Package ‘jvcoords’

October 13, 2022
Type Package
Title Principal Component Analysis (PCA) and Whitening
Version 1.0.3
Date 2021-06-05
License GPL-3

URL https://github.com/seehuhn/jvcoords

Description Provides functions to standardize and whiten data, and to perform
Principal Component Analysis (PCA). The main advantage of this
package over alternatives like prcomp() is, that jvcoords makes it
easy to convert (additional) data between the original and the
transformed coordinates. The package also provides a class coords,
which can represent affine coordinate transformations. This class
forms the basis of the transformations provided by the package, but
can also be used independently. The implementation has been
optimized to be of comparable speed (and sometimes even faster) than
existing alternatives.

NeedsCompilation no

Author Jochen Voss [aut, cre] (<https://orcid.org/0000-0002-2323-3814>)
Maintainer Jochen Voss <voss@seehuhn.de>

Repository CRAN

Date/Publication 2021-06-05 17:00:02 UTC

R topics documented:

jvecoords-package e e
Coords e e e
PCA . e e
standardize L e e
whiten e e e e e e

Index

https://github.com/seehuhn/jvcoords
https://orcid.org/0000-0002-2323-3814

2 coords

jvcoords-package Package overview

Description

The jvcoords package provides functions to standardize and whiten data, and an implementation of
Principal Component Analysis (PCA). All three transformations are implemented using a common
class coords which allows to easily convert data from and to the new coordinate systems.

See the documentation for standardize, whiten, and PCA for information on how to use this
package.

Author(s)

Jochen Voss <voss @seehuhn.de>

See Also

standardize, whiten, PCA, coords

coords An 83 class to represent affine coordinate transforms

Description

Perform affine coordinate transformations.

Usage

coords(p, name = NULL, shift = @)
appendTrfm(trfm, op = c("diag”, "orth"), val)
toCoords(trfm, x)

fromCoords(trfm, y, apply.shift = TRUE)

Arguments
p The number of variables in the original data.
name A short name for the coordinate transformation (optional).
shift A value subtracted from the data as the first step of the coordinate transforma-
tion. Usually, this will be the mean of the data (optional).
trfm An object of class coords.
op The type of transformation to append.
val Data for the transformation to append.
X Data matrix, rows are observations, columns are variables.
y Transformed data matrix, rows are observations, columns are variables.

apply.shift Whether to apply the final shift of coordinates. Set this to FALSE in order to only
apply the linear part of the transformation.

coords 3

Details

The function coords() creates a new object representing an affine coordinate transformation. Ini-
tially, the object represents a shift by the amount shift, mapping p-dimensional vectors x to
x-shift. The function appendTrfm() can then be used to modify the transformation. The op-
tional argument name, if set, is used when printing objects of class coords.

The function toCoords() applies the affine transformation trfm to the data x. The data x must
either be a vector of length trfm$p, in which case the result is a vector of length trfm$q, or a
matrix with trfm$p columns, in which case the transformation is applied to each row of the matrix
separately.

The function fromCoords() implements the inverse transform to toCoords (). The output always
satisfies toCoords(trfm, fromCoords(trfm, y)) ==y. If trfm$p == trfm$q, i.e. if the transfor-
mation is bijective, the fromCoords(trfm, toCoords(trfm, x)) == x also holds. The argument
apply.shift can be set to false to apply only the linear part of the (inverse) transformation, leav-
ing out the final shift.

The function appendTrfm() concatenates trfm with an additional, linear transformation and returns
the result. The arguments op and val specify which kind of linear transformation to append. There
are two choices for op:

» diag denotes multiplication with a diagonal matrix: an input vector x is mapped to the output
x * val. The scaling factor val can either be a vector of length trfm$q (for element-wise
scaling), or a number.

* orth denotes multiplication with an orthogonal matrix. val must be a matrix with orthogonal
columns (not necessarily square) and trfm$q rows. An input vector x is mapped to the output
X %*% orth.

The new transformation is applied after any other transformations already associated with trfm.

Value

An object of class coords, as a list with the following components:

p the number of variables in the original data set

q the number of variables in the transformed data set

shift the affine part of the transformation

name the name of the transformation

cmds a representation of the transformation (internal use only)
Author(s)

Jochen Voss <voss @seehuhn.de>

See Also

standardize, whiten, PCA

4 PCA

Examples

pc <- PCA(iris[, 1:4]1, n.comp = 3)
toCoords(pc, c(5, 3, 4, 1))
fromCoords(pc, c(1, 0, @))

PCA Perform Principal Component Analysis (PCA)

Description
Perform principal components analysis on a data matrix and return the results as an object of class
coords.

Usage

PCA(x, n.comp, scale = FALSE, compute.scores = TRUE)

Arguments
X A data matrix, rows are observations, columns are variables.
n.comp How many principal components to compute.
scale Whether to standardize the columns before doing PCA.

compute.scores Whether to compute the scores (i.e. x in the new basis).

Details

This function performs Principal Component Analysis (PCA) on the data. Variables are always
centred before the PCA is performed and, if scale is set, the variables will also be rescaled to unit
variance.

If compute. scores is set to FALSE, only the information required for the toPC() and fromPC() to
work is stored in the returned coords object; otherwise the scores will be stored in the $y field of
the coords object.

The PCA() function is an alternative to the prcomp() command from the standard library. The main
advantage of PCA() is that the coords class provides functions to convert between the original basis
and the principal component basis.

Value

An object of class coords, with the following additional components added:

loadings the loadings, each column is one of the new basis vectors
y if compute.scores==TRUE, this is x expressed in the new basis
var the variance of the data along each of the new basis vectors

total.var the total variance of the data

standardize 5

Author(s)

Jochen Voss <voss @seehuhn.de>

See Also

coords; alternative implementations: prcomp, princomp

Examples

pc <- PCA(iris[, 1:4]1, scale = TRUE, n.comp = 2)
pc
plot(pc$y, col=iris$Species)

standardize Standardize data

Description

Standardize each column of a data matrix and return the results as an object of class coords.

Usage

standardize(x, compute.scores = TRUE)

Arguments

X A data matrix, rows are observations, columns are variables.

compute.scores Whether to compute the scores (i.e. x in the new basis).

Details

This function standardizes the columns of x by subtracting the mean of each column and then
dividing by the standard deviation. The transformed data is stored in the $y field of the returned
coords object.

If compute. scores is set to FALSE, only the information required for the toCoords () and fromCoords ()
to work is stored in the returned coords object; otherwise the scores (transformed data) will be
stored in the $y field of the coords object.

Value
An object of class coords, with the following additional components added:

y if compute.scores==TRUE, this is x expressed in the new basis

Author(s)

Jochen Voss <voss @seehuhn.de>

6 whiten

See Also

coords; alternative implementation scale

Examples

w <- standardize(iris[, 1:4])
colMeans (w$y)
apply(wsy, 2, sd)

whiten Whiten data

Description

Whiten data and return the results as an object of class coords.

Usage

whiten(x, compute.scores = TRUE)

Arguments

X A data matrix, rows are observations, columns are variables.

compute.scores Whether to compute the scores (i.e. x in the new basis).

Details

This function whitens the data by finding an affine transformation such that the transformed data
has mean 0 and identity covariance matrix.

If compute. scores is set to FALSE, only the information required for the toCoords () and fromCoords ()
to work is stored in the returned coords object; otherwise the scores (transformed data) will be
stored in the $y field of the coords object.

Value

An object of class coords, with the following additional components added:

loadings the loadings, each column is one of the new basis vectors
y if compute.scores==TRUE, this is x expressed in the new basis
Author(s)

Jochen Voss <voss @seehuhn.de>

See Also

coords

whiten

Examples

w <- whiten(iris[, 1:41)
colMeans (w$y)
round(cov(w$y), 3)

Index

* array
jvcoords-package, 2
+x math
jvcoords-package, 2
+« multivariate
jvcoords-package, 2
x package
jvcoords-package, 2

appendTrfm (coords), 2
coords, 2, 2, 4-6
fromCoords (coords), 2
jvcoords-package, 2
PCA, 2, 3,4

prcomp, 5

princomp, 5

scale, 6
standardize, 2, 3,5

toCoords (coords), 2

whiten, 2, 3,6

	jvcoords-package
	coords
	PCA
	standardize
	whiten
	Index

