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scoringfunctions-package
Overview of the functions in the scoringfunctions package

Description

The scoringfunctions package implements consistent scoring (loss) functions and identification
functions

Details
The package functions are categorized into the following classes:
* 1. Scoring functions
* 1.1. Consistent scoring functions for one-dimensional functionals

* 1.2. Consistent scoring functions for two-dimensional functionals

* 1.3. Consistent scoring functions for multi-dimensional functionals

2. Realised (average) score functions

2.1 Realised (average) score functions for one-dimensional functionals

3. Skill score functions

3.1 Skill score functions for one-dimensional functionals

e 4. Identification functions

4.1. Identification functions for one-dimensional functionals

4.2. Identification functions for two-dimensional functionals
* 5. Functions for sample levels

* 6. Supporting functions

1. Scoring functions

1.1. Consistent scoring functions for one-dimensional functionals:
1.1.1. Consistent scoring functions for the mean

bregmani_sf: Bregman scoring function (type 1)

bregman2_sf: Bregman scoring function (type 2, Patton scoring function)
bregman3_sf: Bregman scoring function (type 3, QLIKE scoring function)
bregman4_sf: Bregman scoring function (type 4, Patton scoring function)
serr_sf: Squared error scoring function

1.1.2. Consistent scoring functions for expectiles

expectile_sf: Asymmetric piecewise quadratic scoring function (expectile scoring function,
expectile loss function)

1.1.3. Consistent scoring functions for the median
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aerr_sf: Absolute error scoring function

maelog_sf: MAE-LOG scoring function

maesd_sf: MAE-SD scoring function

1.1.4. Consistent scoring functions for quantiles

gpl1_sf: Generalized piecewise linear power scoring function (type 1)
gpl2_sf: Generalized piecewise linear power scoring function (type 2)

quantile_sf: Asymmetric piecewise linear scoring function (quantile scoring function, quantile
loss function)

1.1.5. Consistent scoring functions for Huber functionals

ghuber_sf: Generalized Huber scoring function

huber_sf: Huber scoring function

1.1.6. Consistent scoring functions for other functionals

aperr_sf: Absolute percentage error scoring function

bmedian_sf: -median scoring function

linex_sf: LINEX scoring function

lgmean_sf: L,-mean scoring function

lgquantile_sf: L,-quantile scoring function

nmoment_sf: n-th moment scoring function

obsweighted_sf: Observation-weighted scoring function

relerr_sf: Relative error scoring function (MAE-PROP scoring function)
serrexp_sf: Squared error exp scoring function

serrlog_sf: Squared error log scoring function

serrpower_sf: Squared error of power transformations scoring function
serrsq_sf: Squared error of squares scoring function

sperr_sf: Squared percentage error scoring function

srelerr_sf: Squared relative error scoring function

1.2. Consistent scoring functions for two-dimensional functionals:
interval_sf: Interval scoring function (Winkler scoring function)
mv_sf: Mean - variance scoring function

1.3. Consistent scoring functions for multi-dimensional functionals:
errorspread_sf: Error - spread scoring function

2. Realised (average) score functions

2.1. Realised (average) score functions for one-dimensional functionals:
2.1.1. Realised (average) score functions for the mean

mse: Mean squared error (MSE)

2.1.2. Realised (average) score functions for expectiles

expectile_rs: Realised expectile score

2.1.3. Realised (average) score functions for the median

mae: Mean absolute error (MAE)

2.1.4. Realised (average) score functions for quantiles
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quantile_rs: Realised quantile score

2.1.5. Realised (average) score functions for Huber functionals
huber_rs: Mean Huber score

2.1.6. Realised (average) score functions for other functionals
mape: Mean absolute percentage error (MAPE)

mre: Mean relative error (MRE)

mspe: Mean squared percentage error (MSPE)

msre: Mean squared relative error (MSRE)

3. SKkill score functions

3.1. Skill score functions for one-dimensional functionals:
3.1.1. Skill score functions for the mean
nse: Nash-Sutcliffe efficiency (NSE)

4. Identification functions

4.1. Identification functions for one-dimensional functionals:
expectile_if: Expectile identification function
hubermean_if: Huber mean identification function
huberquantile_if: Huber quantile identification function
mean_if: Mean identification function

meanlog_if: Log-transformed identification function
nmoment_if: n-th moment identification function

quantile_if: Quantile identification function

4.2. Identification functions for two-dimensional functionals:

mv_if: Mean - variance identification function

5. Functions for sample levels

quantile_level: Sample quantile level function

6. Supporting functions

capping_function: Capping function
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aerr_sf Absolute error scoring function

Description

The function aerr_sf computes the absolute error scoring function when y materialises and x is the
predictive median functional.

The absolute error scoring function is defined in Table 1 in Gneiting (2011).

Usage

aerr_sf(x, y)

Arguments
X Predictive median functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The absolute error scoring function is defined by:

S(x,y) = |z —yl

Domain of function:

r€eR

y€eR

Range of function:

S(xz,y) >0,Vz,y € R

Value

Vector of absolute errors.
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Note

For details on the absolute error scoring function, see Gneiting (2011).
The median functional is the median of the probability distribution I of y (Gneiting 2011).
The absolute error scoring function is negatively oriented (i.e. the smaller, the better).

The absolute error scoring function is strictly F-consistent for the median functional. [ is the family
of probability distributions F' for which Er[Y] exists and is finite (Raiffa and Schlaifer 1961, p.196;
Ferguson 1967, p.51; Thomson 1979; Saerens 2000; Gneiting 2011).

References

Ferguson TS (1967) Mathematical Statistics: A Decision-Theoretic Approach. Academic Press,
New York.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Raiffa H,Schlaifer R (1961) Applied Statistical Decision Theory. Colonial Press, Clinton.

Saerens M (2000) Building cost functions minimizing to some summary statistics. IEEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.

Examples

# Compute the absolute error scoring function.
df <- data.frame(
y = rep(x = 0, times = 5),
X = -2:2
)
df$absolute_error <- aerr_sf(x = df$x, y = df$y)

print(df)

aperr_sf Absolute percentage error scoring function

Description

The function aperr_sf computes the absolute percentage error scoring function when y materialises
and z is the predictive med~Y (F') functional.

The absolute percentage error scoring function is defined in Table 1 in Gneiting (2011).

Usage

aperr_sf(x, y)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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Arguments
X Predictive med(™%) (F) functional (prediction). It can be a vector of length n
(must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The absolute percentage error scoring function is defined by:

S(z,y) = [(z —y)/yl

Domain of function:

x>0

y>0

Range of function:
S(z,y) > 0,Vx,y >0

Value

Vector of absolute percentage errors.

Note

For details on the absolute percentage error scoring function, see Gneiting (2011).

The S-median functional, med® (F) is the median of a probability distribution whose density is
proportional to 32 f (), where f is the density of the probability distribution F' of y (Gneiting 2011).

The absolute percentage error scoring function is negatively oriented (i.e. the smaller, the better).

The absolute percentage error scoring function is strictly F(*)-consistent for the med(—Y (F) func-
tional. F is the family of probability distributions for which Ex[Y] exists and is finite. F(*) is the
subclass of probability distributions in I, which are such that w(y) f(y), w(y) = 1/y has finite
integral over (0, cc), and the probability distribution F(*") with density proportional to w(y) f(y)
belongs to IF (see Theorems 5 and 9 in Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.


https://doi.org/10.1198/jasa.2011.r10138
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Examples

# Compute the absolute percentage error scoring function.
df <- data.frame(

y = rep(x = 2, times = 3),

x =1:3
)

df$absolute_percentage_error <- aperr_sf(x = df$x, y = df$y)

print(df)

bmedian_sf B-median scoring function

Description

The function bmedian_sf computes the S-median scoring function when y materialises and « is the
predictive med® (F) functional.

The 5-median scoring function is defined in eq. (4) in Gneiting (2011).

Usage
bmedian_sf(x, y, b)

Arguments
X Predictive med(ﬂ)(F) functional (prediction). It can be a vector of length n
(must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
b It can be a vector of length n (must have the same length as ).
Details

The B-median scoring function is defined by:

S(z,y,b) =1~ (y/x)"|

Domain of function:

x>0

y>0
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b0

Range of function:
S(x,y,b) > 0,Vz,y >0,b#0

Value

Vector of S-median losses.

Note

For details on the $-median scoring function, see Gneiting (2011).

The S-median functional, med® (F) is the median of a probability distribution whose density is
proportional to 32 f (), where f is the density of the probability distribution F' of y (Gneiting 2011).

The 5-median scoring function is negatively oriented (i.e. the smaller, the better).

The (-median scoring function is strictly F(*)-consistent for the med” )(F) functional. T is the
family of probability distributions for which Ex[Y] exists and is finite. F(*) is the subclass of
probability distributions in I, which are such that w(y) f(y), w(y) = y” has finite integral over
(0, 00), and the probability distribution F(*) with density proportional to w(y) f(y) belongs to F
(see Theorems 5 and 9 in Gneiting 2011)

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the bmedian scoring function.

df <- data.frame(

y = rep(x = 2, times = 3),
x = 1:3,
b =c(-1, 1, 2)

)
df$bmedian_error <- bmedian_sf(x = df$x, y = df$y, b = df$b)

print(df)


https://doi.org/10.1198/jasa.2011.r10138
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bregmani_sf Bregman scoring function (type 1)

Description

The function bregman1_sf computes the Bregman scoring function when y materialises and x is the
predictive mean functional.

The Bregman scoring function is defined by eq. (18) in Gneiting (2011) and the form implemented
here for ¢(x) = |z|* is defined by eq. (19) in Gneiting (2011).

Usage

bregmani_sf(x, y, a)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as ).
a It can be a vector of length n (must have the same length as ).
Details

The Bregman scoring function (type 1) is defined by:

a—l(

S(x,y,a) = [y|* — ||* — asign(z)|z[*"(y — =)

Domain of function:

rzeR

yeR

a>1
Range of function:

S(z,y,a) > 0,Vz,y € Rya > 1

Value

Vector of Bregman losses.
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Note
The implemented function is denoted as type 1 since it corresponds to a specific type of ¢(z) of the
general form of the Bregman scoring function defined by eq. (18) in Gneiting (2011).

For details on the Bregman scoring function, see Savage (1971), Banerjee et al. (2005) and Gneiting
(2011).

The mean functional is the mean Ex[Y] of the probability distribution F' of y (Gneiting 2011).
The Bregman scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented Bregman scoring function is strictly F-consistent for the mean functional.
IF is the family of probability distributions for which Er[Y] and Er[|Y'|%] exist and are finite (Savage
1971; Gneiting 2011).

References

Banerjee A, Guo X, Wang H (2005) On the optimality of conditional expectation as a Bregman pre-
dictor. IEEE Transactions on Information Theory 51(7):2664-2669. doi:10.1109/TIT.2005.850145.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.

Examples

# Compute the Bregman scoring function (type 1).

df <- data.frame(
y = rep(x = 0, times = 7)
x =c(-3, -2, -1, 0, 1, 2, 3),
a =rep(x = 3, times = 7)

~

)
df$bregmani_penalty <- bregmani_sf(x = df$x, y = df$y, a = df$a)
print(df)

# Equivalence of Bregman scoring function (type 1) and squared error scoring
# function, when a = 2.

set.seed(12345)

n <- 100

X <= runif(n, -20, 20)

y <= runif(n, -20, 20)

a <- rep(x = 2, times = n)

u <- bregmani_sf(x = x, y =y, a = a)

v <- serr_sf(x = x, y =y)


https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1080/01621459.1971.10482346
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max(abs(u - v)) # values are slightly higher than @ due to rounding error
min(abs(u - v))

bregman2_sf Bregman scoring function (type 2, Patton scoring function)

Description

The function bregman2_sf computes the Bregman scoring function when y materialises and x is the
predictive mean functional.

The Bregman scoring function is defined by eq. (18) in Gneiting (2011) and the form implemented
here for ¢(z) = 2, b € R\ {0, 1} is defined by eq. (20) in Gneiting (2011).

b(b—1)

Usage
bregman2_sf(x, y, b)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
\% Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
b It can be a vector of length n (must have the same length as ).
Details

The Bregman scoring function (type 2) is defined by:

1
b(b—1)

1

S(l‘,y,b) = (yb - xb) -

Domain of function:

x>0

y>0

beR\{0,1}

Range of function:

S(z,y,b) > 0,Vz,y >0,b € R\ {0,1}
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Value

Vector of Bregman losses.

Note
The implemented function is denoted as type 2 since it corresponds to a specific type of ¢(x) of the
general form of the Bregman scoring function defined by eq. (18) in Gneiting (2011).
For details on the Bregman scoring function, see Savage (1971), Banerjee et al. (2005) and Gneiting
(2011). For details on the specific form implemented here, see Patton (2011).
The mean functional is the mean E[Y] of the probability distribution F of y (Gneiting 2011).
The Bregman scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented Bregman scoring function is strictly F-consistent for the mean functional.
1

b(b—1)

IF is the family of probability distributions F' for which Ex[Y] and Ep| Y] exist and are

finite (Savage 1971; Gneiting 2011).

References

Banerjee A, Guo X, Wang H (2005) On the optimality of conditional expectation as a Bregman pre-
dictor. IEEE Transactions on Information Theory 51(7):2664-2669. doi:10.1109/TIT.2005.850145.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.

Examples

# Compute the Bregman scoring function (type 2).

df <- data.frame(

y = rep(x = 2, times = 6),

X = rep(x = 1:3, times = 2),

b = rep(x = c(-3, 3), each = 3)
)

df$bregman2_penalty <- bregman2_sf(x = df$x, y = df$y, b = df$b)
print(df)

# The Bregman scoring function (type 2) is half the squared error scoring
# function, when b = 2.

df <- data.frame(
y = rep(x = 5.5, times = 10),
x = 1:10,
b = rep(x = 2, times = 10)


https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1080/01621459.1971.10482346

bregman3_sf 15

)
df$bregman2_penalty <- bregman2_sf(x = df$x, y = df$y, b = df$b)
df$squared_error <- serr_sf(x = df$x, y = dfsy)
df$ratio <- df$bregman2_penalty/df$squared_error
print(df)
# When a = b > 1 the Bregman scoring function (type 2) coincides with the
# Bregman scoring function (type 1) up to a multiplicative constant.
df <- data.frame(
y = rep(x = 5.5, times = 10),

x = 1:10,
b = rep(x = c(3, 4), each = 5)

)

df$bregman2_penalty <- bregman2_sf(x = df$x, y = df$y, b = df$b)

df$bregmani_penalty <- bregmani_sf(x = df$x, y = df$y, a = df$b)
df$ratio <- df$bregman2_penalty/df$bregmani_penalty
print(df)
bregman3_sf Bregman scoring function (type 3, QLIKE scoring function)
Description

The function bregman3_sf computes the Bregman scoring function when y materialises and z is the
predictive mean functional.

The Bregman scoring function is defined by eq. (18) in Gneiting (2011) and the form implemented
here for ¢(z) = — log(z) is defined by eq. (20) in Gneiting (2011).

Usage
bregman3_sf(x, y)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the

same length as ).
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Details

The Bregman scoring function (type 3) is defined by:

S(z,y) = (y/x) —log(y/z) — 1

Domain of function:

x>0

y>0

Range of function:

S(z,y) > 0,Vx,y >0

Value

Vector of Bregman losses.

Note

The implemented function is denoted as type 3 since it corresponds to a specific type of ¢(x) of the
general form of the Bregman scoring function defined by eq. (18) in Gneiting (2011).

For details on the Bregman scoring function, see Savage (1971), Banerjee et al. (2005) and Gneiting
(2011). For details on the specific form implemented here, see the QLIKE scoring function in Patton
(2011).

The mean functional is the mean Er[Y] of the probability distribution F' of y (Gneiting 2011).
The Bregman scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented Bregman scoring function is strictly F-consistent for the mean functional.
F is the family of probability distributions F' for which Ex[Y] and Er[log(Y")] exist and are finite
(Savage 1971; Gneiting 2011).

References

Banerjee A, Guo X, Wang H (2005) On the optimality of conditional expectation as a Bregman pre-
dictor. IEEE Transactions on Information Theory 51(7):2664-2669. doi:10.1109/TIT.2005.850145.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.


https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1080/01621459.1971.10482346
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Examples

# Compute the Bregman scoring function (type 3, QLIKE scoring function).
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$bregman3_penalty <- bregman3_sf(x = df$x, y = dfsy)

print(df)

bregman4_sf Bregman scoring function (type 4, Patton scoring function)

Description

The function bregman4_sf computes the Bregman scoring function when y materialises and x is the
predictive mean functional.

The Bregman scoring function is defined by eq. (18) in Gneiting (2011) and the form implemented
here for ¢(z) = xlog(z) is defined by eq. (20) in Gneiting (2011).

Usage

bregmand_sf(x, y)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The Bregman scoring function (type 4) is defined by:

S(z,y) == ylog(y/x) —y+ =z

Domain of function:

x>0

y>0

Range of function:

S(z,y) > 0,Vx,y >0
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Value

Vector of Bregman losses.

Note

The implemented function is denoted as type 4 since it corresponds to a specific type of ¢(z) of the
general form of the Bregman scoring function defined by eq. (18) in Gneiting (2011).

For details on the Bregman scoring function, see Savage (1971), Banerjee et al. (2005) and Gneiting
(2011). For details on the specific form implemented here, see Patton (2011).

The mean functional is the mean E[Y] of the probability distribution F of y (Gneiting 2011).
The Bregman scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented Bregman scoring function is strictly F-consistent for the mean functional.
IF is the family of probability distributions F' for which Er[Y] and Er[Y log(Y")] exist and are finite
(Savage 1971; Gneiting 2011).

References

Banerjee A, Guo X, Wang H (2005) On the optimality of conditional expectation as a Bregman pre-
dictor. IEEE Transactions on Information Theory 51(7):2664-2669. doi:10.1109/TIT.2005.850145.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.

Examples
# Compute the Bregman scoring function (type 4).
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$bregman4_penalty <- bregman4_sf(x = df$x, y = df$y)

print(df)


https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1080/01621459.1971.10482346
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capping_function Capping function

Description

The function capping_function computes the value of the capping function, defined in Taggart
(2022), p.205.

It is used by the generalized Huber loss function among others (see Taggart 2022).

Usage

capping_function(t, a, b)

Arguments
t It can be a vector of length n.
a It can be a vector of length n (must have the same length as ).
b It can be a vector of length n (must have the same length as 7).
Details

The capping function k, ;(t) is defined by:
Kap(t) := max{min{t, b}, —a}
or equivalently,
—a, t<—a
Kap(t) == t, —a<t<b

t>b

Domain of function:

teR

Value

Vector of values of the capping function.
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Note

For the definition of the capping function, see Taggart (2022), p.205.

References

Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic
Journal of Statistics 16:201-231. doi:10.1214/21EJS1957.

Examples

# Compute the capping function.

df <- data.frame(
t=c@, 1,1, -1, 1, -1, 1, -1, 1, 1,
a =c(0, 9, 9, 9, Inf, Inf, Inf, Inf, 2,
b = c(0, 0, Inf, Inf, @, @, Inf, Inf, 3

2.5, 2.5, 3.5, 3.5),
3! 2! 3)7
2,3, 2

37 2!
’ 27 3

’ ’

)
df$cf <- capping_function(t = df$t, a = df$a, b = dfsb)

print(df)

errorspread_sf Error - spread scoring function

Description

The function errorspread_sf computes the error - spread scoring function, when y materialises, 1
is the predictive mean, x» is the predictive variance and x3 is the predictive skewness.

The error - spread scoring function is defined by eq. (14) in Christensen et al. (2015).

Usage

errorspread_sf(x1, x2, x3, y)

Arguments

x1 Predictive mean (prediction). It can be a vector of length n (must have the same
length as y).

X2 Predictive variance (prediction). It can be a vector of length n (must have the
same length as y).

x3 Predictive skewness (prediction). It can be a vector of length n (must have the
same length as y).

y Realisation (true value) of process. It can be a vector of length n (must have the

same length as 7).


https://doi.org/10.1214/21-EJS1957

errorspread_st 21

Details

The error - spread scoring function is defined by:

1/2

S(l’l,I'Q,SU:g,y) = (x2 - (‘Tl - y)2 - (gjl - y)xZ 112'3)2

Domain of function:

r1 €R
zo >0
r3 € R

yeR

Value

Vector of error - spread losses.

Note

The mean functional is the mean Er[Y] of the probability distribution F' of y (Christensen et al.
2015).

The variance functional is the variance Varz[Y] := Er[Y?] — (Er[Y])? of the probability distribu-
tion F' of y (Christensen et al. 2015).

The skewness functional is the skewness Sk [Y] := Ep[((Y — Ep[Y])/(Varg[Y])/2)?] (Chris-
tensen et al. 2015).

The error - spread scoring function is negatively oriented (i.e. the smaller, the better).

The error - spread scoring function is strictly consistent for the triple (mean, variance, skewness)
functional (Christensen et al. 2015).

References

Christensen HM, Moroz IM, Palmer TN (2015) Evaluation of ensemble forecast uncertainty using
a new proper score: Application to medium-range and seasonal forecasts. Quarterly Journal of the
Royal Meteorological Society 141(687)(Part B):538-549. doi:10.1002/qj.2375.

Examples

# Compute the error - spread scoring function.

df <- data.frame(
y = rep(x = 0, times = 6),
x1 =c(2, 2, -2, -2, 0, 0),
x2 =c(1, 2,1, 2,1, 2),


https://doi.org/10.1002/qj.2375
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x3 = ¢c(3, 3, -3, -3, 0, 0)

)
df$errorspread_penalty <- errorspread_sf(x1 = df$x1, x2 = df$x2, x3 = df$x3,
y = dfs$y)
print(df)
expectile_if Expectile identification function
Description

The function expectile_if computes the expectile identification function at a specific level p, when
y materialises and x is the predictive expectile at level p.

The expectile identification function is defined in Table 9 in Gneiting (2011).

Usage

expectile_if(x, y, p)

Arguments
X Predictive expectile (prediction) at level p. It can be a vector of length n (must
have the same length as ).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as y).
Details

The expectile identification function is defined by:

V(z,y,p) :=2{z >y} —pl(z —y)

Domain of function:
rzeR
yeR

0<p<l1

Range of function:

V(z,y,p) €R
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Value

Vector of values of the expectile identification function.

Note

For the definition of expectiles, see Newey and Powell (1987).

The expectile identification function is a strict F-identification function for the p-expectile func-
tional (Gneiting 2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).

FF is the family of probability distributions F' for which Er[Y] exists and is finite (Gneiting 2011;
Fissler and Ziegel 2016; Dimitriadis et al. 2024).

References

Dimitriadis T, Fissler T, Ziegel JF (2024) Osband’s principle for identification functions. Statistical
Papers 65:1125-1132. doi:10.1007/s0036202301428x.

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics
44(4):1680-1707. doi:10.1214/16 A0S 1439.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica
55(4):819-847. doi:10.2307/1911031.

Examples

# Compute the expectile identification function.

df <- data.frame(

y = rep(x = 0, times = 6),
X = C(Zl 2! _27 _2? 07 0)!
p = rep(x = c(0.05, ©0.95), times = 3)

)

df$expectile_if <- expectile_if(x = df$x, y = dfs$y, p = df$p)

expectile_rs Realised expectile score

Description

The function expectile_rs computes the realised expectile score at a specific level p when y materi-
alises and x is the prediction.

Realised expectile score is a realised score corresponding to the expectile scoring function expec-
tile_sf.

Usage

expectile_rs(x, y, p)


https://doi.org/10.1007/s00362-023-01428-x
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1911031
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Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as y) or a scalar value.
Details

The realized expectile score is defined by:

n

S(ey.p) = (1/n) Y Lwi,y:.p)

i=1
where
x=(21,..,2,)"
y = (yla "'7yn)T
and

L(z,y,p) == [l{z >y} — p|(z — y)*

Domain of function:

x cR"
yeR”

O0<p<l1

Range of function:
S(x,y,p) = 0,Vx,y € R",p € (0,1)

Value

Value of the realised expectile score.

Note

For details on the expectile scoring function, see expectile_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The realised expectile score is the realised (average) score corresponding to the expectile scoring
function.
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References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166-1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the realised expectile score.
set.seed(12345)
x <- 0.5

y <= rnorm(n = 100, mean = @, sd = 1)

print(expectile_rs(x = x, y =y, p = 0.7))

print(expectile_rs(x = rep(x = x, times = 100), y =y, p =0.7))

expectile_sf Asymmetric piecewise quadratic scoring function (expectile scoring
function, expectile loss function)

Description

The function expectile_sf computes the asymmetric piecewise quadratic scoring function (expectile
scoring function) at a specific level p, when y materialises and x is the predictive expectile at level
D.

The asymmetric piecewise quadratic scoring function is defined by eq. (27) in Gneiting (2011).

Usage

expectile_sf(x, y, p)

Arguments
X Predictive expectile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the

same length as ).

p It can be a vector of length n (must have the same length as ).


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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Details

The asymmetric piecewise quadratic scoring function is defined by:

S(z,y,p) = |z >y} — pl(x — y)*

or equivalently,

S(x,y,p) := p(max{—(z —y),0})* + (1 — p)(max{z — y,0})

Domain of function:

r eR

yeR

O0<p<l1

Range of function:
S(z,y,p) > 0,Vz,y € R,p € (0,1)

Value

Vector of expectile losses.

Note

For the definition of expectiles, see Newey and Powell (1987).

The asymmetric piecewise quadratic scoring function is negatively oriented (i.e. the smaller, the
better).

The asymmetric piecewise quadratic scoring function is strictly F-consistent for the p-expectile
functional. T is the family of probability distributions F for which Er[Y?] exists and is finite
(Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica
55(4):819-847. doi:10.2307/1911031.


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1911031
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Examples

# Compute the asymmetric piecewise quadratic scoring function (expectile scoring
# function).

df <- data.frame(
y = rep(x = 0, times = 6),
x =c¢c(2, 2, -2, -2, 0, 0),
p = rep(x = c(0.05, ©0.95), times = 3)

)
df$expectile_penalty <- expectile_sf(x = df$x, y = df$y, p = df$p)
print(df)

# The asymmetric piecewise quadratic scoring function (expectile scoring
# function) at level p = 0.5 is half the squared error scoring function.

df <- data.frame(
y = rep(x = 0, times = 3),
x = c(-2, 0, 2),
p rep(x = c(@0.5), times = 3)

)
df$expectile_penalty <- expectile_sf(x = df$x, y = df$y, p = df$p)
df$squared_error <- serr_sf(x = df$x, y = df$y)

print(df)

ghuber_sf Generalized Huber scoring function

Description

The function ghuber_sf computes the generalized Huber scoring function at a specific level p and
parameters a and b, when y materialises and x is the predictive Huber functional at level p.

The generalized Huber scoring function is defined by eq. (4.7) in Taggart (2022) for ¢(t) = t2.

Usage
ghuber_sf(x, y, p, a, b)

Arguments
X Predictive Huber functional (prediction) at level p. It can be a vector of length
n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the

same length as ).
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p It can be a vector of length n (must have the same length as ).
It can be a vector of length n (must have the same length as y).

b It can be a vector of length n (must have the same length as ).

Details

The generalized Huber scoring function is defined by:

S(x,y,p,a,b) ==z >y} — pl(¥* = (Kap(z — y) +4)> + 22Ka4(z — y))

or equivalently

S(x7y>p7a7b) = |1{3§‘ 2 y} _p|fa,b(x - y)

or

S(2,y,p;a,b) := pfap(—max{—(z —y),0}) + (1 = p) fap(max{z — y,0})

where

Jap(t) = Rap(t)(2t = Kap(1))

and k, p(t) is the capping function defined by:

Ka,b(t) := max{min{¢, b}, —a}

Domain of function:

zeR

yeR
0<p<l1

a>0

b>0

Range of function:
S(z,y,p,a,b) > 0,Ve,y € R,p € (0,1),a,b>0

Value

Vector of generalized Huber losses.
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Note

For the definition of Huber functionals, see definition 3.3 in Taggart (2022). The value of eq. (4.7)
is twice the value of the equation in definition 4.2 in Taggart (2002).

The generalized Huber scoring function is negatively oriented (i.e. the smaller, the better).

The generalized Huber scoring function is strictly F-consistent for the p-Huber functional. F is the
family of probability distributions F' for which Ex[Y? — (Y — a)?] and Ef[Y? — (Y + b)?] (or
equivalently Ex[Y]) exist and are finite (Taggart 2022).

References

Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic
Journal of Statistics 16:201-231. doi:10.1214/21EJS1957.

Examples

# Compute the generalized Huber scoring function.
set.seed(12345)
n<-10

df <- data.frame(

= runif(n, -2, 2),
= runif(n, -2, 2),
runif(n, o, 1),
= runif(n, 0, 1),
= runif(n, 0, 1)

T 00 T <K X
1

)
df$ghuber_penalty <- ghuber_sf(x = df$x, y = df$y, p = df$p, a = df$a, b = df$b)
print(df)
# Equivalence of the generalized Huber scoring function and the asymmetric
# piecewise quadratic scoring function (expectile scoring function), when
# a = Inf and b = Inf.
set.seed(12345)
n <- 100

<- runif(n, -20, 20)

<- runif(n, -20, 20)
runif(n, 0, 1)

<- rep(x = Inf, times = n)
<- rep(x = Inf, times = n)

T O T <K X
N
1

[

<- ghuber_sf(x = x, y =y, p=p, a=a, b="0)
v <- expectile_sf(x = x, y =y, p = p)

max(abs(u - v)) # values are slightly higher than @ due to rounding error


https://doi.org/10.1214/21-EJS1957
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min(abs(u - v))

# Equivalence of the generalized Huber scoring function and the Huber scoring

# function when p = 1/2 and a = b.

set.seed(12345)

O T <K X

u

100

runif(n, -20, 20)
runif(n, -20, 20)
rep(x = 1/2, times = n)
runif(n, 0, 20)

ghuber_sf(x = x, y =y, p=p, a=a, b=a)

v <- huber_sf(x = x, y =y, a = a)

max(abs(u - v)) # values are slightly higher than @ due to rounding error

min(abs(u - v))

gpll_sf

gpli_sf

Generalized piecewise linear power scoring function (type 1)

Description

The function gpll_sf computes the generalized piecewise linear power scoring function at a specific
level p for g(z) = x%/|b|, b > 0, when y materialises and z is the predictive quantile at level p.

The generalized piecewise linear power scoring function is defined by eq. (25) in Gneiting (2011)
and the form implemented here for the specific g(x) is defined by eq. (26) in Gneiting (2011).

Usage

gpli_sf(x, y, p, b)

Predictive quantile (prediction) at level p. It can be a vector of length n (must

Realisation (true value) of process. It can be a vector of length n (must have the

It can be a vector of length n (must have the same length as ).

Arguments
X
have the same length as y).
y
same length as x).
p
b

It can be a vector of length n (must have the same length as ).
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Details

The generalized piecewise linear power scoring function (type 1) is defined by:

S(z,y,p,b) == (1/p))(1{z > y} — p)(z* — 3"

or equivalently

S(x,y,p,b) := (1/]b]) (p| max{—(z" — y°),0}| + (1 — p)| max{z” — y*,0}))

Domain of function:

x>0

y>0

O0<p<l1

b>0

Range of function:
S(z,y,p,b) > 0,Yz,y > 0,p€ (0,1),6 >0

Value

Vector of generalized piecewise linear power losses.

Note

The implemented function is denoted as type 1 since it corresponds to a specific type of g(x) of
the general form of the generalized piecewise linear power scoring function defined by eq. (25) in
Gneiting (2011).

For the definition of quantiles, see Koenker and Bassett Jr (1978).
The generalized piecewise linear scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented generalized piecewise linear power scoring function is strictly [F-consistent
for the p-quantile functional. I is the family of probability distributions F' for which Ex[Y"?] exists
and is finite (Thomson 1979; Saerens 2000; Gneiting 2011).
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References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33-50. doi:10.2307/
1913643.

Saerens M (2000) Building cost functions minimizing to some summary statistics. /EEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.

Examples

# Compute the generalized piecewise linear scoring function (type 1).

df <- data.frame(
y = rep(x = 2, times = 6),
x=c(, 2, 3,1, 2, 3),
p = c(rep(x = 0.05, times = 3), rep(x = 0.95, times = 3)),
b = rep(x = 2, times = 6)

)
df$gpll_penalty <- gpli_sf(x = df$x, y = df$y, p = df$p, b = dfsb)
print(df)
# Equivalence of generalized piecewise linear scoring function (type 1) and
# asymmetric piecewise linear scoring function (quantile scoring function), when
#b=1.
set.seed(12345)
n <- 100
<- runif(n, 0, 20)
<- runif(n, 0, 20)

runif(n, o, 1)
<- rep(x =1, times

T T < X
N
I

n)

u<-gpli_sf(x =x, y=y, p=p, b=>b)
v <- quantile_sf(x = x, y =y, p = p)

max (abs(u - v))

# Equivalence of generalized piecewise linear scoring function (type 1) and
# MAE-SD scoring function, when p = 1/2 and b = 1/2.

set.seed(12345)

n <- 100


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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<- runif(n, 0, 20)
<- runif(n, 0, 20)
rep(x = 0.5, times = n)
<- rep(x = 1/2, times = n)

T T < X
AN
|

u<-gpli_sf(x=x, y=y, p=p, b=>b)
v <- maesd_sf(x = x, y = y)

max(abs(u - v))

gpl2_sf Generalized piecewise linear power scoring function (type 2)

Description

The function gpl2_sf computes the generalized piecewise linea power scoring function at a specific
level p for g(x) = log(x), when y materialises and x is the predictive quantile at level p.

The generalized piecewise linear power scoring function is negatively oriented (i.e. the smaller, the
better).

The generalized piecewise linear scoring function is defined by eq. (25) in Gneiting (2011) and the
form implemented here for the specific g(z) is defined by eq. (26) in Gneiting (2011) for b = 0.

Usage

gpl2_sf(x, y, p)

Arguments
X Predictive quantile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as y).
Details

The generalized piecewise linear power scoring function (type 2) is defined by:

S(x,y,p) == (H{z >y} — p)log(z/y)

or equivalently

S(z,y,p) := plmax{—(log(z) — log(y)), 0}| + (1 — p)| max{log(z) — log(y),0}|

Domain of function:
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x>0

y>0

O<p<l1

Range of function:
S(z,y,p) 2 0,Vz,y > 0,p € (0,1)

Value

Vector of generalized piecewise linear losses.

Note

The implemented function is denoted as type 2 since it corresponds to a specific type of g(x) of
the general form of the generalized piecewise linear power scoring function defined by eq. (25) in
Gneiting (2011).

For the definition of quantiles, see Koenker and Bassett Jr (1978).

The herein implemented generalized piecewise linear power scoring function is strictly F-consistent
for the p-quantile functional. F is the family of probability distributions F' for which Ex[log(Y")]
exists and is finite (Thomson 1979; Saerens 2000; Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33-50. doi:10.2307/
1913643.

Saerens M (2000) Building cost functions minimizing to some summary statistics. IEEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.

Examples

# Compute the generalized piecewise linear scoring function (type 2).

df <- data.frame(
y = rep(x = 2, times = 6),
x =c(1, 2,3, 1,2, 3),
p = c(rep(x = 0.05, times = 3), rep(x = 0.95, times = 3))

)

df$gpl2_penalty <- gpl2_sf(x = df$x, y = dfs$y, p = df$p)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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print(df)

# The generalized piecewise linear scoring function (type 2) is half the MAE-LOG
# scoring function.

df <- data.frame(
y = rep(x = 5.5, times = 10),
x = 1:10,
p rep(x = 0.5, times = 10)

)

df$gpl2_penalty <- gpl2_sf(x = df$x, y = df$y, p = df$p)
df$mae_log_penalty <- maelog_sf(x = df$x, y = dfsy)
df$ratio <- df$gpl2_penalty/df$mae_log_penalty

print(df)

hubermean_if Huber mean identification function

Description

The function hubermean_if computes the Huber mean identification function with parameter a,
when y materialises and z is the predictive Huber mean.

The Huber mean identification function is defined by eq. (3.5) in Taggart (2022).

Usage

hubermean_if(x, y, a)

Arguments
X Predictive Huber mean (prediction). It can be a vector of length n (must have
the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
a It can be a vector of length n (must have the same length as ).
Details

The Huber mean identification function is defined by:

V(x’ya a’) = (1/2)/€a7a($ - y)

where K, p(t) is the capping function defined by:
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Kab(t) := max{min{t, b}, —a}

Domain of function:

r eR

yeR

a>0

Value

Vector of values of the Huber mean identification function.

Note

For the definition of Huber mean, see Taggart (2022).

The Huber mean identification function is a strict F-identification function for the Huber mean
functional (Taggart 2022).

IF is the family of probability distributions F' for which for which Er[Y] exists and is finite (Taggart
2022).

References

Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic
Journal of Statistics 16:201-231. doi:10.1214/21EJS1957.

Examples

# Compute the Huber mean identification function.

df <- data.frame(

x = c(-3, -2, -1, 0, 1, 2, 3),
y = C(e’ e’ @, 0’ 0! 0’ 0)’
a=c(2.7, 2.5, 0.6, 0.7, 0.9, 1.2, 5)

)
df$hubermean_if <- hubermean_if(x = df$x, y = df$y, a = dfs$a)

print(df)


https://doi.org/10.1214/21-EJS1957
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huberquantile_if Huber quantile identification function

Description

The function huberquantile_if computes the Huber quantile identification function at a specific level
p and parameters a and b, when y materialises and x is the predictive Huber functional at level p.

The Huber quantile identification function is defined by eq. (3.5) in Taggart (2022).

Usage
huberquantile_if(x, y, p, a, b)

Arguments
X Predictive Huber functional (prediction) at level p. It can be a vector of length
n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as ).
It can be a vector of length n (must have the same length as ).
It can be a vector of length n (must have the same length as y).
It can be a vector of length n (must have the same length as ).
Details

The Huber quantile identification function is defined by:

V(z,y,a) == 1{z >y} — plkap(z —y)

where K, p(t) is the capping function defined by:

Kap(t) := max{min{t, b}, —a}

Domain of function:

r €R

yeR

0<p<l1

a>0

b>0
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Value

Vector of values of the Huber quantile identification function.

Note

For the definition of Huber quantile, see Taggart (2022).

The Huber quantile identification function is a strict F-identification function for the Huber quantile
functional (Taggart 2022).

FF is the family of probability distributions F’ for which for which Er[Y] exists and is finite (Taggart
2022).

References

Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic
Journal of Statistics 16:201-231. doi:10.1214/21EJS1957.

Examples

# Compute the Huber quantile identification function.
set.seed(12345)
n<-10

df <- data.frame(

x = runif(n, -2, 2),
y = runif(n, -2, 2),
p = runif(n, 0, 1),
a = runif(n, 0, 1),
b = runif(n, 0, 1)

)

df$huberquantile_if <- huberquantile_if(x = df$x, y = df$y, p = df$p, a = df$a,
b = df$b)

print(df)

huber_rs Mean Huber score
Description

The function huber_rs computes the mean Huber score with parameter a, when y materialises and
x is the prediction.

Mean Huber score is a realised score corresponding to the Huber scoring function huber_sf.


https://doi.org/10.1214/21-EJS1957
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Usage

huber_rs(x, y, a)

Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
a It can be a vector of length n (must have the same length as y) or a scalar.
Details

The mean Huber score is defined by:

n

S(x7y7 a) = (1/’1’L) ZL(xiayha)

=1
where
X = (-7517 >$n)T
y =1 yn)’
and
1 2
5@ =9 |z —y[ <a
L(:my,a) = 1
alr —y| - 5a*, |e—y|>a
Domain of function:
x cR"
yeR”
a>0

Range of function:

S(x,y,a) > 0,¥x,y e R",a >0

Value

Value of the mean Huber score.
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Note

For details on the Huber scoring function, see huber_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The mean Huber score is the realised (average) score corresponding to the Huber scoring function.

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166—1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples
# Compute the Huber mean score.
set.seed(12345)
a<-0.5
X <- 0
y <= rnorm(n = 100, mean = @, sd = 1)

print(huber_rs(x = x, y =y, a = a))

print(huber_rs(x = rep(x = x, times = 100), y =y, a = a))

huber_sf Huber scoring function

Description

The function huber_sf computes the Huber scoring function with parameter a, when y materialises
and z is the predictive Huber mean.

The Huber scoring function is defined in Huber (1964).

Usage
huber_sf(x, y, a)

Arguments
X Predictive Huber mean (prediction). It can be a vector of length n (must have
the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the

same length as x).

a It can be a vector of length n (must have the same length as y).


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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Details

The Huber scoring function is defined by:

1 2

—(x — , r—yl<a
S(%y’a): 2( Y) . | y‘

a|x—y|f§a2, |z —y| >a

or equivalently

S(z,y,a) = (1/2)ka,a(x — y)(2(z — y) — Ka,a(z — y))
where K, p(t) is the capping function defined by:
Ka,b(t) := max{min{¢, b}, —a}

Domain of function:

reR
yeR

a>0

Range of function:
S(z,y,a) > 0,Vz,y € R,a >0

Value

Vector of Huber losses.

Note
For the definition of Huber mean, see Taggart (2022).

The Huber scoring function is negatively oriented (i.e. the smaller, the better).

The Huber scoring function is strictly F-consistent for the Huber mean. F is the family of probability
distributions F for which Ep[Y? — (Y —a)?] and Ep[Y2 — (Y +a)?] (or equivalently Ep[Y]) exist
and are finite (Taggart 2022).

References

Huber PJ (1964) Robust estimation of a location parameter. Annals of Mathematical Statistics
35(1):73-101. doi:10.1214/a0oms/1177703732.

Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic
Journal of Statistics 16:201-231. doi:10.1214/21EJS1957.


https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/21-EJS1957
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Examples

# Compute the Huber scoring function.

df <- data.frame(
x =c(-3, -2, -1, 0, 1, 2, 3),
c(o, 0, 9, 0, 0, 0, @),
c(2.7, 2.5, 0.6, 0.7, 0.9, 1.2, 5)

L <
1l

)
df$huber_penalty <- huber_sf(x = df$x, y = df$y, a = df$a)

print(df)

interval_sf Interval scoring function (Winkler scoring function)

Description

The function interval_sf computes the interval scoring function (Winkler scoring function) when y
materialises and [x1, 23] is the central 1 — p prediction interval.

The interval scoring function is defined by eq. (43) in Gneiting and Raftery (2007).

Usage

interval_sf(x1, x2, y, p)

Arguments
X1 Predictive quantile (prediction) at level p/2. It can be a vector of length n (must
have the same length as y).
X2 Predictive quantile (prediction) at level 1 — p/2. It can be a vector of length n
(must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x1).
p It can be a vector of length n (must have the same length as ).
Details

The interval scoring function is defined by:

S(w1,22,y,p) := (22 — x1) + (2/p) (21 — y)Hy < z1} + (2/p)(y — 22)H{y > 22}

Domain of function:

r1 €R
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9 €R

r1 < T2

y€eR

O0<p<l1

Range of function:
S(x1,22,9,p) > 0,Vr1, 22,y € R, 21 < 22,p € (0,1)

Value

Vector of interval losses.

Note

For the definition of quantiles, see Koenker and Bassett Jr (1978).
The interval scoring function is negatively oriented (i.e. the smaller, the better).

The interval scoring function is strictly F-consistent for the central 1 — p prediction interval [z, z3].
21 and x5 are quantile functionals at levels p/2 and 1 — p/2 respectively.

IF is the family of probability distributions F' for which Er[Y] exists and is finite (Dunsmore 1968;
Winkler 1972; Gneiting and Raftery 2007; Winkler and Murphy 1979; Fissler and Ziegel 2016;
Brehmer and Gneiting 2021).

References

Brehmer JR, Gneiting T (2021) Scoring interval forecasts: Equal-tailed, shortest, and modal inter-
val. Bernoulli 27(3):1993-2010. doi:10.3150/20BEJ1298.

Dunsmore IR (1968) A Bayesian approach to calibration. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 30(2):396—405. doi:10.1111/j.25176161.1968.tb00740.x.

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics
44(4):1680-1707. doi:10.1214/16 A0S 14309.

Gneiting T, Raftery AE (2007) Strictly proper scoring rules, prediction, and estimation. Journal of
the American Statistical Association 102(477):359-378. doi:10.1198/016214506000001437.

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33-50. doi:10.2307/
1913643.

Winkler RL (1972) A decision-theoretic approach to interval estimation. Journal of the American
Statistical Association 67(337):187-191. doi:10.1080/01621459.1972.10481224.

Winkler RL, Murphy AH (1979) The use of probabilities in forecasts of maximum and minimum
temperatures.Meteorological Magazine 108(1288):317-329.


https://doi.org/10.3150/20-BEJ1298
https://doi.org/10.1111/j.2517-6161.1968.tb00740.x
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/016214506000001437
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1080/01621459.1972.10481224
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Examples

# Compute the interval scoring function (Winkler scoring function).

df <- data.frame(

y = rep(x = 0, times = 6),

x1 = ¢c(-3, -2, -1, 0, 1, 2),

x2 =c(1, 2, 3, 4, 5, 6),

p = rep(x = c(0.05, 0.95), times = 3)
)

df$interval_penalty <- interval_sf(x1 = df$x1, x2 = df$x2, y = df$y, p = df$p)

print(df)

linex_sf LINEX scoring function

Description

The function linex_sf computes the LINEX scoring function with parameter a when y materialises
and z is the predictive —(1/a)log Er[e~%Y] moment generating functional.

The LINEX scoring function is defined by Varian (1975).

Usage

linex_sf(x, y, a)

Arguments
X Predictive —(1/a)log Er[e~%Y] moment generating functional (prediction). It
can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
a It can be a vector of length n (must have the same length as ).
Details

The LINEX scoring function is defined by:

S(z,y,a) = et(x—y) _ alr —y)—1

Domain of function:

r€eR

y €R
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a#0

Range of function:

S(x,y,a) > 0,Vr,y € R,a#0

Value

Vector of LINEX losses.

Note

For details on the LINEX scoring function, see Varian (1975) and Zellner (1986).

The LINEX scoring function is negatively oriented (i.e. the smaller, the better).

The LINEX scoring function is strictly F-consistent for the —(1/a) log Ex[e~%Y] moment generat-

ing functional. F is the family of probability distributions F for which Er[e~*Y] and Ex[Y] exist
and are finite (Varian 1975; Zellner 1986; Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Varian HR (1975) A Bayesian approach to real estate assessment. In: Fienberg SE, Zellner A(eds)
Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savage. Amsterdam: North-
Holland, pp 195-208.

Zellner A (1986) Bayesian estimation and prediction using asymmetric loss functions. Journal of
the American Statistical Association 81(394):446-451. doi:10.1080/01621459.1986.10478289.

Examples

# Compute the LINEX scoring function.

df <- data.frame(
y = rep(x = 2, times = 3),
X 1:3,
a=c(-1,1, 2

)
df$linex_loss <- linex_sf(x = df$x, y = df$y, a = dfs$a)

print(df)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1080/01621459.1986.10478289
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lgmean_sf L_g-mean scoring function

Description

The function lqmean_sf computes the L,-mean scoring function, when y materialises and x is the
predictive L,-mean.

The L,-mean scoring function is defined by Chen (1996). It is equivalent to the L4-quantile scoring
function at level p = 1/2, up to a multiplicative constant.

Usage

lgmean_sf(x, y, q)

Arguments
X Predictive L,-mean. It can be a vector of length n (must have the same length
as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as ).
q It can be a vector of length n (must have the same length as ).
Details

The L,-mean scoring function is defined by:

S(x7y7 q) = |.’17 - y|q

Domain of function:

rzeR

yeR

Range of function:

S(x,y,q) >0,Ve,y e R,g>1

Value

Vector of L,-mean losses.
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Note

For the definition of L,-means, see Chen (1996). In particular, L,-means are the solution of the
equation Er[V (z,Y, ¢)] = 0, where

V(Iv Y, D, q) = qSIgn('r - y)|l’ - y|lI*1

L,-means are L,-quantiles at level p = 1/2.
The L,-mean scoring function is negatively oriented (i.e. the smaller, the better).

The L,-mean scoring function is strictly F-consistent for the L,-mean functional. [F is the family
of probability distributions F' for which Ex[Y 7] exists and is finite (Chen 2016; Bellini 2014).

References

Bellini F, Klar B, Muller A, Gianin ER (2014) Generalized quantiles as risk measures. Insurance:
Mathematics and Economics 54:41-48. doi:10.1016/j.insmatheco.2013.10.015.

Chen Z (1996) Conditional L,,-quantiles and their application to the testing of symmetry in non-
parametric regression. Statistics and Probability Letters 29(2):107—-115. doi:10.1016/01677152(95)00163-
8.

Examples

# Compute the Lg-mean scoring function.

df <- data.frame(

y = rep(x = 0, times = 6),
x =c¢c(2, 2, -2, -2, 0, @),
q=c(, 3, 2, 3,2, 3

)
df$lgmean_penalty <- lgmean_sf(x = df$x, y = df$y, q = df$q)

print(df)

lgquantile_sf L_g-quantile scoring function

Description

The function lqquantile_sf computes the L,-quantile scoring function at a specific level p, when y
materialises and  is the predictive L4-quantile at level p.

The L,-quantile scoring function is defined by Chen (1996).

Usage
lgquantile_sf(x, y, p, q)


https://doi.org/10.1016/j.insmatheco.2013.10.015
https://doi.org/10.1016/0167-7152%2895%2900163-8
https://doi.org/10.1016/0167-7152%2895%2900163-8
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Arguments
X Predictive L -quantile at level p. It can be a vector of length n (must have the
same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as z).
It can be a vector of length n (must have the same length as ).
It can be a vector of length n (must have the same length as y).
Details

The L -quantile scoring function is defined by:

S(z,y,p,q) == [Hx >y} — pllz —y/|?

or equivalently,

S(x,y,p,q) := p|max{—(x — y),0}|! + (1 — p)| max{z — y, 0}/

Domain of function:

reR
yeR

0<p<l1

Range of function:
S(z,y,p,q) 2 0,Vz,y €R,p € (0,1),g =2

Value

Vector of L,-quantile losses.

Note

For the definition of L,-quantiles, see Chen (1996). In particular, L,-quantiles at level p are the
solution of the equation Ex [V (x,Y, p, q)] = 0, where

V(Jf, Y,p, q) = q(1{$ > y} - p)|$ - qu_l
The L -quantile scoring function is negatively oriented (i.e. the smaller, the better).

The L,-quantile scoring function is strictly F-consistent for the L -quantile functional at level p. IF
is the family of probability distributions F' for which Ex[Y 7] exists and is finite (Chen 2016; Bellini
2014).
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References

Bellini F, Klar B, Muller A, Gianin ER (2014) Generalized quantiles as risk measures. Insurance:
Mathematics and Economics 54:41-48. doi:10.1016/j.insmatheco0.2013.10.015.

Chen Z (1996) Conditional L,,-quantiles and their application to the testing of symmetry in non-
parametric regression. Statistics and Probability Letters 29(2):107-115. doi:10.1016/01677152(95)00163-
8.

Examples

# Compute the Lg-quantile scoring function at level p.

df <- data.frame(
y = rep(x = 0, times = 6),
x =c(2, 2, -2, -2, 0, 0),
p = rep(x = c(0.05, 0.95), times = 3),
q=c(2, 3, 2, 3, 2, 3)
)

df$lgquantile_penalty <- lqquantile_sf(x = df$x, y = df$y, p = df$p, q = df$q)

print(df)

mae Mean absolute error (MAE)

Description

The function mae computes the mean absolute error when y materialises and x is the prediction.

Mean absolute error is a realised score corresponding to the absolute error scoring function aerr_sf.

Usage
mae(x, y)
Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The mean absolute error is defined by:


https://doi.org/10.1016/j.insmatheco.2013.10.015
https://doi.org/10.1016/0167-7152%2895%2900163-8
https://doi.org/10.1016/0167-7152%2895%2900163-8
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where

X = (xl,...,xn)T

Y= (Y1)’

and

L(l‘,y) = |1’ _y|

Domain of function:

x € R"

yeR”

Range of function:

S(x,y) > 0,vx,y € R"

Value

Value of the mean absolute error.

Note

For details on the absolute error scoring function, see aerr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The mean absolute error is the realised (average) score corresponding to the absolute error scoring
function.

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166—1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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Examples

# Compute the mean absolute error.

set.seed(12345)

x <- 0

y <= rnorm(n = 100, mean = @, sd = 1)

print(mae(x = X, y = y))

print(mae(x = rep(x = x, times = 100), y = y))

maelog_sf MAE-LOG scoring function

Description

The function maelog_sf computes the MAE-LOG scoring function when y materialises and x is the
predictive median functional.

The MAE-LOG scoring function is defined by eq. (11) in Patton (2011).

Usage
maelog_sf(x, y)

Arguments
X Predictive median functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as z).
Details

The MAE-LOG scoring function is defined by:

S(z,y) = [log(z/y)|

Domain of function:

x>0

y>0

Range of function:

S(z,y) > 0,Vx,y >0
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Value

Vector of MAE-LOG losses.

Note

For details on the MAE-LOG scoring function, see Gneiting (2011) and Patton (2011).
The median functional is the median of the probability distribution F' of y (Gneiting 2011).
The MAE-LOG scoring function is negatively oriented (i.e. the smaller, the better).

The MAE-LOG scoring function is strictly F-consistent for the median functional. F is the family
of probability distributions F' for which Er[log(Y")] exists and is finite (Thomson 1979; Saerens
2000; Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Saerens M (2000) Building cost functions minimizing to some summary statistics. /EEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.
Examples

# Compute the MAE-LOG scoring function.

df <- data.frame(
y = rep(x = 2, times = 3),
X 1:3

)
df$mae_log_penalty <- maelog_sf(x = df$x, y = df$y)

print(df)

maesd_sf MAE-SD scoring function

Description

The function maesd_sf computes the MAE-SD scoring function when y materialises and x is the
predictive median functional.

The MAE-SD scoring function is defined by eq. (12) in Patton (2011).


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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Usage

maesd_sf(x, y)

Arguments
X Predictive median functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The MAE-SD scoring function is defined by:

S(x,y) = |z'/? = y'/2|

Domain of function:

x>0

y>0

Range of function:
S(x,y) >0,Vz,y >0

Value

Vector of MAE-SD losses.

Note

For details on the MAE-SD scoring function, see Gneiting (2011) and Patton (2011).
The median functional is the median of the probability distribution F' of y (Gneiting 2011).
The MAE-SD scoring function is negatively oriented (i.e. the smaller, the better).

The MAE-SD scoring function is strictly [F-consistent for the median functional. [F is the family of
probability distributions F' for which Er [Yl/ 2] exists and is finite (Thomson 1979; Saerens 2000;
Gneiting 2011).
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References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Saerens M (2000) Building cost functions minimizing to some summary statistics. IEEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.

Examples

# Compute the MAE-SD scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$mae_sd_penalty <- maesd_sf(x = df$x, y = df$y)

print(df)

mape Mean absolute percentage error (MAPE)

Description

The function mape computes the mean absolute percentage error when y materialises and x is the
prediction.

Mean absolute percentage error is a realised score corresponding to the absolute percentage error
scoring function aperr_sf.

Usage
mape(x, y)
Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the

same length as x).


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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Details
The mean absolute pecentage error is defined by:

n

Stey) = (1/n) Y Liwi,y:)

i=1
where
x=(x1,..,z,)"
y = (yla "'ayn)T
and

L(z,y) == |(z —y)/yl

Domain of function:

x>0

y>0

where

0=(0,..,0)"

is the zero vector of length n and the symbol > indicates pairwise inequality.

Range of function:
S(x,y) > 0,vx,y >0

Value

Value of the mean absolute percentage error.

Note

For details on the absolute percentage error scoring function, see aperr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The mean absolute percentage error is the realised (average) score corresponding to the absolute
percentage error scoring function.
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References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166—1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples
# Compute the mean absolute percentage error.
set.seed(12345)
x <- 0.5
y <= rlnorm(n = 100, mean = @, sdlog = 1)

print(mape(x = x, y = y))

print(mape(x = rep(x = x, times = 100), y = vy))

meanlog_if Log-transformed identification function

Description

The function meanlog_if computes the log-transformed identification function, when y materialises
and exp(Er[log(Y")]) is the predictive functional.

The log-transformed identification function is defined in Tyralis and Papacharalampous (2025).

Usage

meanlog_if(x, y)

Arguments
X Predictive exp(E [log(Y)]) functional. It can be a vector of length n (must have
the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as ).
Details

The mean identification function is defined by:

V(x,y) = log(z) — log(y)

Domain of function:


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138

mean_if 57

x>0

y>0

Range of function:
V(z,y) € R,Vz,y >0

Value

Vector of values of the log-transformed identification function.

Note

The log-transformed identification function is a strict F-identification function for the log-transformed
expectation exp(Er[log(Y')]) (Tyralis and Papacharalampous 2025).

FF is the family of probability distributions F' for which Er[log(Y")] exists and is finite (Tyralis and
Papacharalampous 2025).

References
Tyralis H, Papacharalampous G (2025) Transformations of predictions and realizations in consistent
scoring functions. doi:10.48550/arXiv.2502.16542.

Examples

# Compute the log-transformed identification function.
df <- data.frame(

y = rep(x = 2, times = 3),

x =1:3
)

df$meanlog_if <- meanlog_if(x = df$x, y = df$y)

mean_if Mean identification function

Description

The function mean_if computes the mean identification function , when y materialises and « is the
predictive mean.

The mean identification function is defined in Table 9 in Gneiting (2011).

Usage

mean_if(x, y)


https://doi.org/10.48550/arXiv.2502.16542
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Arguments

X Predictive mean (prediction). It can be a vector of length n (must have the same
length as y).

y Realisation (true value) of process. It can be a vector of length n (must have the
same length as z).

Details

The mean identification function is defined by:

V(z,y) =z —y

Domain of function:
reR
yeR
Range of function:

V(z,y) eR

Value

Vector of values of the mean identification function.

Note

The mean functional is the mean Er[Y] of the probability distribution F of y (Gneiting 2011).

The mean identification function is a strict [F-identification function for the mean functional. (Gneit-
ing 2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).

FF is the family of probability distributions F' for which Er[Y] exists and is finite (Gneiting 2011;
Fissler and Ziegel 2016; Dimitriadis et al. 2024).

References

Dimitriadis T, Fissler T, Ziegel JF (2024) Osband’s principle for identification functions. Statistical
Papers 65:1125-1132. doi:10.1007/s0036202301428x.

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics
44(4):1680-1707. doi:10.1214/16 A0S 1439.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica
55(4):819-847. doi:10.2307/1911031.


https://doi.org/10.1007/s00362-023-01428-x
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1911031
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Examples

# Compute the mean identification function.
df <- data.frame(

y = rep(x = 0, times = 3),

x = c(-2, 0, 2)
)

df$mean_if <- mean_if(x = df$x, y = df$y)

mre Mean relative error (MRE)

Description

The function mre computes the mean relative error when y materialises and x is the prediction.

Mean relative error is a realised score corresponding to the relative error scoring function relerr_sf.

Usage
mre(x, y)
Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The mean relative error is defined by:

n

Stey) = (1/n) Y Liwi,y:)

i=1
where
x=(x1,..,2,)"
y=1yn)’
and

L(z,y) := |(z —y) /|

Domain of function:
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x>0

where

is the zero vector of length n and the symbol > indicates pairwise inequality.

Range of function:
S(x,y) >0,¥x,y >0

Value

Value of the mean relative error.

Note

For details on the relative error scoring function, see relerr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The mean relative error is the realised (average) score corresponding to the relative error scoring
function.
References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166—1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the mean relative error.
set.seed(12345)
x <- 0.5

y <= rlnorm(n = 100, mean = @, sdlog = 1)

print(mre(x X, ¥y =Y))

print(mre(x = rep(x = x, times = 100), y = y))


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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mse Mean squared error (MSE)

Description

The function mse computes the mean squared error when y materialises and x is the prediction.

Mean squared error is a realised score corresponding to the squared error scoring function serr_sf.

Usage
mse(x, y)
Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The mean squared error is defined by:

n

S@.y) = (1/n) Y Ll )

i=1
where
X = (1'1, "'7x’ﬂ)T
y=1yn)’
and

L(z,y) := (z —y)*

Domain of function:
x e R"”
yeR"
Range of function:

S(x,y) > 0,vx,y € R"
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Value

Value of the mean squared error.

Note

For details on the squared error scoring function, see serr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The mean squared error is the realised (average) score corresponding to the squared error scoring
function.

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166—1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the mean squared error.
set.seed(12345)

x <- 0

y <= rnorm(n = 100, mean = @, sd = 1)
print(mse(x = x, y = y))

print(mse(x = rep(x = x, times = 100), y = y))

mspe Mean squared percentage error (MSPE)

Description

The function mspe computes the mean squared percentage error when y materialises and x is the
prediction.

Mean squared percentage error is a realised score corresponding to the squared percentage error
scoring function sperr_sf.

Usage

mspe(x, y)


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The mean squared percentage error is defined by:

S(x,y) == (1/n) Z L(zi, yi)

i=1

where

X = (331, ...,J,‘n)T

Y=, yn)"

and

L(z,y) = ((z —y)/y)*
Domain of function:
x>0
y>0
where
0=(0,..,0)"

is the zero vector of length n and the symbol > indicates pairwise inequality.

Range of function:

S(x,y) >0,Vx,y >0

Value

Value of the mean squared percentage error.
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Note

For details on the squared percentage error scoring function, see sperr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The mean squared percentage error is the realised (average) score corresponding to the squared
percentage error scoring function.

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166—1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746—762. doi:10.1198/jasa.2011.r10138.

Examples
# Compute the mean squared percentage error.
set.seed(12345)
x <- 0.5
y <- rlnorm(n = 100, mean = @, sdlog = 1)
print(mspe(x = x, y = y))

print(mspe(x = rep(x = x, times = 100), y =vy))

msre Mean squared relative error (MSRE)

Description

The function msre computes the mean squared relative error when y materialises and x is the pre-
diction.

Mean squared relative error is a realised score corresponding to the squared relative error scoring
function srelerr_sf.

Usage
msre(x, y)
Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the

same length as x).


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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Details
The mean squared relative error is defined by:

n

Stey) = (1/n) Y Liwi,y:)

i=1
where
x=(x1,..,z,)"
y = (yla "'ayn)T
and

L(z,y) = ((x —y)/x)*
Domain of function:
x>0
y>0
where
0=(0,..,0)"

is the zero vector of length n and the symbol > indicates pairwise inequality.

Range of function:

S(x,y) > 0,Vx,y >0

Value

Value of the mean squared relative error.

Note

For details on the squared relative error scoring function, see srelerr_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The mean squared relative error is the realised (average) score corresponding to the squared relative
error scoring function.



66 mv_if

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166-1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the mean squared relative error.
set.seed(12345)

x <- 0.5

y <= rlnorm(n = 100, mean = @, sdlog = 1)

print(msre(x = x, y = vy))

print(msre(x = rep(x = x, times = 100), y =vy))
mv_if Mean - variance identification function
Description

The function mv_if computes the mean - variance identification function, when y materialises, 1
is the predictive mean and x5 is the predictive variance.

The mean - variance identification function is defined in proposition (3.11) in Fissler and Ziegel
(2019).

Usage

mv_if(x1, x2, y)

Arguments
X1 Predictive mean (prediction). It can be a vector of length n (must have the same
length as y).
X2 Predictive variance (prediction). It can be a vector of length n (must have the
same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the

same length as 7).


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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Details

The mean - variance identification function is defined by:

V(.’L’l,.’L‘Q,y) = (I‘l — Y, T2 —‘r.’IJ% - yz)

Domain of function:

r1 €R
xo >0

yeR

Value

Matrix of mean - variance values of the identification function.

Note

The mean functional is the mean Er[Y] of the probability distribution F of y (Gneiting 2011).

The variance functional is the variance Varz[Y] := Er[Y?] — (Er[Y])? of the probability distribu-
tion F of y (Gneiting 2011)

The mean - variance identification function is a strict F-identification function for the pair (mean,
variance) functional (Gneiting 2011; Fissler and Ziegel 2019; Dimitriadis et al. 2024).

F is the family of probability distributions F' for which Er[Y] and Ex[Y?] exist and are finite
(Gneiting 2011; Fissler and Ziegel 2019; Dimitriadis et al. 2024).

References

Dimitriadis T, Fissler T, Ziegel JF (2024) Osband’s principle for identification functions. Statistical
Papers 65:1125-1132. doi:10.1007/s0036202301428x.

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166-1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746—762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the mean - variance identification function.

df <- data.frame(
y = rep(x = 0, times = 6),
x1 = c(2, 2, -2, -2, 0, @),
x2 =c(1, 2,1, 2,1, 2)


https://doi.org/10.1007/s00362-023-01428-x
https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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v <- as.data.frame(mv_if(x1 = df$x1, x2 = df$x2, y = dfsy))

print(cbind(df, v))

mv_sf Mean - variance scoring function

Description

The function mv_sf computes the mean - variance scoring function, when y materialises, x; is the
predictive mean and x» is the predictive variance.

The mean - variance scoring function is defined by eq. (3.11) in Fissler and Ziegel (2019).

Usage

mv_sf(x1, x2, y)

Arguments
x1 Predictive mean (prediction). It can be a vector of length n (must have the same
length as y).
X2 Predictive variance (prediction). It can be a vector of length n (must have the
same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x1).
Details

The mean - variance scoring function is defined by:

S(x1,x2,y) = 25 2 (23 — 219 — 221y + ¥°)

Domain of function:

r1 €R

xo >0

yeR

Value

Vector of mean - variance losses.
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Note

The mean functional is the mean E[Y] of the probability distribution F of y (Gneiting 2011).

The variance functional is the variance Varz[Y] := Er[Y?] — (Er[Y])? of the probability distribu-
tion F' of y (Gneiting 2011)

The mean - variance scoring function is negatively oriented (i.e. the smaller, the better).

The mean - variance scoring function is strictly consistent for the pair (mean, variance) functional
(Osband 1985, p.9; Gneiting 2011; Fissler and Ziegel 2019).

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166-1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Osband KH (1985) Providing Incentives for Better Cost Forecasting. PhD thesis, University of
California, Berkeley. doi:10.5281/zenodo.4355667.

Examples

# Compute the mean - variance scoring function.

df <- data.frame(
y = rep(x = 0, times = 6),
x1 =c(2, 2, -2, -2, 0, @),
x2 =c(1, 2,1, 2, 1, 2)

)

df$mv_penalty <- mv_sf(x1 = df$x1, x2 = df$x2, y = df$y)

print(df)

nmoment_if n-th moment identification function

Description

The function nmoment_if computes the n-th moment identification function, when y materialises
and x is the predictive n-th moment.

The expectile identification function is defined in Table 9 in Gneiting (2011) by setting r(¢) = t"
and s(t) = 1.

Usage

nmoment_if(x, y, n)


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.5281/zenodo.4355667
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Arguments
X Predictive n-th moment. It can be a vector of length m (must have the same
length as y).
y Realisation (true value) of process. It can be a vector of length m (must have the
same length as z).
n n) is the moment order. It can be a vector of length m (must have the same
length as x).
Details

The n-th moment identification function is defined by:

n

Vi(z,y,n) =z -y

Domain of function:

r €R

yeR

neN

Value

Vector of values of the n-th moment identification function.

Note

The n-th moment functional is the expectation Ex[Y™] of the probability distribution F' of y.

The n-th moment identification function is a strict [F-identification function for the n-th moment
functional (Gneiting 2011; Fissler and Ziegel 2016).

IF is the family of probability distributions F' for which Ex[Y™] exists and is finite (Gneiting 2011;
Fissler and Ziegel 2016).

References

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics
44(4):1680-1707. doi:10.1214/16 A0S 1439.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.


https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/jasa.2011.r10138
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Examples

# Compute the n-th moment scoring function.

df <- data.frame(
y = rep(x = 2, times = 6),
x=c(, 2, 3,1, 2, 3),
n=c(2, 2, 2, 3, 3, 3)

)

df$nmoment_if <- nmoment_if(x = df$x, y = df$y, n = df$n)

print(df)

nmoment_sf n-th moment scoring function

Description

The function nmoment_sf computes the n-th moment scoring function, when y materialises, and
Er[Y™] is the predictive n-th moment.

The n-th moment scoring function is defined by eq. (22) in Gneiting (2011) by setting r(¢) = t",
s(t) = 1, ¢(t) = t? and removing all terms that are not functions of x.

Usage

nmoment_sf(x, y, n)

Arguments
X Predictive n-th moment. It can be a vector of length m (must have the same
length as ).
y Realisation (true value) of process. It can be a vector of length m (must have the
same length as z).
n n) is the moment order. It can be a vector of length m (must have the same
length as x).
Details

The n-th moment scoring function is defined by:

S(z,y,n) = —2? - 2z(y"™ — x)

Domain of function:

reR
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yeR

neN

Value

Vector of n-th moment losses.

Note

The n-th moment functional is the expectation Ex[Y™] of the probability distribution F' of y.
The n-th moment scoring function is negatively oriented (i.e. the smaller, the better).

The n-th moment scoring function is strictly F-consistent for the n-th moment functional Ex[Y™]
(Theorem 8 in Gneiting 2011). I is the family of probability distributions F' for which Ex [Y],
Er[Y?], Ep[Y"] and Ep[Y"*1] exist and are finite (Theorem 8 in Gneiting 2011).

References
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the n-th moment scoring function.

df <- data.frame(
y = rep(x = 2, times = 6),
x =c(1, 2,3, 1,2, 3),
n=c(2, 2, 2,3, 3, 3)

)
df$nmoment_penalty <- nmoment_sf(x = df$x, y = df$y, n = df$n)

print(df)

nse Nash-Sutcliffe efficiency (NSE)

Description

The function nse computes the Nash-Sutcliffe efficiency when y materialises and x is the prediction.

Nash-Sutcliffe efficiency is a skill score corresponding to the squared error scoring function serr_sf.
It is defined in eq. (3) in Nash and Sutcliffe (1970).

Usage

nse(x, y)


https://doi.org/10.1198/jasa.2011.r10138
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Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The Nash-Sutcliffe efficiency is defined by:

St (%,¥) =1 — Smewn (%, )/ Srer(x,)

where

X = (xl, ...,l‘n)T

7= Wty = (1/n) Y u,

L(z,y) := (z —y)*

and the predictions of the method of interest as well as the reference method are evaluated respec-
tively by:

n

Smen(x,y) = (1/n) > L(w:,y:)

i=1

Sref(x7y) = (1/77‘) Z L(ya yz)
i=1
Domain of function:
x e R"
y e R'IL
Range of function:

S(x,y) <1,vx,y e R"
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Value

Value of the Nash-Sutcliffe efficiency.

Note

For details on the squared error scoring function, see serr_sf.

The concept of skill scores is defined by Gneiting (2011).

The Nash-Sutcclife efficiency is defined in eq. (3) in Nash and Sutcliffe (1970).
The Nash-Sutcclife efficiency is positevely oriented (i.e. the larger, the better).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746—762. doi:10.1198/jasa.2011.r10138.

Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I - A discussion
of principles. Journal of Hydrology 10(3):282-290. doi:10.1016/00221694(70)902556.

Examples

# Compute the Nash-Sutcliffe efficiency.
set.seed(12345)
X <- 0

y <= rnorm(n = 100, mean = @, sd = 1)

print(nse(x = x, y = y))

print(nse(x = rep(x = x, times = 100), y = y))

print(nse(x = mean(y), y = ¥y))

print(nse(x =y, y = y))

obsweighted_sf Observation-weighted scoring function

Description

The function obsweighted_sf computes the observation-weighted scoring function when y materi-
Er[Y?]
Ep[Y]

The observation-weighted scoring function is defined in p. 752 in Gneiting (2011).

alises and z is the predictive functional.


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/0022-1694%2870%2990255-6
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Usage

obsweighted_sf(x, y)

Arguments
. . Ep[Y? . .
X Predictive Er[Y] functional (prediction). It can be a vector of length n (must
F
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as ).
Details

The observation-weighted scoring function is defined by:

S(z,y) ==y —y)*

Domain of function:

x>0

y>0

Range of function:
S(x,y) >0,Vz,y >0

Value

Vector of observation-weighted errors.

Note

For details on the observation-weighted scoring function, see Gneiting (2011).

The observation-weighted scoring function is negatively oriented (i.e. the smaller, the better).
Er[Y?

functional.
Er[Y]

The observation-weighted scoring function is strictly consistent for the

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.
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Examples

# Compute the observation-weighted scoring function.
df <- data.frame(

y = rep(x = 2, times = 3),

x =1:3
)

df$squared_relative_error <- obsweighted_sf(x = df$x, y = df$y)

print(df)

quantile_if Quantile identification function

Description

The function quantile_if computes the quantile identification function at a specific level p, when y
materialises and x is the predictive quantile at level p.

The quantile identification function is defined in Table 9 in Gneiting (2011).

Usage

quantile_if(x, y, p)

Arguments
X Predictive quantile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as ).
Details

The quantile identification function is defined by:

V(z,y,p) =Yz >y} —p

Domain of function:

r eR

y €R
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O0<p<l1

Range of function:

V(x,y,p) € (717 1)

Value

Vector of values of the quantile identification function.

Note

For the definition of quantiles, see Koenker and Bassett Jr (1978).

The quantile identification function is a strict IF,-identification function for the p-quantile functional
(Gneiting 2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).

IF,, is the family of probability distributions F' for which there exists an y with F'(y) = p (Gneiting
2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).

References

Dimitriadis T, Fissler T, Ziegel JF (2024) Osband’s principle for identification functions. Statistical
Papers 65:1125-1132. doi:10.1007/s0036202301428x.

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics
44(4):1680-1707. doi:10.1214/16 A0S 14309.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33-50. doi:10.2307/
1913643.

Examples

# Compute the quantile identification function.

df <- data.frame(
y = rep(x = 0, times = 6),
x =c(2, 2, -2, -2, 0, 0),
p = rep(x = c(0.05, 0.95), times = 3)

)

df$quantile_if <- quantile_if(x = df$x, y = df$y, p = df$p)


https://doi.org/10.1007/s00362-023-01428-x
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
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quantile_level Sample quantile level function

Description
The function quantile_level computes the sample quantile level, when y materialises and x is the
predictive quantile at level p.

Usage

quantile_level(x, y)

Arguments
X Predictive quantile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The sample quantile level function is defined by:

n

Pla,y) = (1/n) 3 Vi)

i=1

where

x=(x1,..,z,)"

y= (yla "'ayn)T

and

Vi(z,y) =Yz =y}

Domain of function:

x cR"

yeR”

Value

Value of the sample quantile level.
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Note

The sample quantile level is directly related to the quantile identification function quantile_if.

If y materialises and x is the predictive quantile at level p, then ideally, the sample quantile level
should be equal to the nominal quantile level p.

Examples

# Compute the sample quantile level.

set.seed(12345)

x <- gnorm(p = ©0.75, mean = @, sd = 1, lower.tail = TRUE, log.p = FALSE)
y <= rnorm(n = 1000, mean = @, sd = 1)

print(quantile_level(x = x, y = y))

quantile_rs Realised quantile score

Description

The function quantile_rs computes the realised quantile score at a specific level p when y materi-
alises and x is the prediction.

Realised quantile score is a realised score corresponding to the quantile scoring function quantile_sf.

Usage

quantile_rs(x, y, p)

Arguments
X Prediction. It can be a vector of length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as y) or a scalar value.
Details

The realized quantile score is defined by:

n

SGey.p) = (1/n) 3 Llws, i)

i=1

where
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X = (xla "'7'7;71)1—

y= (yla "'7yn)T

and

L(z,y,p) == ({z >y} — p)(z —y)

Domain of function:

x e R”

yeR"

O0<p<l1

Range of function:
S(x,y,p) >0,vx,y e R",p e (0,1)

Value

Value of the realised quantile score.

Note

For details on the quantile scoring function, see quantile_sf.
The concept of realised (average) scores is defined by Gneiting (2011) and Fissler and Ziegel (2019).

The realised quantile score is the realised (average) score corresponding to the quantile scoring
function.

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166-1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.


https://doi.org/10.1214/19-EJS1552
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Examples

# Compute the realised quantile score.

set.seed(12345)

X <= gnorm(p = 0.7, mean = @, sd = 1, lower.tail = TRUE, log.p = FALSE)
y <= rnorm(n = 1000, mean = @, sd = 1)

print(quantile_rs(x

0.7))

1
x
<
1
<
hel
1

print(quantile_rs(x = rep(x = x, times = 1000), y =y, p = 0.7))

print(quantile_rs(x = rep(x = x, times = 1000) - 0.1, y =y, p = 0.7))

quantile_sf Asymmetric piecewise linear scoring function (quantile scoring func-
tion, quantile loss function)

Description

The function quantile_sf computes the asymmetric piecewise linear scoring function (quantile scor-
ing function) at a specific level p, when y materialises and z is the predictive quantile at level p.

The asymmetric piecewise linear scoring function is defined by eq. (24) in Gneiting (2011).

Usage

quantile_sf(x, y, p)

Arguments
X Predictive quantile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as ).
Details

The assymetric piecewise linear scoring function is defined by:

S(x,y,p) = Mz >y} —p)(x—y)

or equivalently,

S(x,y,p) := plmax{—(z —y), 0} + (1 — p)| max{z —y,0}|
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Domain of function:

r €R

yeR

0<p<l1

Range of function:

S(z,y,p) > 0,Vz,y € R,p € (0,1)

Value

Vector of quantile losses.

Note

For the definition of quantiles, see Koenker and Bassett Jr (1978).
The asymmetric piecewise linear scoring function is negatively oriented (i.e. the smaller, the better).

The asymmetric piecewise linear scoring function is strictly F-consistent for the p-quantile func-
tional. T is the family of probability distributions F' for which Er[Y] exists and is finite (Schlaifer
1961, p.196; Ferguson 1967, p.51; Thomson 1979; Saerens 2000; Gneiting 2011).

References

Ferguson TS (1967) Mathematical Statistics: A Decision-Theoretic Approach. Academic Press,
New York.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33-50. doi:10.2307/
1913643.

Raiffa H,Schlaifer R (1961) Applied Statistical Decision Theory. Colonial Press, Clinton.

Saerens M (2000) Building cost functions minimizing to some summary statistics. /EEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.
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Examples

# Compute the asymmetric piecewise linear scoring function (quantile scoring
# function).

df <- data.frame(
y = rep(x = 0, times = 6),
x =c¢c(2, 2, -2, -2, 0, 0),
p = rep(x = c(0.05, 0.95), times

3
)

df$quantile_penalty <- quantile_sf(x = df$x, y = df$y, p = df$p)
print(df)

# The absolute error scoring function is twice the asymmetric piecewise linear
# scoring function (quantile scoring function) at level p = 0.5.

df <- data.frame(
y = rep(x = 0, times = 3),
x = c(-2, 0, 2),
p rep(x = c(@0.5), times = 3)

)
df$quantile_penalty <- quantile_sf(x = df$x, y = df$y, p = df$p)
df$absolute_error <- aerr_sf(x = df$x, y = df$y)

print(df)

relerr_sf Relative error scoring function (MAE-PROP scoring function)

Description

The function relerr_sf computes the relative error scoring function when y materialises and z is the
predictive med ™) (F) functional.

The relative error scoring function is defined in Table 1 in Gneiting (2011).

The relative error scoring function is referred to as MAE-PROP scoring function in eq. (13) in
Patton (2011).
Usage

relerr_sf(x, y)

Arguments

X Predictive med(l)(F) functional (prediction). It can be a vector of length n
(must have the same length as y).
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y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).

Details

The relative error scoring function is defined by:

S(z,y) = |(z —y)/z|

Domain of function:

x>0

y>0

Range of function:
S(x,y) >0,Vz,y >0

Value

Vector of relative errors.

Note

For details on the relative error scoring function, see Gneiting (2011).

The S-median functional, med® (F) is the median of a probability distribution whose density is
proportional to 32 f (), where f is the density of the probability distribution F' of y (Gneiting 2011).

The relative error scoring function is negatively oriented (i.e. the smaller, the better).

The relative error scoring function is strictly F(*)-consistent for the med(l)(F) functional. F is
the family of probability distributions for which Ex[Y] exists and is finite. F(*) is the subclass
of probability distributions in F, which are such that w(y) f(y), w(y) = y has finite integral over
(0,00), and the probability distribution F(*") with density proportional to w(y) f(y) belongs to
(see Theorems 5 and 9 in Gneiting 2011)

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.
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Examples

# Compute the relative error scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$relative_error <- relerr_sf(x = df$x, y = df$y)

print(df)

serrexp_sf Squared error exp scoring function

Description

The function serrexp_sf computes the squared error exp scoring function when y materialises and
x is the (1/a) log(Er[exp(aY’)]) predictive entropic risk measure (Gerber 1974).

The squared error exp scoring function is defined in Fissler and Pesenti (2023).

Usage

serrexp_sf(x, y, a)

Arguments
X Predictive (1/a) log(Er[exp(aY)]) functional (prediction). It can be a vector of
length n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
a It can be a vector of length n (must have the same length as ).
Details

The squared error exp scoring function is defined by:

S(x,y) := (exp(ax) — exp(ay))”

Domain of function:

r eR

y €R
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Range of function:
S(x,y) > 0,Vz,y € R,a #0

Value

Vector of squared errors of exp-transformed variables.

Note

For details on the squared error exp scoring function, see Fissler and Pesenti (2023).
The squared error exp scoring function is negatively oriented (i.e. the smaller, the better).

The squared error exp scoring function is strictly F-consistent for the (1/a) log(Er[exp(aY’)]) en-
tropic risk measure functional. F is the family of probability distributions F' for which Ep [exp(aY’)]
exists and is finite (Fissler and Pesenti 2023; Tyralis and Papacharalampous 2025).

References

Fissler T, Pesenti SM (2023) Sensitivity measures based on scoring functions. European Journal of
Operational Research 307(3):1408-1423. doi:10.1016/j.ejor.2022.10.002.

Gerber HU (1974) On additive premium calculation principles. ASTIN Bulletin: The Journal of the
IAA 7(3):215-222. doi:10.1017/S0515036100006061.

Tyralis H, Papacharalampous G (2025) Transformations of predictions and realizations in consistent
scoring functions. doi:10.48550/arXiv.2502.16542.

Examples

# Compute the squarer error exp scoring function.

df <- data.frame(
y = rep(x = 0, times = 5),
X = =2:2,

a=c(-2, -1, 1, 2, 3)

)

df$squaredexp_error <- serrexp_sf(x = df$x, y = df$y, a = df$a)

print(df)


https://doi.org/10.1016/j.ejor.2022.10.002
https://doi.org/10.1017/S0515036100006061
https://doi.org/10.48550/arXiv.2502.16542
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serrlog_sf Squared error log scoring function

Description

The function serrlog_sf computes the squared error log scoring function when y materialises and x
is the exp(Er[log(Y")]) predictive functional.

The squared error log scoring function is defined in Houghton-Carr (1999).

Usage

serrlog_sf(x, y)

Arguments
X Predictive exp(Er[log(Y")]) functional (prediction). It can be a vector of length
n (must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The squared error scoring function is defined by:

S(z,y) = (log(z) — log(y))*

Domain of function:

x>0

y >0

Range of function:
S(x,y) >0,Vz,y >0

Value

Vector of squared errors of log-transformed variables.

Note

For details on the squared error log scoring function, see Houghton-Carr (1999).
The squared error log scoring function is negatively oriented (i.e. the smaller, the better).

The squared error log scoring function is strictly F-consistent for the exp(Er[log(Y")]) functional.
F is the family of probability distributions F' for which Er[log(Y")] exists and is finite (Tyralis and
Papacharalampous 2025).



88 serrpower._sf

References

Houghton-Carr HA (1999) Assessment criteria for simple conceptual daily rainfall-runoff models.
Hydrological Sciences Journal 44(2):237-261. doi:10.1080/02626669909492220.

Tyralis H, Papacharalampous G (2025) Transformations of predictions and realizations in consistent
scoring functions. doi:10.48550/arXiv.2502.16542.

Examples
# Compute the squarer error log scoring function.
df <- data.frame(

y = rep(x = 2, times = 3),
x =1:3

)

df$squaredlog_error <- serrlog_sf(x = df$x, y = df$y)

print(df)

serrpower_sf Squared error of power transformations scoring function

Description

The function serrpower_sf computes the squared error of power transformations scoring function
when y materialises and x is the (Ex[Y®])(1/%) predictive functional.

The squared error of power transformations scoring function is defined in Tyralis and Papachar-
alampous (2025).

Usage

serrpower_sf(x, y, a)

Arguments
X Predictive (Er[Y%])(*/®) functional (prediction). It can be a vector of length n
(must have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the

same length as z).

a It can be a vector of length n (must have the same length as y).


https://doi.org/10.1080/02626669909492220
https://doi.org/10.48550/arXiv.2502.16542
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Details

The squared error of power transformations scoring function is defined by:

S(z,y) = (z" —y*)?

Domain of function:
Case #1

a>0

Case #2
a#0
x>0

y>0

Range of function:
S(x) y) Z 07 vx? y? a

Value

Vector of squared errors of power-transformed variables.

Note

For details on the squared error of power tranformations scoring function, see Tyralis and Papachar-
alampous (2025).

The squared error of power tranformations scoring function is negatively oriented (i.e. the smaller,
the better).

The squared error of power transformations scoring function is strictly F-consistent for the (Ex[Y“]) (1/a)
functional. T is the family of probability distributions F' for which Ex[Y*] exists and is finite
(Tyralis and Papacharalampous 2025).

References

Tyralis H, Papacharalampous G (2025) Transformations of predictions and realizations in consistent
scoring functions. doi:10.48550/arXiv.2502.16542.
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Examples

# Compute the squarer error of power tranformations scoring function.
df <- data.frame(

y = rep(x = 2, times = 3),

X = 1:3,

a=1:3
)

df$squaredpower_error <- serrpower_sf(x = df$x, y = df$y, a = df$a)

print(df)

serrsq_sf Squared error of squares scoring function

Description

The function serrsq_sf computes the squared error of squares scoring function when y materialises
and x is the \/Ep[Y 2] predictive functional.

The squared error of squares scoring function is defined in Thirel et al. (2024).

Usage

serrsq_sf(x, y)

Arguments
X Predictive \/Er[Y 2] functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as ).
Details

The squared error of squares scoring function is defined by:

S(x,y) = (a® —y?)°

Domain of function:

Range of function:

S(z,y) >0,Va,y >0
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Value

Vector of squared errors of squared-transformed variables.

Note

For details on the squared error of squares scoring function, see Thirel et al. (2024).
The squared error of squares scoring function is negatively oriented (i.e. the smaller, the better).

The squared error of squares scoring function is strictly F-consistent for the y/Er[Y 2] functional.
FF is the family of probability distributions F' for which Ex[Y 2] exists and is finite (Tyralis and
Papacharalampous 2025).

References

Thirel G, Santos L, Delaigue O, Perrin C (2024) On the use of streamflow transformations for hydro-
logical model calibration. Hydrology and Earth System Sciences 28(21):4837-4860. doi:10.5194/
hess2848372024.

Tyralis H, Papacharalampous G (2025) Transformations of predictions and realizations in consistent
scoring functions. doi:10.48550/arXiv.2502.16542.

Examples

# Compute the squarer error of squares scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$squaredsq_error <- serrsq_sf(x = df$x, y = df$y)

print(df)

serr_sf Squared error scoring function

Description

The function serr_sf computes the squared error scoring function when y materialises and z is the
predictive mean functional.

The squared error scoring function is defined in Table 1 in Gneiting (2011).

Usage

serr_sf(x, y)


https://doi.org/10.5194/hess-28-4837-2024
https://doi.org/10.5194/hess-28-4837-2024
https://doi.org/10.48550/arXiv.2502.16542
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Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The squared error scoring function is defined by:

S(z,y) = (z —y)*

Domain of function:

r €R

yeR

Range of function:
S(z,y) > 0,vz,y €R

Value

Vector of squared errors.

Note

For details on the squared error scoring function, see Savage (1971), Gneiting (2011).
The mean functional is the mean Ex[Y] of the probability distribution F' of y (Gneiting 2011).
The squared error scoring function is negatively oriented (i.e. the smaller, the better).

The squared error scoring function is strictly [F-consistent for the mean functional. T is the family of
probability distributions ' for which the second moment exists and is finite (Savage 1971; Gneiting
2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.
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Examples

# Compute the squarer error scoring function.
df <- data.frame(

y = rep(x = 0, times = 5),

X = -2:2
)

df$squared_error <- serr_sf(x = df$x, y = df$y)

print(df)

sperr_sf Squared percentage error scoring function

Description

The function sperr_sf computes the squared percentage error scoring function when y materialises

Er [Y -1 }
Er[Y 2]
The squared percentage error scoring function is defined in p. 752 in Gneiting (2011).

and z is the predictive functional.

Usage

sperr_sf(x, y)

Arguments
.. Ep[Y1 . .
X Predictive m functional (prediction). It can be a vector of length n (must
F
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as ).
Details

The squared percentage error scoring function is defined by:

S(z,y) = ((z —y)/y)?

Domain of function:

x>0

y>0

Range of function:

S(z,y) > 0,Vx,y >0
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Value

Vector of squared percentage errors.

Note

For details on the squared percentage error scoring function, see Park and Stefanski (1998) and
Gneiting (2011).

The squared percentage error scoring function is negatively oriented (i.e. the smaller, the better).

EF[Yil]

m functional.

The squared percentage error scoring function is strictly consistent for the

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Park H, Stefanski LA (1998) Relative-error prediction. Statistics and Probability Letters 40(3):227—
236. doi:10.1016/S01677152(98)000881.

Examples

# Compute the squared percentage error scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$squared_percentage_error <- sperr_sf(x = df$x, y = df$y)

print(df)

srelerr_sf Squared relative error scoring function

Description

The function srelerr_sf computes the squared relative error scoring function when y materialises
Er[Y?]
EplY]

The squared relative error scoring function is defined in p. 752 in Gneiting (2011).

and z is the predictive functional.

Usage

srelerr_sf(x, y)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/S0167-7152%2898%2900088-1
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Arguments
.. Ep[Y?] . .
X Predictive Er[Y] functional (prediction). It can be a vector of length n (must
F
have the same length as y).
y Realisation (true value) of process. It can be a vector of length n (must have the
same length as z).
Details

The squared relative error scoring function is defined by:

S(z,y) = ((z —y)/2)*

Domain of function:

x>0

y>0

Range of function:
S(z,y) > 0,Vz,y >0

Value

Vector of squared relative errors.

Note

For details on the squared relative error scoring function, see Gneiting (2011).

The squared relative error scoring function is negatively oriented (i.e. the smaller, the better).

Er[Y?]

functional.
Ep[Y]

The squared relative error scoring function is strictly consistent for the

References
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the squared percentage error scoring function.

df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
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df$squared_relative_error <- srelerr_sf(x

print(df)

df$x, y = dfsy)

srelerr_sf
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