Package ‘g.data’

January 30, 2024

Version 2.4.1

Date 2024-01-30

Title Delayed-Data Packages

Author David Brahm <brahm@alum.mit.edu>
Maintainer David Brahm <brahm@alum.mit.edu>

Description Create and maintain delayed-data packages (ddp's). Data stored in
a ddp are available on demand, but do not take up memory until requested.
You attach a ddp with g.data.attach(), then read from it and assign to it in
a manner similar to S-PLUS, except that you must run g.data.save() to
actually commit to disk.

License GPL

NeedsCompilation no

Repository CRAN

Date/Publication 2024-01-30 22:30:05 UTC

R topics documented:

gdata.save . . ... L e e e e 1
Index 4
g.data.save Create and Maintain Delayed-Data Packages
Description

g.data.save reads the data in search position "pos", and writes them as a delayed-data package
("DDP") to "dir". Data objects are initially created as promise objects, the promise being to load
the data and return it the first time the item is requested.

g.data.attach attaches such a package, in position 2 by default.

1



2 g.data.save

Usage

g.data.attach(dir, pos=2, warn=TRUE, readonly=FALSE)

g.data.save(dir=attr(env, "path"), obj=ls(env, all.names=TRUE),
pos=2, rm.obj=NULL)

g.data.get(item, dir)

g.data.put(item, value, dir)

Arguments
dir Directory (full pathname) of DDP.
pos Search path position.
warn Logical: warn user if directory being attached doesn’t exist
readonly Logical: set an attribute on the package that will cause g.data. save to abort.
obj Object name(s).
rm.obj Objects to remove, both in memory and on disk.
item Item to retrieve from an unattached package.
value Value for the data item being put with g.data.put.
Details

Data stored in a delayed-data package (DDP) are available on demand, but do not take up memory
until requested. You attach a DDP with g.data.attach, then read from it and assign to it via its
position on the search path (similar to S-Plus). Unlike S-Plus, you must run g.data.save() to actually
commit to disk.

You can create a DDP from any position in the search path, not just one created with g.data.attach;
e.g. you can attach a list or dataframe, and its components will become objects in the DDP. In this
case, the call to g.data.save(dir) must specify the path where files will be saved. If the DDP
was created with g.data. attach, then its directory is known and does not need to be passed again
to g.data. save.

The filename associated with an object ‘obj’ is ‘obj.RData’, except that uppercase letters are pre-
ceded by an ‘@’ symbol. This is required by Windows since ‘x.RData’ and ‘X.RData’ are the same
file under that OS. Unexported functions g.data.mash and g.data.unmash perform the object
name / filename conversion, e.g. g.data.mash(dir, "aBcD") returns "dir/fa@Bc@D.RData".

g.data.get can be used to get a single piece of data from a package, without attaching the package.
g.data.put puts a single item into an unattached package.

Value

g.data.get returns the requested data.

See Also

delayedAssign



g.data.save

Examples
## Not run:
ddp <- tempfile("newdir") # Where to put the files
g.data.attach(ddp) # Warns that this is a new directory

assign("m1”, matrix(1, 5000, 1000), 2)
assign("m2"”, matrix(2, 5000, 1000), 2)

g.data.save() # Writes the files

detach(2)

g.data.attach(ddp) # No warning, because directory exists
1s(2)

system.time(print(dim(m1))) # Takes time to load up
system.time(print(dim(m1))) # Second time is faster!

find("m1") # ml still lives in pos=2, is now real
assign("m3”, m1*10, 2)

g.data.save() # Or just g.data.save(obj="m3")
detach(2)

mym2 <- g.data.get("m2", ddp) # Get one objects without attaching
unlink(ddp, recursive=TRUE) # Clean up this example

## End(Not run)

## Not run:

ddp <- tempfile("newdir") # New example

y <- list(m1=1:1000, m2=2:1001)

attach(y) # Attach an existing list or dataframe
g.data.save(ddp)

detach(2)

unlink(ddp, recursive=TRUE) # Clean up this example

## End(Not run)



Index

x data
g.data.save, 1

delayedAssign, 2

g.data.attach (g.data.save), 1
g.data.get (g.data.save), 1
g.data.put (g.data.save), 1
g.data.save, 1



	g.data.save
	Index

