Package 'interpret'

November 28, 2024

Title Fit Interpretable Machine Learning Models

Version 0.1.34

Date 2024-11-28

Description Package for training interpretable machine learning models. Historically, the most interpretable machine learning models were not very accurate, and the most accurate models were not very interpretable. Microsoft Research has developed an algorithm called the Explainable Boosting Machine (EBM) which has both high accuracy and interpretable characteristics. EBM uses machine learning techniques like bagging and boosting to breathe new life into traditional GAMs (Generalized Additive Models). This makes them as accurate as random forests and gradient boosted trees, and also enhances their intelligibility and editability. Details on the EBM algorithm can be found in the paper by Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad (2015, <doi:10.1145/2783258.2788613>).

URL https://github.com/interpretml/interpret

BugReports https://github.com/interpretml/interpret/issues

License MIT + file LICENSE

Depends R (>= 3.0.0)

NeedsCompilation yes

SystemRequirements C++17

Author Samuel Jenkins [aut], Harsha Nori [aut], Paul Koch [aut], Rich Caruana [aut, cre], The InterpretML Contributors [cph]

Maintainer Rich Caruana <interpretml@outlook.com>

Repository CRAN

Date/Publication 2024-11-28 11:40:08 UTC

Contents

ebm_classify 2

ebm_classify

	ebm_predict_proba	
Index		6

ebm_classify Build an EBM classification model

Description

Builds a classification model

Usage

```
ebm_classify(
 X,
 y,
 max_bins = 255,
 outer_bags = 16,
 inner_bags = 0,
 learning_rate = 0.01,
 validation_size = 0.15,
 early_stopping_rounds = 50,
 early_stopping_tolerance = 1e-4,
 max_rounds = 5000,
 min_hessian = 1e-3,
 max_leaves = 3,
 random_state = 42
)
```

Arguments

Х	features			
У	targets			
max_bins	number of bins to create			
outer_bags	number of outer bags			
inner_bags	number of inner bags			
learning_rate	learning rate			
validation_size				
	amount of data to use for validation			
early_stopping_rounds				
	how many rounds without improvement before we quit			
early_stopping_tolerance				
	how much does the round need to improve by to be considered as an advance-			
	ment			
max_rounds	number of boosting rounds			

min_hessian	minimum hessian required for a split
max_leaves	how many leaves allowed
random_state	random seed

Value

Returns an EBM model

Examples

```
data(mtcars)
X <- subset(mtcars, select = -c(vs))
y <- mtcars$vs
set.seed(42)
data_sample <- sample(length(y), length(y) * 0.8)
X_train <- X[data_sample, ]
y_train <- y[data_sample]
X_test <- X[-data_sample, ]
y_test <- y[-data_sample]
ebm <- ebm_classify(X_train, y_train)</pre>
```

ebm_predict_proba ebm_predict_proba

Description

Predicts probabilities using an EBM model

Usage

```
ebm_predict_proba(
   model,
   X
)
```

Arguments

model the model X features

Value

returns the probabilities predicted

Examples

```
data(mtcars)
X <- subset(mtcars, select = -c(vs))
y <- mtcars$vs
set.seed(42)
data_sample <- sample(length(y), length(y) * 0.8)
X_train <- X[data_sample, ]
y_train <- y[data_sample]
X_test <- X[-data_sample]
y_test <- y[-data_sample]
ebm <- ebm_classify(X_train, y_train)
proba_test <- ebm_predict_proba(ebm, X_test)</pre>
```

```
ebm_show
```

ebm_show

Description

Shows the GAM plot for a single feature

Usage

```
ebm_show(
   model,
   name
)
```

Arguments

model	the model
name	the name of the feature to plot

Value

None

Examples

```
data(mtcars)
X <- subset(mtcars, select = -c(vs))
y <- mtcars$vs
set.seed(42)
data_sample <- sample(length(y), length(y) * 0.8)
X_train <- X[data_sample, ]</pre>
```

4

ebm_show

```
y_train <- y[data_sample]
X_test <- X[-data_sample, ]
y_test <- y[-data_sample]
ebm <- ebm_classify(X_train, y_train)</pre>
```

ebm_show(ebm, "mpg")

5

Index

ebm_classify, 2
ebm_predict_proba, 3
ebm_show, 4