Package ‘linelistBayes’

May 3, 2024
Type Package

Title Bayesian Analysis of Epidemic Data Using Line List and Case
Count Approaches

Version 1.0
Date 2024-04-30
Maintainer Chad Milando <cmilando@bu.edu>

Description Provides tools for performing Bayesian inference on epidemiological
data to estimate the time-varying reproductive number and other related metrics.
These methods were published in Li and White (2021) <doi:10.1371/journal.pcbi.1009210>.
This package supports analyses based on aggregated case count data and individual line list
data, facilitating enhanced surveillance and intervention planning for infectious
diseases like COVID-19.

License GPL-3

Imports Rcpp (>= 1.0.11), magrittr, lubridate, coda, dplyr
LinkingTo Rcpp, ReppArmadillo

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr

LazyData true

Depends R (>=2.10)

Config/testthat/edition 3

RoxygenNote 7.3.1

Encoding UTF-8

NeedsCompilation yes

Author Chad Milando [aut, cre],
Tenglong Li [ctb],
Laura White [ctb]

Repository CRAN
Date/Publication 2024-05-03 13:00:10 UTC

https://doi.org/10.1371/journal.pcbi.1009210

2 backnow_cm
R topics documented:
backnow_cm e 2
convert_to_linelist. e e 3
create_caseCoOUNTS v i e e e e 5
create_linelist e 6
dnb . L e e e e 7
dummy e 7
findmiss e e e 8
LS A 9
GELLMU_VEC . . ¢ v v v vt e it e et e e e e e e e e e e e 10
lambda. e 11
logLikNB o o e 12
plotbacknow 13
plot.caseCounts e 14
POD L 15
PIOP - o o o e e e e 16
0 410 17
run_backnow L 17
SAMPIE_CASES 19
SL o v e e s 20
Index 22
backnow_cm Get Bayesian Back-calculation Estimates and Model Diagnostics
Description

This function performs Bayesian back-calculation, imputation of missing delays, and nowcasting
based on the provided data.

Usage

backnow_cm(

outcome,
days,
week,
weekend,
iter,
sigma,
maxdelay,
si,

size,
workerlID,
printProgress,
cd = NULL

convert_to_linelist 3

Arguments
outcome Vector of outcomes; difference between report and onset times
days Vector of days when the report is given, aligned from the minimum report day
week Vector indicating the week of the report, assumes no change within the week
weekend Binary vector indicating if the outcome was reported during a weekend
iter Number of iterations for the Bayesian back-calculation algorithm
sigma The standard deviation for the normal distribution
maxdelay The maximum delay parameter for the negative binomial distribution
si Serial interval vector
size The size parameter for the negative binomial distribution
workerID Identifier for the parallel worker

printProgress Flag to print the progress information

cd second size parameter, unused

Value

output A list object that contains the back-calculated estimates and model diagnostics

Examples

data("sample_onset_dates")
data("sample_report_dates")
line_list <- create_linelist(sample_report_dates, sample_onset_dates)
sip <- si(14, 4.29, 1.18)
results <- run_backnow(
line_list,

MAX_ITER = as.integer(2000),

norm_sigma = 0.5,

sip = sip,

NB_maxdelay = as.integer(20),

NB_size = as.integer(6),

workerID = 1,

printProgress = 1,
preCalcTime = TRUE)

convert_to_linelist Convert Case Counts to a Line List

Description

This function takes a data frame of case counts and expands it into a line list format, which is often
used for epidemiological analysis. The function validates input data, manages missingness, and
assumes additional generation times based on the specified reporting function.

4 convert_to_linelist

Usage

convert_to_linelist(
caseCounts,
reportF = NULL,
reportF_args = NULL,
reportF_missP = NULL

)
Arguments
caseCounts A data frame with columns ‘date‘, ‘cases‘, and ‘location‘. The data frame must
meet several criteria: - It should only contain data for one location. - Dates must
be in Date format. - Case numbers must be non-negative integers. - No missing
values are allowed in the necessary columns.
reportF A function used to simulate the delay from case reporting to case onset. Defaults

to a negative binomial distribution function (‘rnbinom*) if NULL.

reportF_args A list of additional arguments to pass to ‘reportF‘. Defaults to ‘list(size = 3, mu
=9)‘ when ‘reportF‘ is NULL.

reportF_missP A numeric probability between O and 1 (exclusive) indicating the proportion of
missing onset dates. It throws an error if it is out of bounds or not numeric.

Details

The function stops and sends error messages for various data integrity issues, such as incorrect data
types, negative cases, or missing required columns. It also assumes that the input data is for only
one location and handles NA generation according to ‘reportF_missP°.

Value

A data frame in line list format, where each row corresponds to a case report. The data frame
includes columns for the report date, the delay from report to onset, the onset date, weekend indi-
cator, report interval in days from the first report, and week interval. The returned data frame has
additional attributes set, including ‘min_day* and the class ‘lineList".

Examples

data("sample_dates")

data("sample_location™)

data("sample_cases”)

case_Counts <- create_caseCounts(sample_dates, sample_location, sample_cases)
line_list <- convert_to_linelist(case_Counts)

create_caseCounts 5

create_caseCounts Create a Case Counts Data Frame

Description

This function constructs a data frame from vectors representing dates, locations, and case numbers,
ensuring that all input vectors meet specific data integrity requirements. It checks for the correct
data types, non-negative case numbers, and uniformity in vector lengths. The function also ensures
no missing values are present and that all data pertain to a single location.

Usage

create_caseCounts(date_vec, location_vec, cases_vec)

Arguments

date_vec A vector of dates corresponding to case reports; must be of type Date.

location_vec A character vector representing the location of the case reports; all entries must
refer to the same location.

cases_vec A numeric vector representing the number of cases reported on each date; values
must be non-negative integers.

Details

The function performs several checks to ensure the integrity of the input: - It verifies that all vectors
have the same length. - It confirms that there are no negative numbers in ‘cases_vec*. - It checks
for and disallows any missing values in the data frame. It throws errors if any of these conditions
are not met, indicating that the input vectors are not appropriately formatted or contain invalid data.

Value

A data frame named ‘caseCounts‘ with columns ‘date‘, ‘cases‘, and ‘location‘. Each row corre-
sponds to a unique report of cases on a given date at a specified location. The data frame is assigned
a class attribute of ‘caseCounts®.

Examples

data("sample_dates”)

data(”sample_location”)

data("sample_cases")

case_Counts = create_caseCounts(sample_dates, sample_location, sample_cases)

6 create_linelist

create_linelist Create a Line List from Report and Onset Dates

Description

This function constructs a line list data frame using vectors of report and onset dates. It performs
several checks and transformations to ensure the data is consistent and appropriate for epidemio-
logical analysis.

Usage

create_linelist(report_dates, onset_dates)

Arguments

report_dates A vector of dates representing when cases were reported; must be of type Date.

onset_dates A vector of dates representing when symptoms onset occurred; must be of type
Date. This vector can contain NA values, but not exclusively or none at all.

Details

The function ensures the following: - The length of ‘report_dates‘ and ‘onset_dates‘ must be equal.
- There should be no NA values in ‘report_dates‘. - ‘onset_dates‘ must contain some but not all
NA values. - Each non-NA onset date must be earlier than or equal to its corresponding report date.
If any of these conditions are violated, the function will stop with an error message. Additionally,
the function calculates the delay in days between onset and report dates, identifies weekends, and
calculates reporting and week intervals based on the earliest date.

Value

A data frame with the following columns: report_dates, delay_int, onset_dates, is_weekend, re-
port_int, and week_int. This data frame is ordered by report_dates and assigned a class attribute of
‘lineList*.

Examples

data(”"sample_onset_dates")
data("sample_report_dates")
line_list <- create_linelist(sample_report_dates, sample_onset_dates)

dnb 7

dnb Calculate Log-Probability Density for Negative Binomial Distribution

Description

This function computes the log-probability density function of the negative binomial distribution,
given the number of successes, the dispersion parameter, and the mean of the distribution. This is
useful for probabilistic models where negative binomial assumptions are applicable, such as certain
types of count data.

Usage
dnb(x, r, m)
Arguments

X A numeric value representing the number of successes, which should be a non-
negative integer.

r A numeric value representing the dispersion parameter of the negative binomial
distribution. A higher value indicates a distribution more tightly concentrated
around the mean.

m A numeric value representing the mean of the distribution.

Value

A numeric value representing the log-probability density function value of observing *x’ successes
given the mean 'm’ and dispersion ’r’. This return value is given on the log scale to facilitate
calculations that involve very small probabilities.

Examples

dnb(5, 2, 10);

dummy Generate Dummy Variables Matrix for Weeks and Weekends

Description

This function creates a matrix of dummy variables based on reported weeks and weekend indicators.
Each column in the resulting matrix corresponds to a specific week, except for the last column,
which indicates whether the date falls on a weekend. This matrix is typically used in regression
models where week-specific effects are to be adjusted along with the effect of weekends.

Usage

dummy (week, weekend)

8 findmiss

Arguments
week An integer vector representing the week number of each observation. Each ele-
ment denotes the week during which a specific event occurred.
weekend A binary integer vector (elements being O or 1) indicating whether each ob-
servation corresponds to a weekend. Here, ‘1° indicates a weekend and ‘0 a
weekday.
Value

A numeric matrix where each row corresponds to an observation and each column to a week, with
an additional final column for weekend indicators. The elements of the matrix are dummy variables
(0 or 1); each row contains exactly one "1’ in one of the first several columns corresponding to the
week of the observation, and a ’1” or 0’ in the last column indicating weekend status.

Examples
week <- c(1, 1, 1, 2, 2, 3, 3, 3, 3, 3)
weekend <- c(@, 1, 0, 0, 1, @, 0, 1, 1, @)
dummy_vars <- dummy(week, weekend)
findmiss Locate Missing Values in a Numeric Vector

Description

This function identifies the indices of missing values (NA) in a given numeric vector. It is useful
for data cleaning and preprocessing steps where identification of missing data points is required.

Usage
findmiss(x)
Arguments
X A numeric vector potentially containing NA values. The values can range from
-infinity to infinity.
Value

An integer vector containing the indices where NA values are found in ‘x‘. These indices can
be used directly to reference or manipulate elements in other vectors of the same length or for
subsetting the original vector.

Examples

vec <- c(1, 2, NA, 4, NA, 6)
findmiss(vec)

getr 9

getr Calculate Time-Varying Reproduction Number R(t)

Description

This function estimates the time-varying reproduction number, R(t), based on the epidemic curve
and serial interval distribution. R(t) is calculated for each day using a moving window approach,
which involves taking a segment of the epidemic curve and applying a transformation based on the
serial interval to estimate how many subsequent cases are generated by cases within the window.

Usage

getr(curve, si, size)

Arguments
curve NumericVector representing the estimated epidemic curve with daily counts.
This curve can include both back-calculated and nowcasted counts of infections.
si NumericVector representing the serial interval distribution, expressed as a vector
where each element corresponds to the probability of a delay of that many days
between successive cases.
size Integer specifying the size of the moving window used to calculate the mean
reproduction number. This window size determines how many days are included
in the calculation of R(t) at each step.
Value

NumericVector containing the estimated mean reproduction numbers (R(t)) for each day. The length
of this vector will be the length of ‘curve‘ minus ‘size‘ minus one, reflecting the fact that the last
few days do not have enough data to fill the window.

Examples

Assume curve is a numeric vector of daily case counts and si is the serial interval distribution
curve <- rnorm(100, mean=10, sd=3) # example epidemic curve

si <- rep(@.1, 10) # example serial interval distribution

size <- 6 # example size of the moving window

getr(curve, si, size)

10 get_mu_vec

get_mu_vec Calculate Exponential of Linear Combinations

Description

Computes the exponential of linear combinations of beta coefficients and a matrix of predictors,
typically used in Poisson or logistic regression models for estimating rates or probabilities. This
function specifically handles the exponential transformation, which is commonly used to ensure
that rates or probabilities are non-negative.

Usage

get_mu_vec(x12, beta)

Arguments
x12 NumericMatrix representing a matrix of predictors, where each row corresponds
to an observation and columns correspond to different predictor variables (e.g.,
weeks and weekends).
beta NumericVector of coefficients corresponding to the predictors in ‘x12°. This
should include coefficients for both weekly effects and potentially an additional
coefficient for weekends.
Details

The function multiplies the matrix ‘x12°‘ by the vector ‘beta‘ to get the linear predictors, then applies
the exponential function to convert these linear predictors to a scale suitable for models where the
response variable is a count or probability. This is a critical step in generalized linear models where
the link function is the natural logarithm.

Value

NumericVector where each element is the exponential of the linear combination of the predictors
and coefficients for a given observation. This vector represents the model-estimated mean values
for each observation.

Examples

Assuming x12 is a matrix with 10 observations and 3 predictors
and beta is a vector of 3 coefficients

x12 <= matrix(rnorm(30), ncol=3)

beta <- c(0.1, -0.2, 0.05)

get_mu_vec(x12, beta)

lambda 11

lambda Calculate Lambda Values for Poisson Distribution Mean

Description

This function computes the convolution of the epidemic curve with the serial interval distribution
to estimate the mean of the Poisson distribution for each day. This mean is crucial in models where
the number of new cases follows a Poisson process. The calculation is effectively a weighted sum
of past case counts, where weights are given by the serial interval distribution, representing the
expected number of new cases caused by an individual case on each subsequent day.

Usage

lambda(curve, si)

Arguments
curve NumericVector representing the daily counts of new cases, estimated from the
epidemic data. This vector should include both historically observed data and
nowcasted estimates.
si NumericVector representing the serial interval distribution, a probability dis-
tribution describing the time delay between successive cases in an infectious
disease transmission chain.
Details

The function applies the serial interval to the epidemic curve via convolution, essentially calculating
the expected number of secondary cases generated by each primary case over the serial interval. The
length of the resulting vector is one less than that of ‘curve‘ because the last day’s value cannot be
calculated without full serial interval data.

Value

NumericVector containing the estimated mean values for the Poisson distribution at each day, ex-
cluding the last day as the serial interval cannot be fully applied.

Examples

curve <- c¢c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
si <- c(0.5, 0.3, 0.2) # Declining probability over three days
lambda_values <- lambda(curve, si)

12 logLikNB

loglL ikNB Compute Log-Likelihood for a Right-Truncated Negative Binomial
Model

Description

This function calculates the log-likelihood of observing the given data under a right-truncated neg-
ative binomial distribution. It is used to assess the fit of a model involving delay times in reporting
cases, where each case has a delay modeled by a negative binomial distribution that is truncated at
a specified maximum delay.

Usage

logLikNB(delay_vec, x12, disp, betaplus, maxdelay)

Arguments
delay_vec NumericVector representing the observed delay times for each case.
x12 NumericMatrix of covariates used to model the mean of the negative binomial
distribution. Each row corresponds to a case and columns correspond to covari-
ates including time since onset and others.
disp NumericVector indicating the dispersion parameter for each case. This can af-
fect the distribution of counts and is used to model heterogeneity in reporting
delays.
betaplus NumericVector containing current estimates of the model parameters, which
may include coefficients for covariates and additional parameters.
maxdelay Integer specifying the maximum reporting delay, truncating the distribution at
this value.
Details

This function computes the log-likelihood by calculating the likelihood of each observed delay
under the specified model parameters, considering the truncation at ‘maxdelay‘. The parameters
‘disp‘ and ‘betaplus allow for flexibility in modeling different types of heterogeneity and covariate
effects.

Value

Double representing the log-likelihood of the data given the model parameters. This value measures
how well the model with the current parameter estimates fits the observed data.

Examples

Example usage with arbitrary data:

delay_vec <- rnorm(100, mean=10, sd=3) # Simulated delay times

x12 <- matrix(rnorm(300), ncol=3) # Simulated covariates

disp <- rep(1, 100) # Dispersion parameter, constant for simplicity

plot.backnow 13

betaplus <- runif(4) # Simulated parameter estimates
maxdelay <- 15 # Maximum delay for truncation
loglik_value <- loglLikNB(delay_vec, x12, disp, betaplus, maxdelay)

plot.backnow Plot Estimates or Reproduction Numbers

Description

This function plots estimates of case numbers or reproduction numbers (‘r(t)‘) based on the provided
object. It can handle two types of plots: ’est’ for estimated case numbers over time, and ’rt’ for
estimated reproduction numbers over time.

Usage
S3 method for class 'backnow'
plot(x, plottype, ...)
Arguments
X An object containing the necessary data for plotting. This object should have

specific structure depending on the ‘plottype‘: - For ‘plottype ="est’‘, ‘x‘ should
contain ‘report_date‘, ‘report_cases‘, ‘est_back_date‘, and ‘est_back‘, where
‘est_back® is expected to be a matrix with three rows representing the lower
bound, estimate, and upper bound. - For ‘plottype = 'rt’‘, ‘x* should contain
‘est_rt_date‘ and ‘est_rt‘, with ‘est_rt* formatted similarly to ‘est_back".

plottype A character string specifying the type of plot to generate. Valid options are ’est’
for case estimates and ’rt’ for reproduction numbers.

Additional arguments passed to the plot function.

Details

Depending on the ‘plottype‘: - "est’: Plots the reported cases over time with a polygon representing
the uncertainty interval and a line showing the central estimate. - 'rt’: Plots the reproduction number
over time with a similar style.

Value

a plot object for an object of class ‘backnow*

Examples

data("sample_onset_dates")

data("sample_report_dates")

line_list <- create_linelist(sample_report_dates, sample_onset_dates)
sip <- si(14, 4.29, 1.18)

results <- run_backnow(

14 plot.caseCounts

line_list,

MAX_ITER = as.integer(2000),

norm_sigma = 0.5,

sip = sip,

NB_maxdelay = as.integer(20),

NB_size = as.integer(6),

workerID = 1,

printProgress = 1,

preCalcTime = TRUE)
plot(results, 'est')
plot(results, 'rt')

plot.caseCounts Plot Case Counts Over Time

Description

This function plots the number of cases over time from a data frame object. If the data frame
contains multiple locations, a specific location must be specified. The plot displays the total number
of cases against dates and annotates one of the earliest points with the location name.

Usage
S3 method for class 'caseCounts'
plot(x, loc = NULL, ...)
Arguments
X A data frame containing the case counts with at least two columns: ‘date‘ and

‘cases‘. The data frame may optionally include a ‘location® column, which is
required if multiple locations are present.

loc An optional string specifying the location to filter the case counts by. If ‘loc” is
provided and ‘location‘ column exists in ‘x°, the plot will only show data for the
specified location. If multiple locations are present and ‘loc is not specified, the
function will stop with an error.

Additional arguments passed to the ‘plot‘ function.

Details
If the ‘location® column is present in ‘x* and contains multiple unique values, the ‘loc* parameter
must be specified to indicate which location’s data to plot. The function adds a text annotation to
the plot, labeling one of the earliest points with the specified location’s name.

Value

a plot object for an object of class ‘caseCounts*

pnb 15

Examples

data("sample_dates”)

data(”sample_location”)

data("sample_cases")

case_Counts = create_caseCounts(sample_dates, sample_location, sample_cases)
plot(case_Counts)

pnb Compute Cumulative Distribution Function for Negative Binomial
Distribution

Description

This function calculates the cumulative distribution function (CDF) of the negative binomial distri-
bution given a number of successes, a dispersion parameter, and the mean. The negative binomial
distribution is commonly used to model count data with overdispersion relative to a Poisson distri-

bution.
Usage

pnb(x, r, m)
Arguments

X Non-negative integer specifying the number of successes for which the CDF
is computed. This value must be non-negative as it represents the number of
successes in the distribution.

r Dispersion parameter of the distribution, a positive real number. Higher val-
ues of ’r’ indicate a higher probability of counts clustering around the mean,
reducing overdispersion.

m Mean of the distribution, a positive real number indicating the expected number
of successes. The mean must be positive.

Details

The negative binomial distribution can be parameterized by a dispersion parameter 'r’ and a mean
’m’, which together determine the shape of the distribution. This function is essential for modeling
and probability calculations in various fields such as epidemiology and ecology where the negative
binomial distribution is used to model count data.

Value
y The probability of observing up to ’x’ successes in a negative binomial distribution parameterized
by ’r’ (dispersion) and 'm’ (mean). This function returns the CDF value.

Examples

pnb(10, 5, 10)

16 prop

prop Calculate Proportions of Event Counts Within a Specified Time Range

Description

This function calculates the proportion of event counts that occur within each unit of time from a
specified starting point (onset time) up to a maximum delay. The proportions are computed relative
to the total number of events occurring within the specified time range.

Usage

prop(x, onset, maxdelay, cd)

Arguments
X NumericVector representing the count of events at each time point.
onset NumericVector representing the onset times for each event count. Each element
in the vector indicates the time at which an event was initiated.
maxdelay The maximum time delay (inclusive) for which the proportions are calculated.
This parameter defines the upper bound of the time interval over which the pro-
portions of event counts are evaluated.
cd The onset time (exclusive) from which to start calculating proportions. Events
that start at times less than or equal to this value are excluded from the calcula-
tion.
Value

NumericVector containing the proportions of the total events falling within each unit of time from
the specified ’cd’ up to *'maxdelay’. The proportions are cumulative, with each element representing
the proportion of events that have occurred by that time point, starting from ’cd’.

Examples

x <-c(1, 2, 3, 4, 5,6, 7,8, 9, 10
onset <- c¢c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5)
maxdelay <- 5

cd <- 1

prop(x, onset, maxdelay, cd)

rnb 17

rnb Generate Random Samples from a Negative Binomial Distribution

Description

This function generates random samples from a negative binomial distribution with the specified
dispersion parameter (r) and success probability (p).

Usage
rnb(r, p)
Arguments
r The number of failures before achieving a specified number of successes in a
negative binomial experiment. It also serves as the dispersion parameter which
controls the variance of the distribution.
p The probability of success on each independent Bernoulli trial within the nega-
tive binomial experiment.
Value

A random value sampled from the negative binomial distribution with parameters r and p.

Examples

r <-2
p <-0.3
rnb(r, p)

run_backnow Run Back Calculation and Estimate Reproduction Numbers

Description

This function performs a back-calculation based on provided epidemic case count data, estimating
the time distribution of infections and reproduction numbers (r(t)). It utilizes extensive input checks
and parameter validation to ensure robust model execution.

18

Usage

run_backnow(
input,
MAX_ITER,
norm_sigma,
sip,

NB_maxdelay,

NB_size,

run_backnow

n_trunc = NB_size,
workerID = NULL,

printProgress
preCalcTime =

Arguments

input
MAX_ITER
norm_sigma

sip

NB_maxdelay

NB_size
n_trunc

workerID
printProgress

preCalcTime

Details

:@,
TRUE,

A data frame or list that includes epidemic data with either class ’caseCounts’
or ’lineList’. The input type determines initial processing steps.

Integer, maximum number of iterations for the back-calculation model. Re-
quires at least 2000 iterations; high numbers can significantly increase runtime.

Numeric, the standard deviation for the normal distribution in the Bayesian
framework.

Vector of numeric values specifying the serial interval probabilities.

Integer, the maximum delay for the right-truncated negative binomial distribu-
tion used in modeling.

Integer, the size parameter for the negative binomial distribution.
Integer, the truncation number for the final result matrices (defaults to ‘NB_size®).

Optional integer to specify a worker ID for parallel processing frameworks; de-
faults to 0.

Binary integer (0 or 1), specifying whether to print progress to console; affects
performance.

Boolean, if TRUE, the function calculates a preliminary runtime estimate before
full execution.

Additional arguments passed to underlying functions when converting input to
the required format.

The function ensures input data is of the correct class and processes it accordingly. It handles dif-
ferent input classes by either converting ‘caseCounts‘ to ‘lineList‘ or directly using ‘lineList‘. The
function stops with an error if the input doesn’t meet expected standards. It performs simulations to
estimate both the back-calculation of initial infections and reproduction numbers over time, while
checking and adjusting for potential NA values and ensuring that all conditions for the model pa-
rameters are met. Output includes estimates of initial infections and reproduction numbers along
with diagnostic statistics.

sample_cases

Value

an object of class ‘backnow* with the following structure
- est_back: back-calculated case counts

- est_back_date: dates for back-calculated case counts

- est_rt: back-calculated R(r)

- est_rt_date: dates for back-calculated R(t)

- geweke_back: Geweke diagnostics for the estimated back-calculation of cases
- geweke_rt; Geweke diagnostics for R(t)

- report_date: a vector of dates, matches reported_cases

- report_cases: a vector of reported cases

- MAX_ITER: the input for ‘MAX_ITER®

- norm_sigma: the input for ‘norm_sigma*

- NB_maxdelay: the input for ‘NB_maxdelay*

- si: the input for serial interval ‘si*

- NB_size: the input for ‘NB_size*

Examples

data("sample_onset_dates")
data("sample_report_dates")
line_list <- create_linelist(sample_report_dates, sample_onset_dates)
sip <- si(14, 4.29, 1.18)
results <- run_backnow(
line_list,
MAX_ITER = as.integer(2000),
norm_sigma = 0.5,
sip = sip,
NB_maxdelay = as.integer(20),
NB_size = as.integer(6),
workerID = 1,
printProgress = 1,
preCalcTime = TRUE)

sample_cases Sample datasets

Description

These data sets provide tests for use in converting between case counts and line list data.

20 si

Usage

sample_cases
sample_dates
sample_location
sample_onset_dates
sample_report_dates

out_list_demo

Format

Either vectors or a list object (out_list_demo)

Details

‘sample_cases‘ provides a vector of daily case counts. ‘sample_dates‘ are the dates of the sample
case counts. ‘sample_location* are the locations of the sample case counts. ‘sample_onset_dates*
are the same information as in sample_cases, but with one entry per case indicating the date of
symptom onset. ‘sample_report_dates are the same information as in sample_cases, but with one
entry per case indicating the date of symptom reporting. ‘out_list_demo* is a precomputed output
from run_backnow, useful for plotting in the vignettes

Examples

sample_cases
sample_dates
sample_location
sample_onset_dates
sample_report_dates

si Calculate Serial Interval Distribution for COVID-19

Description

This function computes the probability distribution function (PDF) of the serial interval for COVID-
19 using a gamma distribution with specified shape and rate parameters. The serial interval is
defined as the time between successive cases in a chain of transmission. This implementation
generates a discrete PDF over a given number of days.

Usage

si(ndays, alpha, beta)

si

Arguments

ndays

alpha
beta

Details

21

Integer, the number of days over which to calculate the serial interval distribu-
tion.

Numeric, the shape parameter of the gamma distribution.

Numeric, the rate parameter of the gamma distribution.

The function uses the ‘pgamma‘ function to calculate cumulative probabilities for each day up to
‘ndays‘ and then differences these to get daily probabilities. The resulting probabilities are normal-
ized to sum to 1, ensuring that they represent a valid probability distribution.

Value

Numeric vector representing the serial interval probabilities for each of the first ‘ndays‘ days. The
probabilities are normalized so that their sum is 1.

References

Nishiura, H., Linton, N. M., & Akhmetzhanov, A. R. (2020). Serial interval of novel coronavirus
(COVID-19) infections. International Journal of Infectious Diseases, 93, 284-286. [Link to the
article](https://www.sciencedirect.com/science/article/pii/S1201971220306111)

Examples

sip <- si(14, 4.29, 1.18)

Index

x datasets
sample_cases, 19

backnow_cm, 2

convert_to_linelist,3
create_caseCounts, 5
create_linelist, 6

dnb, 7
dummy, 7

findmiss, 8

get_mu_vec, 10
getr, 9

lambda, 11
logLikNB, 12

out_list_demo (sample_cases), 19

plot.backnow, 13
plot.caseCounts, 14
pnb, 15

prop, 16

rnb, 17
run_backnow, 17

sample_cases, 19

sample_dates (sample_cases), 19
sample_location (sample_cases), 19
sample_onset_dates (sample_cases), 19
sample_report_dates (sample_cases), 19
si, 20

22

	backnow_cm
	convert_to_linelist
	create_caseCounts
	create_linelist
	dnb
	dummy
	findmiss
	getr
	get_mu_vec
	lambda
	logLikNB
	plot.backnow
	plot.caseCounts
	pnb
	prop
	rnb
	run_backnow
	sample_cases
	si
	Index

