
Package ‘potts’
October 14, 2022

Version 0.5-11

Date 2022-08-12

Title Markov Chain Monte Carlo for Potts Models

Author Charles J. Geyer <charlie@stat.umn.edu> and Leif Johnson

<ltjohnson@google.com>

Maintainer Charles J. Geyer <charlie@stat.umn.edu>

Depends R (>= 3.6.0)

Imports stats, graphics

Suggests pooh (>= 0.2)

Description Do Markov chain Monte Carlo (MCMC) simulation of Potts models
(Potts, 1952, <doi:10.1017/S0305004100027419>),
which are the multi-color generalization of Ising models
(so, as as special case, also simulates Ising models).
Use the Swendsen-Wang algorithm (Swendsen and Wang, 1987,
<doi:10.1103/PhysRevLett.58.86>) so MCMC is fast.
Do maximum composite likelihood estimation of parameters
(Besag, 1975, <doi:10.2307/2987782>,
Lindsay, 1988, <doi:10.1090/conm/080>).

License GPL (>= 2)

URL http://www.stat.umn.edu/geyer/mcmc/

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-08-12 16:00:02 UTC

R topics documented:
Cache T . 2
calc_t . 4
composite.ll . 6
image.raw . 8
packPotts . 8
potts . 9

1

https://doi.org/10.1017/S0305004100027419
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.2307/2987782
https://doi.org/10.1090/conm/080
http://www.stat.umn.edu/geyer/mcmc/

2 Cache T

Index 12

Cache T Cache calculated Canonical Statistics for Potts Models.

Description

Variety of functions to support caching of calculated canonical statistics for Potts Models. There is
some attempt at being ’smart’ with when to regenerate the statistics.

Usage

generate_t_cache(x, ncolor, t_stat, sizeA, npixel, f,
fapply=lapply, gridcache=NULL)

gengridcache(ncolor, sizeCA, ncol)

gensingleton(ncolor)

singleton(x, ncolor, a, idx, gridcache=NULL)

gentwopixel(ncolor)

twopixel(x, ncolor, a, idx, gridcache=NULL)

twopixel.nonoverlap(x, ncolor, a, idx, gridcache=NULL)

genfourpixel(ncolor)

fourpixel(x, ncolor, a, idx, gridcache=NULL)

fourpixel.nonoverlap(x, ncolor, a, idx, gridcache=NULL)

genthreebythree(ncolor)

ninepixel.nonoverlap(x, ncolor, a, idx, gridcache=NULL)

genfourbyfour(ncolor)

sixteenpixel.nonoverlap(x, ncolor, a, idx, gridcache=NULL)

Arguments

t_stat numerical vector of length ncolor. Contains the canonical statistic for the whole
image.

sizeA numerical. The number of elements in A.

sizeCA numerical. The number of elements in CA.

Cache T 3

npixel numerical. The number of pixels in one element of A.

f function. Takes arguments x, ncolor, a, idx and ncolor. Returns value of
t_calc_innergrid with window Aa replaced by the idxth element of CA.

fapply function. It should behave exactly as lapply does. You can use this argument to
enable parallel computing.

gridcache list. Optional. If non-null, it is a list of the elements of CA.

x numeric, 2 dimensional matrix, elements in 1, . . . , ncolor, representing a Potts
model.

ncolor numeric. Number of colors in this Potts Model.

ncol numeric. Gives the number of columns in a rectangular window.

a numeric. Indicates which member of A is being referenced.

idx numeric. Indicates which element of CA is being referenced.

Details

For a description of notation and terminology, see composite.ll.

This set of functions is used to generate cached calculations of the canonical statistic of a Potts
model suitable for passing into composite.ll or gr.composite.ll.

All of the calculations using composite.ll and these caching functions need one of the color
components to be dropped for the model to be identifiable. For simplicity, the first color is dropped
by generate_t_cache. In computing the composite log likelihood for a Potts model with ncolor
colors, we are interested in many calculations across CA, the set of all permutations of colors across
a window. These functions facilitate those calculations. gridcache is a list of CA.

generate_t_cache is the main function, and the others are intended to be used in conjunction with
it. generate_t_cache creates a list of arrays. Each array represents one window in the image, and
each row of the array contains the value of t(x) (with one component dropped) found by replacing
the pixels in that window with one of the elements of CA.

gengridcache can generate the gridcache for any rectangular window, give the number of colors,
size of CA, and number of columns in the window. gensingleton, gentwopixel, genfourpixel,
genthreebythree and genfourbyfour are all just simple wrappers for gengridcache.

singleton, twopixel, twopixel.nonoverlap, fourpixel, fourpixel.nonoverlap, ninepixel.nonoverlap
and sixteenpixel.nonoverlap are intended to be passed to generate_t_cache in the argument
f. They are used to calculate t(caidx ∪X \Aa) for the idxth element of CAa .

Functions that have overlap and nonoverlap versions generate a overlapping and nonoverlapping
set of windows respectively.

singleton is for a single pixel window (Besag or MPLE).

twopixel does a two horizontal pixel window.

fourpixel does a two by two pixel window.

ninepixel does a three by three pixel window.

sixteenpixel does a four by four pixel window.

4 calc_t

Value

Functions that start with gen return a list of the elements of CA.

The other functions (e.g. twopixel, fourpixel, . . .) return the result of replacing the a-th window
of x with the idx-th element of CA and calculating calc_t_innergrid for that window.

See Also

composite.ll, calc_t.

Examples

ncolor <- 4
beta <- log(1+sqrt(ncolor))
theta <- c(rep(0,ncolor), beta)

nrow <- 32
ncol <- 32

x <- matrix(sample(ncolor, nrow*ncol, replace=TRUE), nrow=nrow, ncol=ncol)
foo <- packPotts(x, ncolor)
out <- potts(foo, theta, nbatch=10)
x <- unpackPotts(out$final)

t_stat <- calc_t(x, ncolor)
t_cache_mple <- generate_t_cache(x, ncolor, t_stat, nrow*ncol, 1,

singleton)

Not run:
use multicore to speed things up.
library(multicore)
t_cache_mple <- generate_t_cache(x, ncolor, t_stat, nrow*ncol, 1,

singleton, fapply=mclapply)

End(Not run)

calc_t Calculate Canonical Statistic for Potts Model

Description

Calculate the canonical statistic ’t’ for a realization of a Potts Model

Usage

calc_t_full(x,ncolor)
calc_t_innergrid(x, ncolor, grid, i, j)
calc_t(x, ncolor, grid=NULL, i=NULL, j=NULL)

calc_t 5

Arguments

x 2 dimensional matrix, elements in 1, . . . , ncolor, representing a Potts model

ncolor numeric. Number of colors in this Potts Model.

grid numeric. 2 dimensional matrix, elements in 1, . . . , ncolor. If non-NULL it is
placed into x at the location x[i,j].

i numeric. Row to place the grid.

j numeric. Column to place the grid.

Details

For a description of notation and terminology, see composite.ll.

Calculates the canonical statistics for a realized Potts Model. calc_t calls calc_t_full if grid is
NULL and calc_t_innergrid otherwise.

calc_t_full calculates the canonical statistics for the full image.

calc_t_innergrid calculates the canonical statistics for the a window of the image, but with that
window replaced by grid, with the upper left corner of grid located at x[i,j].

Value

For a description of notation and terminology, see composite.ll.

All functions return a vector of length ncolor+1. Elements 1,. . . ,ncolor contain the number of
pixels of each color. Element ncolor+1 contains the number of matching neighbor pairs for the
image.

calc_t_full returns the values for the whole image.

calc_t_innergrid returns the value for just the selected window, but this includes the num-
ber of matching pairs from the replaced window to it’s neighbors. E.g. if X is the full image,
and Aa is the value of some window in the image and we want to know the value of t(y ∪
X \ Aa) this would be calc_t_full(X, ncolor) + calc_t_innergrid(X, ncolor, y, i, j) -
calc_t_innergrid(X, ncolor, A(a), i, j)

See Also

generate_t_cache, composite.ll.

Examples

ncolor <- 4
beta <- log(1+sqrt(ncolor))
theta <- c(rep(0,ncolor), beta)

nrow <- 32
ncol <- 32

x <- matrix(sample(ncolor, nrow*ncol, replace=TRUE), nrow=nrow, ncol=ncol)
foo <- packPotts(x, ncolor)

6 composite.ll

out <- potts(foo, theta, nbatch=10)
x <- unpackPotts(out$final)

t_stat <- calc_t(x, ncolor)
t_stat_inner <- calc_t(x, ncolor, matrix(1, nrow=2, ncol=2), 1, 1)

composite.ll Composite Log Likelihood for Potts Models

Description

Calculate Composite Log Likelihood (CLL) and the gradient of the CLL for Potts models.

Usage

composite.ll(theta, t_stat, t_cache=NULL, fapply=lapply)
gr.composite.ll(theta, t_stat, t_cache=NULL, fapply=lapply)

Arguments

theta numeric canonical parameter vector. The CLL will be evaluated at this point. It
is assumed that the component corresponding to the first color has been dropped.

t_stat numeric, canonical statistic vector. The value of the canonical statistic for the
full image.

t_cache list of arrays. t_cache[[i]][j,] = the value of t with window Ai replaced by
the jth element of CA.

fapply function. Expected to function as lapply does. Useful for enabling parallel
processing. E.g. use the mclapply function from the multicore package.

Details

For the given value of theta composite.ll and gr.composite.ll calculate the CLL and the
gradient of the CLL respectively for a realized Potts model represented by t_stat and t_cache.

A is the set of all windows to be used in calculating the Composite Log Likelihood (CLL) for a
Potts model. A window is a collection of adjacent pixels on the lattice of the Potts model. A is
used to represent a generic window inA, the code in this package expects that all the windows inA
have the same size and shape. |A| is used to denote the size, or number of pixels in a window. Each
pixel in a Potts takes on a value in C, the set of possible colors. For simplicity, this implementation
takes C = {1, . . . , ncolor}. Elements of C will be referenced using cj with j ∈ {1, . . . , ncolor}.
CA is used to denote all the permutations of C across the window A, and |C||A| is used to denote
the size of CA. In an abuse of notation, we use Aa to refer to the ath element of A. No ordinal or
numerical properties of A, C or CA are used, only that each element in the sets are referenced by
one and only one indexing value.

composite.ll 7

Value

composite.ll returns CLL evaluated at theta.

gr.composite.ll returns a numeric vector of length length(theta) containing the gradient of
the CLL at theta.

See Also

generate_t_cache, calc_t.

Examples

ncolor <- 4
beta <- log(1+sqrt(ncolor))
theta <- c(rep(0,ncolor), beta)

nrow <- 32
ncol <- 32

x <- matrix(sample(ncolor, nrow*ncol, replace=TRUE), nrow=nrow, ncol=ncol)
foo <- packPotts(x, ncolor)
out <- potts(foo, theta, nbatch=10)
x <- unpackPotts(out$final)

t_stat <- calc_t(x, ncolor)
t_cache_mple <- generate_t_cache(x, ncolor, t_stat, nrow*ncol, 1,

singleton)
t_cache_two <- generate_t_cache(x, ncolor, t_stat, nrow*ncol/2, 2,

twopixel.nonoverlap)

composite.ll(theta[-1], t_stat, t_cache_mple)
gr.composite.ll(theta[-1], t_stat, t_cache_mple)

Not run:
optim.mple <- optim(theta.initial, composite.ll, gr=gr.composite.ll,

t_stat, t_cache_mple, method="BFGS",
control=list(fnscale=-1))

optim.mple$par

optim.two <- optim(theta.initial, composite.ll, gr=gr.composite.ll,
t_stat, t_cache_two, method="BFGS",
control=list(fnscale=-1))

optim.two$par

End(Not run)

Not run:
or use mclapply to speed things up.
library(multicore)
optim.two <- optim(theta.initial, composite.ll, gr=gr.composite.ll,

t_stat, t_cache_two, mclapply, method="BFGS",

8 packPotts

control=list(fnscale=-1))
optim.two$par

End(Not run)

image.raw Plot Potts Model Data

Description

plot Potts model data.

Usage

S3 method for class 'raw'
image(x, col = c("white", "red", "blue", "green",

"black", "cyan", "yellow", "magenta"), ...)

Arguments

x an R vector of class "raw" that encodes a realization of a Potts model, typically
the output of packPotts or of potts.

col a vector of colors. Must be as many as number of colors of Potts model.

... other arguments passed to image.default.

Bugs

Too slow for large images. Needs to be rewritten for efficient plotting.

See Also

potts

packPotts Transform Potts Model Data

Description

transform Potts model data from integer matrix to raw vector and vice versa.

Usage

packPotts(x, ncolor)
inspectPotts(raw)
unpackPotts(raw)

potts 9

Arguments

x integer matrix containing Potts model data. Colors are coded from one to ncolor.

ncolor integer scalar, number of colors.

raw vector of type "raw".

Value

for packPotts a vector of type "raw". for inspectPotts a list containing components ncolor,
nrow, and ncol. for unpackPotts an integer matrix.

Examples

x <- matrix(sample(4, 2 * 3, replace = TRUE), nrow = 2)
x
foo <- packPotts(x, ncolor = 4)
foo
inspectPotts(foo)
unpackPotts(foo)

potts Potts Models

Description

Simulate Potts model using Swendsen-Wang algorithm.

Usage

potts(obj, param, nbatch, blen = 1, nspac = 1,
boundary = c("torus", "free", "condition"), debug = FALSE,
outfun = NULL, ...)

Arguments

obj an R vector of class "raw" that encodes a realization of a Potts model, typi-
cally the output of packPotts. Alternatively, an object of class "potts" from a
previous invocation of this function can be supplied, in which case any missing
arguments are taken from this object.

param numeric, canonical parameter vector. Last component must nonnegative (see
Details below).

nbatch the number of batches.

blen the length of batches.

nspac the spacing of iterations that contribute to batches.

boundary type of boundary conditions. The value of this argument can be abbreviated.

debug return additional debugging information.

10 potts

outfun controls the output. If a function, then the batch means of outfun(tt, ...) are
returned. The argument tt is the canonical statistic of the Potts model having
the same length as the argument param of this function. If NULL, the batch means
of the canonical statistic are returned.

... additional arguments for outfun.

Details

Runs a Swendsen-Wang algorithm producing a Markov chain with equilibrium distribution having
the specified Potts model. The state of a Potts model is a collection of random variables taking
values in a finite set. Here the finite set is 1, . . . , ncolor and the elements are called “colors”. The
random variables are associated with the nodes of a rectangular lattice, represented by unpackPotts
as a matrix. In keeping with calling the values “colors”, the random variables themselves are often
called “pixels”. The probability model is an exponential family with canonical statistic vector of
length ncolor + 1. The first ncolor components are the counts of the number of pixels of each
color. The last component is the number of pairs of neighboring pixels colored the same. The
corresponding canonical parameter, last component of the canonical parameter vector (argument
param) must be nonnegative for the Swendsen-Wang algorithm to work (Potts models are defined
for negative dependence parameter, but can’t be simulated using this algorithm).

In the default boundary specification ("torus"), also called toroidal or periodic boundary condi-
tions, the vertical edges of the pixel matrix are considered glued together, as are the horizontal
edges. Thus corresponding pixels in the first and last rows are considered neighbors, as are corre-
sponding pixels in the first and last columns. In the other boundary specifications there is no such
gluing: pixels in the the relative interiors of the first and last rows and first and last columns have
only three neighbors, and the four corner pixels have only two neighbors.

In the "torus" and "free" boundary specifications, all pixels are counted in determining the color
count canonical statistics, which thus range from zero to nrow * ncol, where nrow and ncol are
the number of rows and columns of the pixel matrix. In the "condition" boundary specification,
all pixels in the first and last rows and first and last columns are fixed (conditioned on), and only
the random pixels are counted in determining the color count canonical statistics, which thus range
from zero to (nrow - 2) * (ncol - 2).

In the "torus" boundary specification, all pixels have four neighbors, so the neighbor pair canonical
statistic ranges from zero to 2 * nrow * ncol. In the "free" boundary specification, pixels in the
interior have four neighbors, those in the relative interior of edges have three, and those in the
corners have two, so the neighbor pair canonical statistic ranges from zero to nrow * (ncol - 1)
+ (nrow - 1) * ncol. In the "condition" boundary specification, only neighbor pairs in which at
least one pixel is random are counted, so the neighbor pair canonical statistic ranges from zero to
(nrow - 2) * (ncol - 1) + (nrow - 1) * (ncol - 2).

Value

an object of class "potts", which is a list containing at least the following components:

initial initial state of Markov chain in the format output by packPotts.

final final state of Markov chain in the same format.

initial.seed value of .Random.seed before the run.

final.seed value of .Random.seed after the run.

potts 11

time running time of Markov chain from system.time.

param canonical parameter vector.

nbatch the number of batches.

blen the length of batches.

nspac the spacing of iterations that contribute to batches.

boundary the argument boundary.

batch an nbatch by nout matrix, where nout is the length of the result returned by
outfun or length(param) if outfun == NULL; each row is the batch means for
the result of outfun or the canonical statistic vector for one batch of Markov
chain iterations.

Examples

ncolor <- as.integer(4)
beta <- log(1 + sqrt(ncolor))
theta <- c(rep(0, ncolor), beta)

nrow <- 100
ncol <- 100
x <- matrix(1, nrow = nrow, ncol = ncol)
foo <- packPotts(x, ncolor)

out <- potts(foo, theta, nbatch = 10)
out$batch
Not run: image(out$final)

Index

∗ misc
Cache T, 2
calc_t, 4
composite.ll, 6
image.raw, 8
packPotts, 8
potts, 9

Cache T, 2
calc_t, 4, 4, 7
calc_t_full (calc_t), 4
calc_t_innergrid (calc_t), 4
composite.ll, 3–5, 6

fourpixel (Cache T), 2

generate_t_cache, 5, 7
generate_t_cache (Cache T), 2
genfourbyfour (Cache T), 2
genfourpixel (Cache T), 2
gengridcache (Cache T), 2
gensingleton (Cache T), 2
genthreebythree (Cache T), 2
gentwopixel (Cache T), 2
gr.composite.ll (composite.ll), 6

image.raw, 8
inspectPotts (packPotts), 8

ninepixel.nonoverlap (Cache T), 2

packPotts, 8, 8, 9, 10
potts, 8, 9

singleton (Cache T), 2
sixteenpixel.nonoverlap (Cache T), 2
system.time, 11

twopixel (Cache T), 2

unpackPotts, 10
unpackPotts (packPotts), 8

12

	Cache T
	calc_t
	composite.ll
	image.raw
	packPotts
	potts
	Index

