Package 'gIPFrm'

October 13, 2022

Type Package
Title Generalized Iterative Proportional Fitting for Relational Models
Version 3.1
Date 2017-07-21
Author Anna Klimova, Tamas Rudas
Maintainer Anna Klimova <aklimova25@gmail.com></aklimova25@gmail.com>
Description Maximum likelihood estimation under relational models, with or without the overall effect.
License GPL-2
NeedsCompilation no
Repository CRAN

Date/Publication 2017-07-24 09:49:06 UTC

R topics documented:

gIPFrm-package	. 2
bisection.update	. 3
g.ipf	. 4
grid.update	. 7
ipf.gamma	. 8
single.cells	. 9
suff.stat	. 10
	10
	12

Index

gIPFrm-package

Description

The package provides an iterative scaling procedure that computes the maximum likelihood estimates of the cell frequencies and of the model parameters under a relational model, with or without the overall effect.

Details

Package:	gIPFrm
Type:	Package
Version:	3.1
Date:	2017-07-21
License:	GPL (>= 2)

The iterative proportional fitting procedure is called by the function g.ipf.

Note

Tamas Rudas was supported in part by Grant K-106154 from the Hungarian National Scientific Research Fund (OTKA). The authors wish to thank Juraj Medzihorsky for his help with building this package.

Author(s)

Anna Klimova, Tamas Rudas

Maintainer: Anna Klimova <aklimova25@gmail.com>

References

A.Klimova, T.Rudas, A.Dobra, Relational models for contingency tables. J. Multivariate Anal., 2012, 104, 159–173.

A.Klimova, T.Rudas, Iterative proportional scaling for curved exponential families. Scand. J. Statist., 2015, 42, 832–847.

A. Klimova, Coordinate-Free Exponential Families on Contingency Tables. PhD thesis. Advisers: Tamas Rudas and Thomas Richardson.

A.Agresti, Categorical Data Analysis. Wiley, New York, 1990.

J.Aitchison, S.D.Silvey, Maximum-likelihood estimation procedures and associated tests of significance. J. Roy. Statist. Soc. Ser.B, 1960, 22, 154–171.

G.Kawamura, T.Matsuoka, T.Tajiri, M.Nishida, M.Hayashi, Effectiveness of a sugarcane-fish combination as bait in trapping swimming crabs. Fisheries Research, 1995, 22, 155–160.

bisection.update

Examples

bisection.update	Search for the adjustment factor corresponding to the MLE using the
	bisection method

Description

bisection.update computes the segment that is known to contain the adjustment factor corresponding to the MLE and finds this adjustment factor using the bisection method. It is needed only for relational models for probabilities.

Usage

bisection.update(ModelMx, ObsTbl, tolerance)

Arguments

ModelMx	an I by J model matrix of a relational model. Here I is the number of observa- tions and J is the number of generating subsets.
ObsTbl	a vector of observed cell frequencies of length I.
tolerance	tolerance used in stopping criteria.

Value

gamma.tilde	the adjustment factor under the precision given by tolerance.
model.tilde	the value returned by ipf.gamma() with the adjustment factor gamma equal to gamma.tilde.

Author(s)

Anna Klimova, Tamas Rudas

References

A. Klimova, Coordinate-Free Exponential Families on Contingency Tables. PhD thesis. Advisers: Tamas Rudas and Thomas Richardson.

D. Bertsekas, Non-Linear Programming. Athena Scientific, 1999.

Examples

g.ipf

Generalized Iterative Proportional Fitting for Relational Models

Description

g.ipf computes the maximum likelihood estimates of the cell frequencies and of the model parameters under a relational model specified by a model matrix.

Usage

```
g.ipf(ModelMatrix, ObsTable, tol, estimand, adjustment)
```

g.ipf

Arguments

ModelMatrix	an I by J model matrix of a relational model. Here I is the number of observa- tions and J is the number of generating subsets.
ObsTable	a vector of observed cell frequencies of length I.
tol	tolerance used in stopping criteria.
estimand	set to "probabilities" in the case of multinomial sampling; set to "intensities" in the case of Poisson sampling.
adjustment	set to "grid" if a grid is used to update the adjustment factor; set to "bisection" if the bisection method is used to update the adjustment factor; set to "none" if estimand is "intensities".

Value

model.matrix	the model matrix.	
observed.data	the vector of observed cell frequencies.	
fitted.values	the maximum likelihood estimates of the cell frequencies.	
estimated.total	L	
	the sum of the estimated cell frequencies.	
adjustment.for.	total	
	the estimated total divided by the observed total.	
adjustment.for.	subsets	
	the adjustment factor for the subset sums.	
model.parameter	rs	
	the maximum likelihood estimates for model parameters on the multiplicative scale.	
degrees.of.free	edom	
	the degrees of freedom of the relational model.	
chisq.statistic		
	Pearson's chi-squared statistic.	
p.value.chisq	the p-value, based on Pearson's chi-squared statistic.	
log.likelihood.ratio.statistic		
	the log likelihood ratio statistic.	
p.value.log.likelihood.ratio.statistic		
	the p-value, based on the log likelihood ratio statistic.	
Bregman.statistic		
	the Bregman statistic.	
p.value.Bregmar	n.statistic	
	the p-value, based on the Bregman statistic.	

Author(s)

Anna Klimova, Tamas Rudas

References

6

A.Klimova, T.Rudas, A.Dobra, Relational models for contingency tables. J. Multivariate Anal., 2012, 104, 159–173.

A.Klimova, T.Rudas, Iterative proportional scaling for curved exponential families. Scand. J. Statist., 2015, 42, 832–847.

A. Klimova, Coordinate-Free Exponential Families on Contingency Tables. PhD thesis. Advisers: Tamas Rudas and Thomas Richardson.

A.Agresti, Categorical Data Analysis. Wiley, New York, 1990.

J.Aitchison, S.D.Silvey, Maximum-likelihood estimation procedures and associated tests of significance. J. Roy. Statist. Soc. Ser.B, 1960, 22, 154–171.

G.Kawamura, T.Matsuoka, T.Tajiri, M.Nishida, M.Hayashi, Effectiveness of a sugarcane-fish combination as bait in trapping swimming crabs. Fisheries Research, 1995, 22, 155–160.

Examples

Description

grid.update computes the segment that is known to contain the adjustment factor corresponding to the MLE and, using a grid on this segment, finds this adjustment factor. It is needed only for relational models for probabilities.

Usage

grid.update(ModelMx, ObsTbl, tolerance)

Arguments

ModelMx	an I by J model matrix of a relational model. Here I is the number of observa-
	tions and J is the number of generating subsets.
ObsTbl	a vector of observed cell frequencies of length I.
tolerance	tolerance used in stopping criteria.

Value

gamma.tilde	the adjustment factor under the precision given by tolerance.
model.tilde	the value returned by ipf.gamma() with the adjustment factor gamma equal to gamma.tilde.

Author(s)

Anna Klimova, Tamas Rudas

References

A. Klimova, Coordinate-Free Exponential Families on Contingency Tables. PhD thesis. Advisers: Tamas Rudas and Thomas Richardson.

Examples

ipf.gamma

Iterative Proportional Fitting in Relational Models, with a Given Adjustment Factor

Description

For a given model matrix and a given vector of observed cell frequencies, ipf.gamma computes the vector of frequencies whose subset sums are equal to the observed subset sums times the adjustment factor and whose relative frequencies satisfy the multiplicative structure prescribed by the model.

Usage

ipf.gamma(ModelMatrix, ObsTable, gamma, tol, estimand)

Arguments

ModelMatrix	an I by J model matrix of a relational model. I is the number of observations; J is the number of generating subsets.
ObsTable	a vector of observed cell frequencies.
gamma	an adjustment factor.
tol	tolerance used in stopping criteria.
estimand	set to "probabilities" in the case of multinomial sampling; set to "intensities" in the case of Poisson sampling.

Value

model.matrix	the model matrix.	
observed.data	the vector of observed cell frequencies.	
fitted.values	the estimated cell frequencies.	
model.parameters		

the estimated model parameters on the multiplicative scale.

single.cells

Author(s)

Anna Klimova, Tamas Rudas

References

A.Klimova, T.Rudas, A.Dobra, Relational models for contingency tables. J. Multivariate Anal., 2012, 104, 159–173.

A.Klimova, T.Rudas, Iterative proportional scaling for curved exponential families. Scand. J. Statist., 2015, 42, 832–847.

A. Klimova, Coordinate-Free Exponential Families on Contingency Tables. PhD thesis. Advisers: Tamas Rudas and Thomas Richardson.

Examples

The model of independence for a 2 by 2 contingency table

single.cells Single Cells under a Relational Model

Description

The function finds all single cells under a relational model. Such cells appear as the only positive entries in their row and column in the model matrix.

Usage

single.cells(ModelMatrix)

Arguments

ModelMatrix a model matrix of a relational model.

Value

the row and column indices of the single cells.

suff.stat

Author(s)

Anna Klimova

Examples

single.cells(G)

suff.stat

Sufficient Statistics under a Relational Model

Description

For an I by J model matrix of a relational model and a vector of frequencies of the length I, the function computes sufficient statistics under the model (subset sums).

Usage

suff.stat(ModelMatrix, Table)

Arguments

ModelMatrix	ModelMatrix a model matrix of a relational model.
Table	Table a vector of frequencies.

Value

a vector of subset sums.

Author(s)

Anna Klimova

References

A.Klimova, T.Rudas, A.Dobra, Relational models for contingency tables. J. Multivariate Anal., 104, 159–173.

10

suff.stat

Examples

suff.stat(A,y)

Index

* Bisection Method bisection.update, 3 * Exponential Families g.ipf, 4 * Iterative Proportional Fitting g.ipf, 4 ipf.gamma, 8 * Sufficient Statistics suff.stat, 10

bisection.update, 3

g.ipf,4
gIPFrm(gIPFrm-package),2
gIPFrm-package,2
grid.update,7

ipf.gamma,8

single.cells,9
suff.stat,10