
Visually pleasing knot projections in R

Robin K. S. Hankin

The University of Stirling

Abstract

To cite this work in publications, use Hankin (2023).
In this short article I introduce the knotR package, which creates two dimensional knot

diagrams optimized for visual appearance. The knotR package is a systematic R-centric
suite of software for the creation of production-quality artwork of knot diagrams.

Keywords: Knot theory, R.

1. Introduction

A mathematical knot is a smooth, unoriented embedding of a circle S
1 into R

3 (Manturov
2004). Two knots are said to be equivalent if one can be continuously deformed in to the
other; if so, there is a homeomorphism h:R

3
−→ R

3 which takes one embedded circle to the
other.

It is common to present a knot using diagrams such as Figure 1, in which a two-dimensional
projection of the knot is given with broken lines indicating where one strand passes over
another.

Figure 1: A table of prime knots up to seven crossings, labels following Alexander and Briggs
(1926). Image taken from Wikipedia (2016).

2 Visually pleasing knot projections in R

Consider Figure 1 from an æsthetic perspective; the diagrams are representative of those
available under a free license. However, these diagrams are not suitable for high-quality
artwork such as posters: they are not vectorized. Many of the underlying knots possess a
line of symmetry (at least, the diagrams do if the breaks are ignored), which is not present
in the visual representation. Also, several of the strands cross at acute angles. The diagram
for knot 73, for example, contains ugly kinks and abrupt changes of curvature.

Such considerations suggest that knot diagrams might be produced by minimization of some
objective function that quantifies the visual inelegance of a knot diagram. The precise nature
of such an objective function is, of course, a subjective choice but one might require the
following desiderata:

• Curvature to be as uniform as possible

• Strands to cross at right angles

• Crossing points to be separate from one another

• Any symmetry present in the knot should be enforced exactly, and be visually apparent

Knot diagrams may be created using vectorized graphics software such as inkscape (Kirsanov
2009): one specifies a sequence of control points, then interpolates between these points to
create a knot diagram with the appropriate topology. One way of smoothly interpolating
between specified points is Bezier curves (Olsen 2014). A Bezier curve is a visually pleasing
polynomial path that can be used to specify the path of a knot projection.

The package presented here allows one to specify a knot in terms of its Bezier control points
within inkscape, import the object into R, and then to use numerical optimization techniques
to improve the visual appearance of the knot.

2. The package in use

In this section, I give workflows for creating two simple knots: firstly 76, followed by the
figure-of-eight knot 41 which requires imposition of symmetry constraints.

The first step is to create a closed curve in inkscape that shows the rough outline of the
knot (Figure 2 shows a screenshot of 7_6_first_draft.svg, supplied with the package).
Note that this file contains only the knot path; the over and under information is to be added
later.

Here, knot paths are required to have Bezier handles that are symmetrically placed with
regard to nodes. Although radius of curvature is not necessarily matched at either side of a
node, visual continuity of the strand is ensured. In the diagram, strand crossing points are
far from nodes, as this ensures visual continuity of strands at crossing points, especially the
understrand.

The knot shown in Figure 2 is clearly suboptimal: even though the nodes are connected by
Bezier curves which are individually smooth, the path as a whole is ugly and unattractive as
its path has unsightly regions where the radius of curvature changes abruptly.

Although it is possible in principle to improve the visual appearance of the knot path by
hand in inkscape, this is a surprisingly difficult and frustrating task. In order to remedy the

Robin K. S. Hankin 3

Figure 2: Screenshot of inkscape setup for knot 76. Nodes are shown as squares, handles as
small circles, symmetrically placed on either side of nodes

flaws of the diagram using an automated system, we first read the .svg file into R using the
reader() function:

> k76 <- reader(system.file("7_6_first_draft.svg",package="knotR"))

> head(k76)

x y

[1,] -98.81963 339.81898

[2,] -223.87754 303.35366

[3,] -299.84521 121.06064

[4,] -236.36319 36.35340

[5,] -172.88118 -48.35384

[6,] -92.86186 -69.78212

Object k76 is stored as an object of class inkscape: a two-column matrix with rows corre-
sponding to the node and handle positions of the inkscape path. This representation has a
certain amount of redundancy as knot paths have handles which are symmetrically placed
with respect to nodes; also, the first node is the same as the last for the loop is closed. The
package can coerce inkscape objects to other forms, specifically minobj objects, which con-
tain no redundancy (the position of each node, as well as one of the handles, is stored); or
controlpoints objects, which allow for easy construction of Bezier interpolation between
nodes.

To beautify it we need to specify a function of the path that quantifies its displeasingness,
and then minimize this objective function using numerical methods.

Two examples of desiderata for such an objective function might be to keep the strands
crossing at right angles, and the overall bending energy. These are evaluated in the package by
functions total_crossing_angle_badness() and total_bending_energy() respectively:

4 Visually pleasing knot projections in R

> par(oma=c(0, 0, 0, 0))

> par(mar=c(0, 0, 0, 0))

> par(plt=c(0, 1, 0, 1))

> k76_rough <- reader(system.file("7_6_first_draft.svg",package="knotR"))

> knotplot2(k76_rough, seg=TRUE)

Figure 3: The path of knot 76, showing Bezier control points. Coloured circles have a radius
proportional to the curvature (that is, the reciprocal of the radius of curvature) along the
strand

Robin K. S. Hankin 5

11
1

1
1

1
1
1
1
1
2
22222222233333333334 4 444444445

5
5
5
5
5
5

5
556666666

6
6

6
7
7
7
7
7
7
7
7
7
7
8
8
8
8
8
8
8
8
8

8999999999910
10
10
10
10
10
10
10
10
1011
11
11
11
11
11
11
11
11

11
12

121212121212
12

12
12

13

13
13

13
13

13 13 13 13131414141414141414141415
15
15
15
15
15
15
15
15
15
16

16
16

16
16

16
16

161616

Figure 4: Knot 76 with strands numbered to guide creation of over and under information

> b <- as.controlpoints(k76_rough)

> total_crossing_angle_badness(b)

[1] 0.3145033

> total_bending_energy(b)

[1] 0.1276257

The knots supplied in the package minimize a weighted sum of these and other badnesses1,
as evaluated by function badness():

> badness(k76_rough)

[1] 4.747525

This function may be minimized by numerical optimization:

> o <- nlm(badness, as.knotvec(k76_rough))

> k7_6 <- as.minobj(o$estimate)

> badness(k7_6)

1Function badness() includes various “housekeeping” badnesses which are used to make sure that

the minimum found by nlm() is topologically identical to the starting configuration. Function

non_crossing_strand_close_approach_badness(), for example, makes non-crossing strands “repel” one an-

other so as not to introduce spurious intersections.

6 Visually pleasing knot projections in R

Figure 5: Knot 76, post-optimization

[1] 3.550152

(the above takes about an hour of CPU time: it is optimizing function of 64 real variables,
and the objective function takes a few seconds to evaluate). However, the result is much nicer
(Figure 5).

To specify the senses of the knot’s crossings, we create an overunder object which is a two-
column matrix:

> ou76 <- matrix(c(

+ 12,01,

+ 02,11,

+ 07,03,

+ 04,15,

+ 16,06,

+ 14,08,

+ 10,13

+),byrow=TRUE,ncol=2)

Robin K. S. Hankin 7

Figure 6: Knot 76, post-optimization with breaks indicating underpassing strands

With reference to Figure 4, each row of ou76 corresponds to a crossing; the first element gives
the overstrand and the second the understrand; thus strand 12 passes over strand 1, strand 2
passes over strand 11, and so on. The result is shown in figure 6.

2.1. Symmetry

Many of the knots in Figure 1 have an axis of symmetry, or possess rotational symmetry. The
package has the ability to impose symmetry relations on knots, and to optimize the resulting
symmetrical knot. Minimizing the badness is not entirely straightforward on account of the
induced redundancy, which is characterized using a symmetry object specific to the knot
under consideration. However, symmetry constraints do reduce the dimensionality of the
optimization problem.

I will consider the figure-of-eight knot 41 as an example. Using Figure 7, top left, as reference,
the appropriate symmetry object is defined as follows:

> fig8 <- reader(system.file("4_1_first_draft.svg",package="knotR"))

> Mver8 <- matrix(c(

8 Visually pleasing knot projections in R

1

2 3

4

5
6

7
8

9

10

11

Figure 7: Figure eight knots drawn using different plotting methods. top left, knot path
with node numbers shown in order to facilitate definition of the symmetry object; top right,
result of symmetrizing the rough path; lower left, the optimized knot with imposed vertical
symmetry, with curvature plotted; lower right, knot plotted with overstrand and understrand
indicated using line breaks

+ 02,03,

+ 09,07,

+ 05,11,

+ 10,06

+),ncol=2,byrow=TRUE)

> sym8 <- symmetry_object(fig8, Mver=Mver8, xver=8)

(Matrix Mver8 specifies that nodes 2 and 3 are symmetric, as are nodes 9 and 7, and so on;
xver=8 forces node 8 to be on the axis of symmetry). The results are shown in Figure 7.

2.2. Rotational symmetry

Consider knot 51. This knot has fivefold rotational symmetry, in addition to a vertical line of
symmetry. The package includes functionality to impose appropriate symmetry constraints.

Robin K. S. Hankin 9

Using Figure 8 as reference, we have:

> knotplot2(k5_1,node=TRUE,width=FALSE)

1 2 3

4

5

6

78

9

10

11
12

13

14

15

1617

18

19

20

Figure 8: Knot 51 shown with node numbers

> sym51 <- symmetry_object(k5_1,

+ Mver = cbind(11,13),

+ xver = c(2,12),

+ Mrot = rbind(

+ c(12,04,16,08,20),

+ c(13,05,17,09,01),

+ c(11,03,15,07,19),

+ c(02,14,06,18,10)

+))

Thus, using the same notation as before, nodes 11 and 13 are symmetrical about the vertical
axis, nodes 2 and 12 are on the vertical axis. The Mrot argument specifies sets of nodes

10 Visually pleasing knot projections in R

that map to themselves under rotation. The top line of Mrot indicates that nodes 12,4,16, 8,
and 20 are concyclic. An example of a rotationally symmetric knot is given in Figure 10.

3. Conclusions and further work

The knot package allows the user to create rough diagrams of knots using the inkscape suite
of software, and subsequently polish up such diagrams in terms of a customizable objective
function using numerical optimization techniques. Further work might include functionality
to deal with links.

Robin K. S. Hankin 11

4. Gallery

There now follows a selection of pleasing knot diagrams taken from datasets provided with
the package.

> par(oma=c(0, 0, 0, 0))

> par(mar=c(0, 0, 0, 0))

> par(plt=c(0, 1, 0, 1))

> par(pty='m')

> plot(NULL,xlim=c(-700,2200),ylim=c(-1800,200),asp=1,box=FALSE)

> jjA <- as.inkscape(perko_A)*1.7

> jjB <- as.inkscape(perko_B)*1.7

> oA <- perko_A$overunder

> oB <- perko_B$overunder

> knotplot(jjA,ou=oA,add=TRUE,lwd=4)

> jjB <- sweep(as.inkscape(jjB),2,c(1500,-600),"+")

> knotplot(jjB,ou=oB,add=TRUE,lwd=4)

Figure 9: Two representations of knot 10125, known as the Perko Pair

References

Alexander JW, Briggs GB (1926). “On Types of Knotted Curves.” Annals of Mathematics,
28(1/4), 562–586. ISSN 0003-486X. doi:10.2307/1968399. URL http://www.jstor.

org/stable/1968399.

Hankin RKS (2023). “Visually pleasing knot projections.” Journal of Mathematics and

https://doi.org/10.2307/1968399
http://www.jstor.org/stable/1968399
http://www.jstor.org/stable/1968399

12 Visually pleasing knot projections in R

> par(oma=c(0, 0, 0, 0))

> par(mar=c(0, 0, 0, 0))

> par(plt=c(0, 1, 0, 1))

> par(pty='m')

> knotplot(ornamental20)

Figure 10: An ornamental knot exhibiting fivefold rotational symmetry; note the absence of
mirror symmetry

Robin K. S. Hankin 13

> par(oma=c(0, 0, 0, 0))

> par(mar=c(0, 0, 0, 0))

> par(plt=c(0, 1, 0, 1))

> par(pty='m')

> knotplot(k10_123)

Figure 11: Knot 10123, exhibiting fivefold symmetry

14 Visually pleasing knot projections in R

Figure 12: All prime eight-crossing knots, following Rolfsen

Robin K. S. Hankin 15

the Arts. doi:10.1080/17513472.2023.2185058. URL https://doi.org/10.1080/

17513472.2023.2185058.

Kirsanov D (2009). The Book of Inkscape: The Definitive Guide to the Free Graphics Editor.
1 edition edition. No Starch Press, San Francisco. ISBN 978-1-59327-181-7.

Manturov V (2004). Knot Theory. Chapman and Hall.

Olsen A (2014). bezier: Bezier Curve and Spline Toolkit. R package version 1.1, URL https:

//CRAN.R-project.org/package=bezier.

Wikipedia (2016). “Knot theory — Wikipedia, The Free Encyclopedia.” [Online;
accessed 17-June-2016], URL https://en.wikipedia.org/w/index.php?title=Knot_

theory&oldid=724939634.

Affiliation:

Robin K. S. Hankin
The University of Stirling
Scotland

https://doi.org/10.1080/17513472.2023.2185058
https://doi.org/10.1080/17513472.2023.2185058
https://doi.org/10.1080/17513472.2023.2185058
https://CRAN.R-project.org/package=bezier
https://CRAN.R-project.org/package=bezier
https://en.wikipedia.org/w/index.php?title=Knot_theory&oldid=724939634
https://en.wikipedia.org/w/index.php?title=Knot_theory&oldid=724939634

	Introduction
	The package in use
	Symmetry
	Rotational symmetry

	Conclusions and further work
	Gallery

