorm(6),3,2)
new("SparseplusLowRank",x=x,a=a,b=b)
splr(x,a,b)

splr create a SparseplusLowRank object

Description

create an object of class SparseplusLowRank which can be efficiently stored and for which efficient
linear algebra operations are possible.

Usage

splr(x, a = NULL, b = NULL)

Arguments

x sparse matrix with dimension say m x n

a matrix with m rows and number of columns r less than min(dim(x))

b matrix with n rows and number of columns r less than min(dim(x))

Value

an object of S4 class SparseplusLowRank is returned with slots x, a and b

Author(s)

Trevor Hastie

See Also

SparseplusLowRank-class, softImpute

Examples

x=matrix(sample(c(3,0),15,replace=TRUE),5,3)
x=as(x,"sparseMatrix")
a=matrix(rnorm(10),5,2)
b=matrix(rnorm(6),3,2)
new("SparseplusLowRank",x=x,a=a,b=b)
splr(x,a,b)

20 Ssimpute.als

Ssimpute.als rdname softImpute-internal

Description

rdname softImpute-internal

Usage

Ssimpute.als(
x,
J = 2,
thresh = 1e-05,
lambda = 0,
maxit = 100,
trace.it = FALSE,
warm.start = NULL,
final.svd = TRUE

)

Arguments

x An m by n matrix with NAs. For large matrices can be of class "Incomplete",
in which case the missing values are represented as pseudo zeros leading to
dramatic storage reduction. x can have been centered and scaled via biScale,
and this information is carried along with the solution.

J Trevor to document this param

thresh convergence threshold, measured as the relative change in the Frobenius norm
between two successive estimates.

lambda nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to
"hardImpute", for which convergence is typically slower, and to local minimum.
Ideally lambda should be chosen so that the solution reached has rank slightly
less than rank.max. See also lambda0() for computing the smallest lambda
with a zero solution.

maxit maximum number of iterations.

trace.it with trace.it=TRUE, convergence progress is reported.

warm.start an svd object can be supplied as a warm start. This is particularly useful when
constructing a path of solutions with decreasing values of lambda and increasing
rank.max. The previous solution can be provided directly as a warm start for
the next.

final.svd only applicable to type="als". The alternating ridge-regressions do not lead
to exact zeros. With the default final.svd=TRUE, at the final iteration, a one
step unregularized iteration is performed, followed by soft-thresholding of the
singular values, leading to hard zeros.

Ssimpute.svd 21

Ssimpute.svd rdname softImpute-internal

Description

rdname softImpute-internal

Usage

Ssimpute.svd(
x,
J = 2,
thresh = 1e-05,
lambda = 0,
maxit = 100,
trace.it = FALSE,
warm.start = NULL,
...

)

Arguments

x An m by n matrix with NAs. For large matrices can be of class "Incomplete",
in which case the missing values are represented as pseudo zeros leading to
dramatic storage reduction. x can have been centered and scaled via biScale,
and this information is carried along with the solution.

J Trevor to document this param

thresh convergence threshold, measured as the relative change in the Frobenius norm
between two successive estimates.

lambda nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to
"hardImpute", for which convergence is typically slower, and to local minimum.
Ideally lambda should be chosen so that the solution reached has rank slightly
less than rank.max. See also lambda0() for computing the smallest lambda
with a zero solution.

maxit maximum number of iterations.

trace.it with trace.it=TRUE, convergence progress is reported.

warm.start an svd object can be supplied as a warm start. This is particularly useful when
constructing a path of solutions with decreasing values of lambda and increasing
rank.max. The previous solution can be provided directly as a warm start for
the next.

... sink argument for unwanted arguments

22 Ssvd.als

Ssvd.als rdname softImpute-internal

Description

rdname softImpute-internal

Usage

Ssvd.als(
x,
J = 2,
thresh = 1e-05,
lambda = 0,
maxit = 100,
trace.it = FALSE,
warm.start = NULL,
final.svd = TRUE

)

Arguments

x An m by n matrix with NAs. For large matrices can be of class "Incomplete",
in which case the missing values are represented as pseudo zeros leading to
dramatic storage reduction. x can have been centered and scaled via biScale,
and this information is carried along with the solution.

J Trevor to document this param

thresh convergence threshold, measured as the relative change in the Frobenius norm
between two successive estimates.

lambda nuclear-norm regularization parameter. If lambda=0, the algorithm reverts to
"hardImpute", for which convergence is typically slower, and to local minimum.
Ideally lambda should be chosen so that the solution reached has rank slightly
less than rank.max. See also lambda0() for computing the smallest lambda
with a zero solution.

maxit maximum number of iterations.

trace.it with trace.it=TRUE, convergence progress is reported.

warm.start an svd object can be supplied as a warm start. This is particularly useful when
constructing a path of solutions with decreasing values of lambda and increasing
rank.max. The previous solution can be provided directly as a warm start for
the next.

final.svd only applicable to type="als". The alternating ridge-regressions do not lead
to exact zeros. With the default final.svd=TRUE, at the final iteration, a one
step unregularized iteration is performed, followed by soft-thresholding of the
singular values, leading to hard zeros.

svd.als 23

svd.als compute a low rank soft-thresholded svd by alternating orthogonal
ridge regression

Description

fit a low-rank svd to a complete matrix by alternating orthogonal ridge regression. Special sparse-
matrix classes available for very large matrices, including "SparseplusLowRank" versions for row
and column centered sparse matrices.

Usage

svd.als(
x,
rank.max = 2,
lambda = 0,
thresh = 1e-05,
maxit = 100,
trace.it = FALSE,
warm.start = NULL,
final.svd = TRUE

)

Arguments

x An m by n matrix. Large matrices can be in "sparseMatrix" format, as well
as "SparseplusLowRank". The latter arise after centering sparse matrices, for
example with biScale, as well as in applications such as softImpute.

rank.max The maximum rank for the solution. This is also the dimension of the left and
right matrices of orthogonal singular vectors. ’rank.max’ should be no bigger
than ’min(dim(x)’.

lambda The regularization parameter. lambda=0 corresponds to an accelerated version
of the orthogonal QR-algorithm. With lambda>0 the algorithm amounts to al-
ternating orthogonal ridge regression.

thresh convergence threshold, measured as the relative changed in the Frobenius norm
between two successive estimates.

maxit maximum number of iterations.

trace.it with trace.it=TRUE, convergence progress is reported.

warm.start an svd object can be supplied as a warm start. If the solution requested has
higher rank than the warm start, the additional subspace is initialized with ran-
dom Gaussians (and then orthogonalized wrt the rest).

final.svd Although in theory, this algorithm converges to the solution to a nuclear-norm
regularized low-rank matrix approximation problem, with potentially some sin-
gular values equal to zero, in practice only near-zeros are achieved. This final
step does one more iteration with lambda=0, followed by soft-thresholding.

24 svd.als

Details

This algorithm solves the problem

min ||X −M ||2F + λ||M ||∗

subject to rank(M) ≤ r, where ||M ||∗ is the nuclear norm of M (sum of singular values). It
achieves this by solving the related problem

min ||X −AB′||2F + λ/2(||A||2F + ||B||2F)

subject to rank(A) = rank(B) ≤ r. The solution is a rank-restricted, soft-thresholded SVD of X .

Value

An svd object is returned, with components "u", "d", and "v".

u an m by rank.max matrix with the left orthogonal singular vectors

d a vector of length rank.max of soft-thresholded singular values

v an n by rank.max matrix with the right orthogonal singular vectors

Author(s)

Trevor Hastie, Rahul Mazumder
Maintainer: Trevor Hastie <hastie@stanford.edu>

References

Rahul Mazumder, Trevor Hastie and Rob Tibshirani (2010) Spectral Regularization Algorithms for
Learning Large Incomplete Matrices, https://hastie.su.domains/Papers/mazumder10a.pdf
Journal of Machine Learning Research 11 (2010) 2287-2322

See Also

biScale, softImpute, Incomplete, lambda0, impute, complete

Examples

#create a matrix and run the algorithm
set.seed(101)
n=100
p=50
J=25
np=n*p
x=matrix(rnorm(n*J),n,J)%*%matrix(rnorm(J*p),J,p)+matrix(rnorm(np),n,p)/5
fit=svd.als(x,rank=25,lambda=50)
fit$d
pmax(svd(x)$d-50,0)
now create a sparse matrix and do the same
nnz=trunc(np*.3)
inz=sample(seq(np),nnz,replace=FALSE)
i=row(x)[inz]

https://hastie.su.domains/Papers/mazumder10a.pdf

svd.als 25

j=col(x)[inz]
x=rnorm(nnz)
xS=sparseMatrix(x=x,i=i,j=j)
fit2=svd.als(xS,rank=20,lambda=7)
fit2$d
pmax(svd(as.matrix(xS))$d-7,0)

Index

∗ array
biScale, 2
deBias, 5
impute, 6
Incomplete, 7
lambda0, 9
softImpute, 12
svd.als, 23

∗ classes
Incomplete-class, 8
SparseplusLowRank-class, 18
splr, 19

∗ models
biScale, 2
deBias, 5
impute, 6
Incomplete, 7
lambda0, 9
softImpute, 12
splr, 19
svd.als, 23

∗ multivariate
biScale, 2
deBias, 5
impute, 6
Incomplete, 7
lambda0, 9
softImpute, 12
splr, 19
svd.als, 23

%*%,ANY,SparseplusLowRank-method
(SparseplusLowRank-class), 18

%*%,Matrix,SparseplusLowRank-method
(SparseplusLowRank-class), 18

%*%,SparseplusLowRank,ANY-method
(SparseplusLowRank-class), 18

%*%,SparseplusLowRank,Matrix-method
(SparseplusLowRank-class), 18

as.matrix,Incomplete-method

(Incomplete-class), 8
as.matrix,SparseplusLowRank-method

(SparseplusLowRank-class), 18

biScale, 2

clean.warm.start, 4
coerce,matrix,Incomplete-method

(Incomplete-class), 8
coerce,matrix-method (Incomplete), 7
coerce,sparseMatrix,Incomplete-method

(Incomplete-class), 8
colMeans,SparseplusLowRank-method

(SparseplusLowRank-class), 18
colSums,SparseplusLowRank-method

(SparseplusLowRank-class), 18
complete (impute), 6
complete,Incomplete-method (impute), 6
complete,matrix-method (impute), 6

deBias, 5
dim,SparseplusLowRank-method

(SparseplusLowRank-class), 18

impute, 6
Incomplete, 7
Incomplete-class, 8

lambda0, 9
lambda0,Incomplete-method (lambda0), 9
lambda0,sparseMatrix-method (lambda0), 9
lambda0,SparseplusLowRank-method

(lambda0), 9

norm,SparseplusLowRank,character-method
(SparseplusLowRank-class), 18

rowMeans,SparseplusLowRank-method
(SparseplusLowRank-class), 18

rowSums,SparseplusLowRank-method
(SparseplusLowRank-class), 18

26

INDEX 27

simpute.als, 10
simpute.svd, 11
softImpute, 12
softImpute.x.Incomplete, 15
softImpute.x.matrix, 16
SparseplusLowRank-class, 18
splr, 19
Ssimpute.als, 20
Ssimpute.svd, 21
Ssvd.als, 22
svd.als, 23
svd.als,sparseMatrix-method (svd.als),

23
svd.als,SparseplusLowRank-method

(svd.als), 23

	biScale
	clean.warm.start
	deBias
	impute
	Incomplete
	Incomplete-class
	lambda0
	simpute.als
	simpute.svd
	softImpute
	softImpute.x.Incomplete
	softImpute.x.matrix
	SparseplusLowRank-class
	splr
	Ssimpute.als
	Ssimpute.svd
	Ssvd.als
	svd.als
	Index

