Package 'jointNmix'

October 13, 2022

Type Package

Title Joint N-Mixture Models for Site-Associated Species

Version 1.0

Date 2016-10-04

Author Rafael de Andrade Moral [aut, cre], Clarice Garcia Borges Demetrio [aut], John Hinde [aut]

Maintainer Rafael de Andrade Moral <rafael_moral@yahoo.com.br>

Depends R (>= 3.0.0), methods, graphics, stats

Description

Fits univariate and joint N-mixture models for data on two unmarked site-associated species. Includes functions to estimate latent abundances through empirical Bayes methods.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2016-11-12 00:38:21

R topics documented:

jointNmix-package .							•	•						•											•			2
abundance-prediction																												3
corr-cov-jointNmix .																												4
dneymanA																												4
jointNmix																												5
jointNmix-methods .																												
Nmix		•		•	•	•	•	•			•	•	•			•	•	•	•	•		•	•	•		•	•	9
Nmix-methods		•		•	•	•	•	•			•	•	•			•	•	•	•	•		•	•	•		•	•	10
plot-methods-Nmix .		•		•	•	•	•	•			•	•	•		•	•	•	•	•	•		•	•	•		•	•	11
uniNmix-methods		•		•	•	•	•	•			•	•	•		•	•	•	•	•	•		•	•	•		•	•	12

Index

jointNmix-package

Description

Fits univariate and joint N-mixture models for data on two unmarked site-associated species. Includes functions to estimate latent abundances through empirical Bayes methods.

Details

The DESCRIPTION file:

Package:	jointNmix
Type:	Package
Title:	Joint N-Mixture Models for Site-Associated Species
Version:	1.0
Date:	2016-10-04
Authors@R:	c(person("Rafael", "de Andrade Moral", role = c("aut", "cre"), email = "rafael_moral@yahoo.com.br"), person
Author:	Rafael de Andrade Moral [aut, cre], Clarice Garcia Borges Demetrio [aut], John Hinde [aut]
Maintainer:	Rafael de Andrade Moral <rafael_moral@yahoo.com.br></rafael_moral@yahoo.com.br>
Depends:	R (\geq 3.0.0), methods, graphics, stats
Description:	Fits univariate and joint N-mixture models for data on two unmarked site-associated species. Includes function
License:	GPL (>=2)

Index of help topics:

AIC.Nmix	Methods for Nmix objects
Nmix	Univariate N-mixture models
dneymanA	The Neyman-A probability function
fitted.jointNmix	Methods for joint Nmix objects
fitted.uniNmix	Methods for univariate Nmix objects
getcorr.jointNmix	Extract correlations and covariances
getranef.uniNmix	Get empirical Bayes predictions of the latent abundances
jointNmix	Joint N-mixture models
jointNmix-package	Joint N-Mixture Models for Site-Associated
	Species
plot.uniNmix	Plot Methods for Nmix objects
	Species

Author(s)

Rafael de Andrade Moral [aut, cre], Clarice Garcia Borges Demetrio [aut], John Hinde [aut] Maintainer: Rafael de Andrade Moral <rafael_moral@yahoo.com.br>

abundance-prediction

References

Moral, R.A., Hinde, J., Demétrio, C.G.B., Reigada, C. and Godoy, W.A.C. (submitted) Models for jointly estimating abundance of two unmarked site-associated species subject to imperfect detection.

abundance-prediction Get empirical Bayes predictions of the latent abundances

Description

Computes the conditional abundance distribution given the data and model estimates

Usage

```
getranef.uniNmix(obj, distr = FALSE)
getranef.jointNmix(obj, distr = FALSE)
```

Arguments

obj	fitted model object
distr	logical. If TRUE, returns the matrix of conditional probabilities. If FALSE, returns the expected values of the conditional distributions, i.e. the abundance estimates

Details

These functions return the empirical Bayes estimates of the latent abundances from univariate and joint N-mixture models, as described by Royle (2004) and Moral et al. (submitted), respectively.

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

References

Royle, J.A. (2004) Models for estimating population size from spatially replicated counts. Biometrics 60:108-105.

Moral, R.A., Hinde, J., Demétrio, C.G.B., Reigada, C. and Godoy, W.A.C. (submitted) Models for jointly estimating abundance of two unmarked site-associated species subject to imperfect detection.

See Also

Nmix jointNmix

corr-cov-jointNmix Extract correlations and covariances

Description

Extract estimated correlations and covariances between observed abundances for joint N-mixture models

Usage

```
getcorr.jointNmix(obj)
getcov.jointNmix(obj)
```

Arguments

obj fitted model object

Details

The correlations under each specification of the latent abundance distributions are displayed in Moral et al. (submitted)'s Table 1. The covariances are derived as Supplementary information.

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

References

Moral, R.A., Hinde, J., Demétrio, C.G.B., Reigada, C. and Godoy, W.A.C. (submitted) Models for jointly estimating abundance of two unmarked site-associated species subject to imperfect detection.

See Also

jointNmix

dneymanA

The Neyman-A probability function

Description

Computes the probability function of the Neyman-A distribution

Usage

```
dneymanA(x, lambda1, lambda2, K, log = FALSE)
```

jointNmix

Arguments

х	vector of values
lambda1, lambda	a2
	parameters of the distribution
К	truncation value for the infinite summation
log	logical. If TRUE, the logarithm of the probabilities is returned

Details

The Neyman-A distribution has probability function

$$\frac{e^{-\lambda_1}\lambda_2^x}{x!}\sum_{k=0}^{\infty}\frac{(\lambda_1e^{-\lambda_2})^kk^x}{k!}$$

and is an overdispersion model. The summation is truncated to K.

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

Examples

```
x <- 0:10
dneymanA(x, lambda1 = 2, lambda2 = 1.5, K = 50)
```

jointNmix Joint N-mixture models

Description

Fits joint N-mixture models for site-associated species

Usage

```
jointNmix(sp1, sp2, start, method = "BFGS", K, mixture = c("P", "P"),
Xp1, Xp2, Xl1, Xl2, Xpsi, includepsi = TRUE)
```

Arguments

sp1	observation matrix for species 1
sp2	observation matrix for species 2
start	initial values for the optimization process
method	optimization method passed to optim. Defaults to "BFGS"
К	truncation number of the infinite summations in the log-likelihood. Defaults to $max(sp1, sp2) + 100$

mixture	two-character vector for latent abundance distributions. "P" for Poisson and "NB" for negative binomial. Defaults to $c("P", "P")$
Xp1	model matrix for detection probabilities of species 1
Xp2	model matrix for detection probabilities of species 2
X11	model matrix for abundance of species 1
X12	model matrix for linking parameter of species 2
Xpsi	model matrix for abundance of species 2
includepsi	logical. If FALSE, psi is not estimated and set to zero

Details

The function fits a bivariate extension to Royle's (2004) N-mixture model to data on the abundance of two species collected at R sites over T time occasions. The model for observation on site i at time t for species 1 can be specified as

$$Y_{1it}|N_{1i} Bin(N_{1i}, p_{1it})$$

 N_{1i} acount distribution with mean λ_{1i} .

The model for species 2 is

 $Y_{2it}|N_{1i}, N_{2i} Bin(N_{2i}, p_{2it})$

 $N_{2i}|N_{1i}$ acount distribution with mean $\psi + \lambda_{2i}N_{1i}$.

Here, users may define a Poisson or negative binomial distribution for the latent abundances N_1i and N_2i.

Value

An object of class jointNmix and Nmix, for which many methods are available (see methods(class = "jointNmix") and methods(class = "Nmix"))

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

References

Moral, R.A., Hinde, J., Demétrio, C.G.B., Reigada, C. and Godoy, W.A.C. (submitted) Models for jointly estimating abundance of two unmarked site-associated species subject to imperfect detection.

See Also

Nmix

jointNmix-methods

Examples

```
## simulating data with poisson latent abundances
R <- 10 # sites
T <- 10 # time occasions
lambda1 <- 5
psi <- 3
p1 <- .3
p2 <- .6
lambda2 <- .5
set.seed(1234); N1 <- rpois(R, lambda1)</pre>
set.seed(1234); N2 <- rpois(R, psi + lambda2*N1)</pre>
y1 <- y2 <- matrix(0, ncol=T, nrow=R)</pre>
set.seed(1234); for(i in 1:R) y1[,i] <- rbinom(T, N1, p1)</pre>
set.seed(1234); for(i in 1:R) y2[,i] <- rbinom(T, N2, p2)</pre>
Xp <- cbind(rep(1, R*T))</pre>
Xl <- cbind(rep(1, R))</pre>
## Not run:
## fitting the Poisson-Poisson joint N-mixture model
fitpp <- jointNmix(y1, y2, Xp1=Xp, Xp2=Xp, Xl1=X1, Xl2=Xl, mixture=c("P","P"), K=30)
## fitting the negbin-Poisson joint N-mixture model
fitnbp <- jointNmix(y1, y2, Xp1=Xp, Xp2=Xp, Xl1=Xl, Xl2=Xl, mixture=c("NB","P"), K=30)</pre>
## likelihood-ratio test between P-P and NB-P models
anova(fitpp, fitnbp)
## comparing using AIC
lapply(list(fitpp, fitnbp), AIC)
## conditional posterior probability functions for abundances
plot(fitpp, posterior = TRUE)
## estimated abundances vs. true abundances
data.frame(getranef.jointNmix(fitpp), N1, N2)
## End(Not run)
```

jointNmix-methods Methods for joint Nmix objects

Description

Fitted values, residual extraction, simulation and print method for joint N-mixture models

Usage

S3 method for class 'jointNmix'

```
fitted(object, ...)
## S3 method for class 'jointNmix'
print(x, round = TRUE, ...)
## S3 method for class 'jointNmix'
residuals(object, type = c("ordinary", "standardized"), ...)
## S3 method for class 'jointNmix'
simulate(object, ...)
```

Arguments

object, x	fitted model object
round	logical. Round the estimates?
type	type of residuals to be returned. May be ordinary or standardized
	not used

Details

fitted.uniNmix prints the fitted values for the model fit; residuals.uniNmix returns the ordinary (

$$r_i^o = y_i - \hat{\mu}_i$$

) or standardized (

$$r_i^s = \frac{y_i - \hat{\mu}_i}{\operatorname{Var}(Y_i)}$$

) residuals; simulate.uniNmix simulates one sample from the fitted model.

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

References

Moral, R.A., Hinde, J., Demétrio, C.G.B., Reigada, C. and Godoy, W.A.C. (submitted) Models for jointly estimating abundance of two unmarked site-associated species subject to imperfect detection.

See Also

Nmix jointNmix

8

Description

Fits univariate N-mixture models

Usage

Nmix(sp1, start, method = "BFGS", K, mixture, Xp, Xl)

Arguments

sp1	observation matrix for the species
start	initial values for the optimization process
method	optimization method passed to optim. Defaults to "BFGS"
К	truncation number of the infinite summations in the log-likelihood. Defaults to $max(sp1, sp2) + 100$
mixture	latent abundance distribution specification. "P" for Poisson, "NB" for negative binomial and "NeymanA" for Neyman-A distributions are available. Defaults to "P"
Хр	model matrix for detection probabilities
X1	model matrix for abundance parameter

Details

The function fits Royle's (2004) N-mixture model to data on species abundance collected at R sites over T time occasions. The model for observation on site i at time t can be specified as

 $Y_{it}|N_i Bin(N_i, p_{it})$

N_i acount distribution with mean λ_i .

Here, users may define a Poisson, negative binomial or Neyman-A distributions for the latent abundances N_i.

Value

An object of class uniNmix and Nmix, for which many methods are available (see methods(class = "uniNmix") and methods(class = "Nmix"))

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

References

Royle, J.A. (2004) Models for estimating population size from spatially replicated counts. Biometrics 60:108-105.

See Also

jointNmix

Examples

```
## simulating data with negative binomial latent abundances
R <- 10 # sites
T <- 10 # time occasions
lambda <- 5 # abundance parameter</pre>
p <- .3 # probability of detection</pre>
phi <- 1 # dispersion parameter
set.seed(1234); Ni <- rnbinom(R, mu=lambda, size=phi) # latent abundances</pre>
y <- matrix(0, ncol=T, nrow=R)</pre>
set.seed(1234); for(i in 1:R) y[,i] <- rbinom(T, Ni, p) # observed abundances</pre>
## fitting the Poisson N-mixture model
fitp <- Nmix(y, Xp=cbind(rep(1, R*T)), Xl=cbind(rep(1, R)), mixture="P", K=25)</pre>
## fitting the negative binomial N-mixture model
fitnb <- Nmix(y, Xp=cbind(rep(1, R*T)), Xl=cbind(rep(1, R)), mixture="NB", K=25)</pre>
## fitting the Neyman-A N-mixture model
fitna <- Nmix(y, Xp=cbind(rep(1, R*T)), X1=cbind(rep(1, R)), mixture="NeymanA", K=25)</pre>
## likelihood-ratio test between Poisson and negbin models
anova(fitp, fitnb)
## comparing using AIC
lapply(list(fitp, fitnb, fitna), AIC)
## conditional posterior probability functions for abundances
plot(fitnb, posterior = TRUE)
## estimated abundances vs. true abundances
data.frame(getranef.uniNmix(fitnb), Ni)
```

Nmix-methods

Methods for Nmix objects

Description

AIC, anova, coef, and logLik methods for univariate and joint N-mixture models

plot-methods-Nmix

Usage

```
## S3 method for class 'Nmix'
AIC(object, ...)
## S3 method for class 'Nmix'
anova(object, object2, ...)
## S3 method for class 'Nmix'
coef(object, ...)
## S3 method for class 'Nmix'
logLik(object, ...)
```

Arguments

object	fitted model object
object2	second model object for the anova method
	not used

Details

AIC.Nmix provides the Akaike Information Criterion for the model fit; anova.Nmix performs a likelihood-ratio test between two nested model fits; coef.Nmix prints the estimates of the model fit; logLik.Nmix prints the log-likelihood of the model fit.

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

See Also

Nmix jointNmix

plot-methods-Nmix Plot Methods for Nmix objects

Description

Plots residuals vs. fitted values or the conditional distributions of the abundances for each site

Usage

```
## S3 method for class 'uniNmix'
plot(x, posterior = FALSE, layout, sites, restype, ...)
## S3 method for class 'jointNmix'
plot(x, posterior = FALSE, layout, sites, restype, ...)
```

Arguments

х	fitted model object
posterior	logical. If TRUE, plots the conditional distributions of the abundances. If FALSE, plots residuals vs. fitted values
layout	two-number vector indicating the partition of the graphical window in rows and columns, respectively
sites	index of sites to plot the conditional distribution of the abundances. If left un- specified, all sites are plotted
restype	type of residuals to be plotted. Defaults to "ordinary"
	not used

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

References

Moral, R.A., Hinde, J., Demétrio, C.G.B., Reigada, C. and Godoy, W.A.C. (submitted) Models for jointly estimating abundance of two unmarked site-associated species subject to imperfect detection.

See Also

Nmix jointNmix

uniNmix-methods Methods for univariate Nmix objects

Description

Fitted values, residual extraction, simulation and print method for univariate N-mixture models

Usage

```
## S3 method for class 'uniNmix'
fitted(object, ...)
## S3 method for class 'uniNmix'
print(x, round = TRUE, ...)
## S3 method for class 'uniNmix'
residuals(object, type = c("ordinary", "standardized"), ...)
## S3 method for class 'uniNmix'
simulate(object, ...)
```

Arguments

object, x	fitted model object
round	logical. Round the estimates?
type	type of residuals to be returned. May be ordinary or standardized
	not used

Details

fitted.uniNmix prints the fitted values for the model fit; residuals.uniNmix returns the ordinary ($r_i^o=y_i-\hat{\mu}_i$

) or standardized (

$$r_i^s = \frac{y_i - \hat{\mu}_i}{\operatorname{Var}(Y_i)}$$

) residuals; simulate.uniNmix simulates one sample from the fitted model.

Author(s)

Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde

See Also

Nmix jointNmix

Index

* package jointNmix-package, 2 abundance-prediction, 3 AIC.Nmix (Nmix-methods), 10 anova.Nmix(Nmix-methods), 10 coef.Nmix(Nmix-methods), 10 corr-cov-jointNmix, 4 dneymanA, 4 fitted.jointNmix(jointNmix-methods),7 fitted.uniNmix(uniNmix-methods), 12 getcorr.jointNmix(corr-cov-jointNmix), 4 getcov.jointNmix(corr-cov-jointNmix),4 getranef.jointNmix (abundance-prediction), 3 getranef.uniNmix (abundance-prediction), 3 jointNmix, 3, 4, 5, 8, 10–13 jointNmix-methods, 7 jointNmix-package, 2 logLik.Nmix(Nmix-methods), 10 Nmix, 3, 6, 8, 9, 11–13 Nmix-methods, 10 optim, 5, 9 plot-methods-Nmix, 11 plot.jointNmix(plot-methods-Nmix), 11 plot.uniNmix(plot-methods-Nmix), 11 print.jointNmix(jointNmix-methods),7 print.uniNmix(uniNmix-methods), 12 residuals.jointNmix

```
(jointNmix-methods),7
```

residuals.uniNmix (uniNmix-methods), 12

simulate.jointNmix(jointNmix-methods),
7

simulate.uniNmix(uniNmix-methods), 12

uniNmix-methods, 12