Package 'powerindexR'

May 30, 2024

Type Package Title Measuring the Power in Voting Systems Version 1.6 Date 2024-05-30 **Depends** R(>= 3.0.0)Description This R package allows the determination of some distributions of the voters' power when passing laws in weighted voting situations. License GPL-2 LazyLoad yes **Repository** CRAN NeedsCompilation no Author Livino M. Armijos-Toro [aut, cre], Jose M. Alonso-Meijide [aut], Manuel A. Mosquera [aut], Alejandro Saavedra-Nieves [aut] Maintainer Livino M. Armijos-Toro <livinoa@gmail.com> RoxygenNote 7.0.2

Date/Publication 2024-05-30 15:10:03 UTC

R topics documented:

powerindexR-package	2
MWC	3
pi.banzhaf	4
pi.colomermartinez	5
pi.johnston	6
pi.johnstoncolomermartinez	7
pi.shapley	8
powerindex	9
QMWC	10
	12

Index

powerindexR-package Measuring the Power in Voting Systems

Description

This R package allows the determination of some distributions of the voters' power when passing laws in weighted voting situations.

Details

The DESCRIPTION file:

Package:	powerindexR
Type:	Package
Title:	Measuring the Power in Voting Systems
Version:	1.6
Date:	2024-05-30
Authors@R:	c(person("Livino M.", "Armijos-Toro", role = c("aut", "cre"),email="livinoa@gmail.com"), person("Jos
Depends:	R(>=3.0.0)
Description:	This R package allows the determination of some distributions of the voters' power when passing laws i
License:	GPL-2
LazyLoad:	yes
Packaged:	
Repository:	CRAN
NeedsCompilation:	no
Author:	Livino M. Armijos-Toro [aut, cre], Jose M. Alonso-Meijide [aut], Manuel A. Mosquera [aut], Alejandro
Maintainer:	Livino M. Armijos-Toro <livinoa@gmail.com></livinoa@gmail.com>
RoxygenNote:	7.0.2

Index of help topics:

MWC	Obtain the minimal winning coalitions
QMWC	Obtain the quasi-minimal winning coalitions
pi.banzhaf	Power based on the Banzhaf index.
pi.colomermartinez	Power based on the Colomer-Martinez index.
pi.johnston	Power based on the Johnston index.
pi.johnstoncolomermarti	nez
	Power based on the Jonhston-Colomer-Martinez
	index.
pi.shapley	Power based on the Shapley-Shubik index.
powerindex	Obtain several measures of power
powerindexR-package	Measuring the Power in Voting Systems

This R package allows the determination of some distributions of the voters' power when passing laws in weighted voting situations.

MWC

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

References

Alonso-Meijide, J. M., & Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44. https://doi.org/10.1007/s10479-005-2242-yy.

Brams, S. J., & Affuso, P. J. (1976). Power and size: A new paradox. Theory and Decision, 7(1-2), 29-56. https://doi.org/10.1007/BF00141101.

Colomer, J. M., & Martinez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7(1), 41-63. https://doi.org/10.1177/0951692895007001003>.

Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10(8), 907-914. https://doi.org/10.1068/a100907>.

Lucas, W. F. (1983). Measuring power in weighted voting systems (pp. 183-238). Springer New York. https://doi.org/10.1007/978-1-4612-5430-0_9

```
MWC
```

Obtain the minimal winning coalitions

Description

This function determines the minimal winning coalitions in a weighted majority game.

Usage

MWC(quota, weights)

Arguments

quota	Numerical value that represents the majority in a given voting.
weights	Numerical vector of dimension n that indicates the weights of n agents in a given voting.

Value

Number of Minimal Winning Coalitions

Total amount of Minimal Winning Coalitions.

Minimal Winning Coalitions

Each row indicates a binary representation of each Minimal Winning Coalition.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

pi.banzhaf

Examples

```
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
MWC(quota,weights)</pre>
```

pi.banzhaf

Power based on the Banzhaf index.

Description

This function determines the distribution of the power based on the Banzhaf index and the Banzaf-Owen value.

Usage

```
pi.banzhaf(quota, weights, partition = NULL, normalized = FALSE, swing = FALSE)
```

Arguments

quota	Numerical value that represents the majority in a given voting.
weights	Numerical vector of dimension n that indicates the weights of n agents in a given voting.
partition	Numerical vector that indicates the partition of voters. Each component indi- cates the element of the partition to which such voter belongs. If it is not NULL, it provides the distribution of the power based on the Banzhaf-Owen value.
normalized	Logical option to obtain the normalized Banzhaf values.
swing	Logical option to obtain the number of swings of each voter.

Value

Banzhaf value The Banzhaf value, if partition=NULL. Banzhaf-Owen value The Banzhaf-Owen value, if partition!=NULL.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

References

Alonso-Meijide, J. M., & Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44.

Brams, S. J., & Affuso, P. J. (1976). Power and size: A new paradox. Theory and Decision, 7(1-2), 29-56.

4

pi.colomermartinez

Examples

```
# Example Banzhaf value
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
pi.banzhaf(quota,weights)
pi.banzhaf(quota,weights,normalized=TRUE)
# Example Banzhaf-Owen value
quota<-30
weights<-c(28, 16, 5, 4, 3, 3)
# Partition={{1},{2,4,6},{3,5}}
pi.banzhaf(quota,weights,partition=c(1,2,3,2,3,2))
```

pi.colomermartinez Power based on the Colomer-Martinez index.

Description

This function determines the distribution of the power based on the Colomer-Martinez index.

Usage

pi.colomermartinez(quota, weights, minimal = FALSE)

Arguments

quota	Numerical value that represents the majority in a given voting.
weights	Numerical vector of dimension n that indicates the weights of n agents in a given voting.
minimal	Logical option to obtain the Minimal Winning Coalitions.

Value

Colomer-Martinez The Colomer-Martinez index. Number of Minimal Winning Coalitions Total amount of Minimal Winning Coalitions. Minimal Winning Coalitions Each row indicates a binary representation of each Minimal Winning Coalition.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

References

Colomer, J. M., & Martinez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7(1), 41-63.

Examples

```
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
pi.colomermartinez(176,weights,minimal=TRUE)</pre>
```

pi.johnston

Power based on the Johnston index.

Description

This function determines the distribution of the power based on the Johnston index.

Usage

```
pi.johnston(quota, weights, quasiminimal = FALSE)
```

Arguments

quota	Numerical value that represents the majority in a given voting.
weights	Numerical vector of dimension n that indicates the weights of n agents in a given voting.
quasiminimal	Logical option to obtain the Quasi-Minimal Winning Coalitions.

Value

Johnston	The Jonhston index.
Number of Quasi	-Minimal Winning Coalitions
	Total amount of Quasi-Minimal Winning Coalitions.
Quasi-Minimal	Winning Coalitions
	Each row indicates a binary representation of each Quasi-Minimal Winning
	Coalition.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

References

Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10(8), 907-914.

Examples

```
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
pi.johnston(176,weights,quasiminimal=TRUE)</pre>
```

6

pi.johnstoncolomermartinez

Power based on the Jonhston-Colomer-Martinez index.

Description

This function determines the distribution of the power based on the Jonhston-Colomer-Martinez index.

Usage

pi.johnstoncolomermartinez(quota, weights)

Arguments

quota	Numerical value that represents the majority in a given voting.
weights	Numerical vector of dimension n that indicates the weights of n agents in a given voting.

Value

Jonhston-Colomer-Martinez The Jonhston-Colomer-Martinez index.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

References

Colomer, J. M., & Martinez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7(1), 41-63.

Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10(8), 907-914.

Examples

```
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
pi.johnstoncolomermartinez(176,weights)</pre>
```

pi.shapley

Description

This function determines the distribution of the power based on the Shapley-Shubik index and the Owen value.

Usage

pi.shapley(quota, weights, partition = NULL)

Arguments

quota	Numerical value that represents the majority in a given voting.
weights	Numerical vector of dimension n that indicates the weights of n agents in a given voting.
partition	Numerical vector that indicates the partition of voters. Each component indi- cates the element of the partition to which such voter belongs. If it is not NULL, it provides the distribution of the power based on the Owen value.

Value

Shapley value	The Shapley value, if partition=NULL.
Owen value	The Owen value, if partition!=NULL.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

References

Alonso-Meijide, J. M., & Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44.

Lucas, W. F. (1983). Measuring power in weighted voting systems (pp. 183-238). Springer New York.

Examples

```
# Example Shapley value
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
pi.shapley(quota,weights)
# Example Owen value
quota<-30</pre>
```

```
weights<-c(28, 16, 5, 4, 3, 3)
# Partition={{1},{2,4,6},{3,5}}
pi.shapley(quota,weights,partition=c(1,2,3,2,3,2))</pre>
```

powerindex

Obtain several measures of power

Description

This general function allows the determination of several distributions of the power under different approaches in a weighted voting situation.

Usage

```
powerindex(quota, weights, index = c("S", "B", "J", "CM", "JCM"),
partition = NULL, quasiminimal = FALSE, minimal = FALSE, normalized = FALSE,
swing = FALSE)
```

Arguments

quota	Numerical value that represents the majority in a given voting.
weights	Numerical vector of dimension n that indicates the weights of n agents in a given voting.
index	Character that indicates the used approach. S and B denote the Shapley-Shubik index and the Banzhaf index, and the Owen index and the Banzhaf-Owen index if partition exist. J is used for obtaining the Jonhston index, CM determines the Colomer-Martinez index and JCM is used for obtaining the Jonhston-Colomer-Martinez index.
partition	Numerical vector that indicates the partition of voters. Each component indi- cates the element of the partition to which such voter belongs.
quasiminimal	Logical option to obtain the Quasi-Minimal Winning Coalitions.
minimal	Logical option to obtain the Minimal Winning Coalitions.
normalized	Logical option to obtain the normalized Banzhaf values.
swing	Logical option to obtain the number of swings of each voter.

Value

See the values of the respective functions.

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

References

Alonso-Meijide, J. M., & Bowles, C. (2005). Generating functions for coalitional power indices: An application to the IMF. Annals of Operations Research, 137, 21-44.

Brams, S. J., & Affuso, P. J. (1976). Power and size: A new paradox. Theory and Decision, 7(1-2), 29-56.

Colomer, J. M., & Martinez, F. (1995). The paradox of coalition trading. Journal of Theoretical Politics, 7(1), 41-63.

Johnston, R. J. (1978). On the measurement of power: Some reactions to Laver. Environment and Planning A, 10(8), 907-914.

Lucas, W. F. (1983). Measuring power in weighted voting systems (pp. 183-238). Springer New York.

Examples

```
weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
powerindex(quota,weights,index="S")
powerindex(quota,weights,index="B",swing=TRUE)
powerindex(quota,weights,index="B",partition=c(1,1,2,2,3,3,4,4,4),swing=TRUE)
powerindex(quota,weights,index="J",quasiminimal=TRUE)</pre>
```

QMWC

Obtain the quasi-minimal winning coalitions

Description

This function determines the quasi-minimal winning coalitions in a weighted majority game.

Usage

QMWC(quota, weights)

Arguments

quota	Numerical value that represents the majority in a given voting.
weights	Numerical vector of dimension n that indicates the weights of n agents in a given voting.

Value

```
Number of Quasi-Minimal Winning Coalitions
Total amount of Quasi-Minimal Winning Coalitions.
Quasi-Minimal Winning Coalitions
Each row indicates a binary representation of each Quasi-Minimal Winning
Coalition.
```

10

QMWC

Author(s)

Livino M. Armijos-Toro, Jose M. Alonso-Meijide, Manuel A. Mosquera, Alejandro Saavedra-Nieves.

Examples

weights<-c(137,85,71,32,9,8,5,2,1)
quota<-176
QMWC(quota,weights)</pre>

Index

* **powerindex** powerindexR-package, 2

MWC, 3

pi.banzhaf, 4
pi.colomermartinez, 5
pi.johnston, 6
pi.johnstoncolomermartinez, 7
pi.shapley, 8
powerindex, 9
powerindexR (powerindexR-package), 2
powerindexR-package, 2

QMWC, 10