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Introduction
The time series can be seen from an aplitude-time domain or an amplitude-

frequency domain. The amplitude-frecuency domain are used to analyze proper-
ties of filters used to decompose a time series into a trend, seasonal and irregular
component investigating the gain function to examine the effect of a filter at a
given frequency on the amplitude of a cycle for a particular time series. The
ability to decompose data series into different frequencies for separate analysis
and later recomposition is the first fundamental concept in the use of spectral
techniques in forecasting, such as regression espectrum band, have had little
development in econometric work. The low diffusion of this technique has been
associated with the computing difficulties caused the need to work with complex
numbers, and inverse Fourier transform in order to convert everything back into
real terms. But the problems from the use of the complex Fourier transform
may be circumvented by carrying out the Fourier transform of the data in real
terms, pre-multiplied the time series by the orthogonal matrix Z whose elements
are defined in Harvey (1978).

The spectral analysis commences with the assumption that any series can be
transformed into a set of sine and cosine waves, and can be used to both iden-
tify and quantify apparently nonperiodic short and long cycle processes (first
section). In Band spectrum regression (second section) , is a brief summary of
the regression of the frequency domain (Engle, 1974) The application of spec-
tral analysis to data containing both seasonal (high frequency) and non-seasonal
(low frequency) components may produce adventages, since these different fre-
quencies can be modelled separately and then may be re-combined to produce
fitted values. Durbin (1967 and 1969) desing a technique for studying the gen-
eral nature of the serial dependence in a satacionary time series, that can be use
to statistic contraste in This type of exercises (third section). The time-varying
regression, or the regression whit the vector of parameters time.varying can be
understood in this context (four section).

Spectral analysis
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Nerlove (1964) and Granger (1969) were the two foremost researchers on the
application of spectral techniques to economic time series.

The use of spectral analysis requires a change of focus from an amplitude-
time domain to an amplitude-frequency domain. Thus spectral analysis com-
mences with the assumption that any series, Xt, can be transformed into a set
of sine and cosine waves such as:

Xt = η +

N∑
j=1

[aj cos(2π
ft

n
) + bj sin(2π

ft

n
)] (1)

where η is the mean of the series, aj and bj are the amplitude, f is the
frequency over a span of n observations, t is a time index ranging from 1 to N
where N is the number of periods for which we have observations, the fraction
(ft/n) for different values of t converts the discrete time scale of time series
into a proportion of 2 and j ranges from 1 to n where n= N/2. The highest
observable frequency in the series is n/N (i.e., 0.5 cycles per time interval).
High frequency dynamics (large f) are akin to short cycle processes while low
frequency dynamics (small f) may be likened to long cycle processes. If we let
ft
n = w then equation (1) can be re-written more compactly as:

Xt = η +

N∑
j=1

[aj cos(ωj) + bj sin(ωj)] (2)

Spectral analysis can be used to both identify and quantify apparently non-
periodic short and long cycle processes. A given series Xt may contain many
cycles of different frequencies and amplitudes and such combinations of frequen-
cies and amplitudes may yield cyclical patterns which appear non-periodic with
irregular amplitude. In fact, in such a time series it is clear from equation (2)
that each observation can be broken down into component parts of different
length cycles which, when added together (along with an error term), comprise
the observation (Wilson and Perry, 2004).

The overall effect of the Fourier analysis of N observation to a time date
is to partition the variability of the series into components at frequencies 2π

N ,
4π
N ,...,π.The component at frequency ωp = 2πp

N if called the pth harmonic. For

p 6= N
2 , the equivalent form to write the pth harmonic are:

apcosωpt+ bpsinωpt = Rpcos(ωpt+ φp)

.
where Rp =

√
ap + bp and φp = tan−1(

−bp
ap

)

The plot of I(ω) =
NR2

p

4π against ω is called the periodogram of time data.
Trend will produce a peak at zero frequency, while seasonal variations produces
peaks at the seasonal frquency and at integer multiples of the sesaonal frequency.
Then, when a periodogram has a large peak at some frequency ω then related
peaks may occurr at 2ω, 3ω,....(Chaftiel, C,2004)

Band spectrum regression
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Hannan (1963) first proposed regression analysis in the frequency domain,later
examining the use of this technique in estimating distributed lag models (Han-
nan, 1965, 1967). Engle (1974) demonstrated that regression in the frequency
domain has certain advantages over regression in the time domain. Consider
the linear regression model

y = Xβ + u (3)

where X is an n x k matrix of fixed observations on the independent variables,
β is a k x I vector of parameters, y is an n x 1 vector of observations on the
dependent variable, and u is an n x I vector of disturbance terms each with zero
mean and constant variance, σ2.

The model may be expressed in terms of frequencies by applying a finite
Fourier transform to the dependent and independent variables.For Harvey (1978)
there are a number of reasons for doing this. One is to permit the application of
the technique known as ’band spectrum regression’, in which regression is carried
out in the frequency domain with certain wavelengths omitted. Another reason
for interest in spectral regression is that if the disturbances in (3) are serially
correlated, being generated by any stationary stochastic process, then regression
in the frequency domain will yield an asymptotically efficient estimator of β.

Engle (1974) compute the full spectrum regression with he complex finite
Fourier transform based on the n x n matrix W , in which element (t, s) is given
by

wts = 1√
n
eiλts , s = 0, 1, ..., n− 1

where λt = 2π tn , t=0,1,...,n-1, and i =
√
−1.

Pre-multiplying the observations in observations in (3) by W yields

ẏ = Ẋβ + u̇ (4)

where ẏ = Wy,Ẋ = WX, and u̇ = Wu.
If the disturbance vector in (4) obeys the classical assumptions, viz. E[u] = 0

and E[uu′] = σ2In. then the transformed disturbance vector, u̇, will have
identical properties. This follows because the matrix W is unitary, i.e., WWT =
I, where WT is the transpose of the complex conjugate of W. Furthermore the
observations in (4) contain precisely the same amount of information as the
untransformed observations in (3).

Application of OLS to (4) yields, in view of the properties of u̇, the best
linear unbiased estimator (BLUE) of β. This estimator is identical to the OLS
estimator in (3), a result which follows directly on taking account of the unitary
property of W . When the relationship implied by (4) is only assumed to hold
for certain frequencies, band spectrum regression is appropriate, and this may
be carried out by omitting the observations in (4) corresponding to the remain-
ing frequencies. Since the variables in (4) are complex, however, Engle (1974)
suggests an inverse Fourier transform in order to convert everything back into
real terms (Harvey,1974).

The problems which arise from the use of the complex Fourier transform may
be circumvented by carrying out the Fourier transform of the data in real terms.
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In order to do this the observations in (3) are pre-multiplied by the orthogonal
matrix Z whose elements are defined as follows (Harvey,1978):

zts =



(
1
n

)−1
2 t = 1(

2
n

) 1
2 cos

[
πt(s−1)

n

]
t = 2, 4, 6, ..(n− 2) or (n− 1)(

2
n

) 1
2 sin

[
π(t−1)(s−1)

T

]
t = 3, 5, 7, .., (n− 1) or n

(n)
−1
2 (−1)s+1 t = n if n is even , s = 1, ...n,

The resulting frequency domain regression model is:

y∗∗ = X∗∗β + v (5)

where y∗∗ = Zy,X∗∗ = ZX and v = Zu.
In view of the orthogonality of Z, E[vv′] = σ2In when E[uu′] = σ2In and

the application of OLS to (5) gives the BLUE of β.
Since all the elements of y** and X** are real, model may be treated by a

standard regression package. If band spectrum regression is to be carried out,
the number of rows in y** and X** is reduced accordingly, and so no problems
arise from the use of an inappropriate number of degrees of freedom.

Amplitude domain-frequency regression
Consider now the linear regression model

yt = βtxt + ut (6)

where xt is an n x 1 vector of fixed observations on the independent variable,
βt is a n x 1 vector of parameters,y is an n x 1 vector of observations on the
dependent variable, and ut is an n x 1 vector de errores distribuidos con media
cero y varianza constante.

Whit the assumption that any series, yt,xt,βt and ut, can be transformed
into a set of sine and cosine waves such as:

yt = ηy +

N∑
j=1

[ayj cos(ωj) + byj sin(ωj)

xt = ηx +

N∑
j=1

[axj cos(ωj) + bxj sin(ωj)]

Pre-multiplying (6) by Z:

ẏ = ẋβ̇ + u̇

(7)
where ẏ = Zy,ẋ = Zx, β̇ = Zβ y u̇ = Zu
The system (7) can be rewritten as (see appendix):
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ẏ = ZxtInZ
T β̇ + ZInZ

T u̇

(8)
If we call ė = ZInZ

T u̇, It can be found the β̇ that minimize the sum of
squared errors ET = ZT ė.

Once you have found the solution to this optimization, the series would be
transformed into the time domain.

Example: Regression in frequency domain into the GDP and emploiment in
Canada

The function transforms the time series in amplitude-frequency domain, or-
der the fourier coefficient by the comun frequencies in cross-spectrum, make a
band spectrum regresion of the serie yt and xt for every set of fourier coefficients,
and select the model to pass the significance bands to periodogram cumulative
(Venables and Ripley,2002).

> library(descomponer)

> data(PIB)

> data (celec)

> rdf(celec,PIB)

$datos

Y X F res

1 12458 65.72689 12438.74 19.26350

2 12822 67.48491 12909.66 -87.65586

3 13345 69.97484 13576.63 -231.63133

4 14288 72.98793 14383.75 -95.74524

5 15309 76.26133 15260.59 48.41183

6 16207 80.29488 16341.05 -134.05185

7 17290 83.50754 17201.62 88.37559

8 17805 85.91239 17845.81 -40.80958

9 19037 88.65090 18579.37 457.62803

10 19915 91.45826 19331.38 583.62284

11 20867 94.86328 20243.48 623.52297

12 21543 98.82299 21304.16 238.83875

13 21935 102.54758 22301.86 -366.86407

14 22253 103.69194 22608.40 -355.40283

15 21757 99.98619 21615.75 141.25334

16 22409 100.00000 21619.45 789.55406

17 20636 99.38237 21454.00 -818.00190

18 20663 97.30654 20897.95 -234.95105

19 19952 96.10971 20577.36 -625.35719

$Fregresores

1 2

X1 1 88.15634053

X2 0 -5.68444051
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X3 0 -9.44842574

X4 0 -2.21612456

X5 0 -2.62417102

X6 0 -0.79654010

X7 0 -2.39713050

X8 0 -1.53918705

X9 0 -1.43696347

X10 0 -1.18967332

X11 0 -0.69982435

X12 0 -0.92147295

X13 0 -0.82056751

X14 0 -1.14883279

X15 0 -0.66396550

X16 0 -1.26963280

X17 0 -0.21300734

X18 0 -1.09411248

X19 0 -0.01302282

$Tregresores

1 2

[1,] 0.2294157 15.07878

[2,] 0.2294157 15.48210

[3,] 0.2294157 16.05333

[4,] 0.2294157 16.74458

[5,] 0.2294157 17.49555

[6,] 0.2294157 18.42091

[7,] 0.2294157 19.15794

[8,] 0.2294157 19.70965

[9,] 0.2294157 20.33791

[10,] 0.2294157 20.98196

[11,] 0.2294157 21.76313

[12,] 0.2294157 22.67155

[13,] 0.2294157 23.52603

[14,] 0.2294157 23.78856

[15,] 0.2294157 22.93841

[16,] 0.2294157 22.94157

[17,] 0.2294157 22.79988

[18,] 0.2294157 22.32365

[19,] 0.2294157 22.04908

$Nregresores

[1] 2

$sse

[1] 3116177
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$gcv

[1] 204869.8

> gtd(rdf(celec,PIB)$datos$res)

Make the forecast Yt(h) = β0+β1Xt(h)+...., you need to have the expansion
for Xt(h) of the development

Xt(h) = η +

N∑
j=1

[aj cos(ωj) + bj sin(ωj)] (7)

and this development using the orthogonal transformations W to have re-
gressors in the frequency and time domain has to be done with n observations.
Therefore, we have to build a new base of regressors of size n that have to be
elaborated with observations Xt, being now t = h, h+ 1, h+ 2, ......, n, n+ 1, n+
2, ...., n+ h.

> mod1=rdf(celec,PIB)

> newdata=c(100)

> predictrdf(mod1,newdata)

fit lwr upr

20577.36 19641.02 21513.70

Seasonal Decomposition by the Fourier Coefficients
The amplitude domain-frequency regression method could be use to decom-

pose a time series into seasonal, trend and irregular components of a time serie
yt of frequency b or number of times in each unit time interval. For example, one
could use a value of 7 for frequency when the data are sampled daily, and the
natural time period is a week, or 4 and 12 when the data are sampled quarterly
and monthly and the natural time period is a year.

If the observation are teken at equal interval of length, 4t, then the angular
frequency is ω = fracπ4t. The equivalent frequency expressed in cycles per
unit time is f = ω

2π = 1
2 4 t. Whit only one observation per year, ω = π

radians per year or f = 1
2 cycle per year (1 cicle per two years), variation whit

a wavelength of one year has fequency ω = 2π radians per year or f = 1 cicle
per year.

For example, in a monthly time serie of N = 100 observation, the seasonal
cycles or the wavelenghth of one year has frequency f = 100

12 = 8, 33 cycles for
100 dates. If the time serie are 8 full year, the less seasonal frequency are 1 cycle
for year, or 8 cycle for 96 observation. The integer multiplies are 2N12 ,3N12 ....,

and wavelenghth low of one year has frequency are f < N
12 .

We can use (8) to estimate the fourier coefficient in time serie yt:

ẏ = ZtInZ
T β̇ + ZInZ

T u̇

(9)
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being t = (1, 1, ....1)N or t = (1, 2, 3, ..., N)N .
If t = (1, 1, 1, ....1)N ,

A = ZtInZ
T =



1 0 0 0 0 . 0 0
0 1 0 0 0 . 0 0
0 0 1 0 0 . 0 0
0 0 0 1 0 . 0 0
0 0 0 0 1 . 0 0
. . . . . . . .
0 0 0 0 0 . 0 1


Then

A =



1 0 0 0 0 . 0 0
0 1 0 0 0 . 0 0
0 0 1 0 0 . 0 0
0 0 0 1 0 . 0 0
0 0 0 0 0 . 0 0
. . . . . . . .
0 0 0 0 0 . 0 0


are use in (9) to make the regression band spectrum with the first four

coefficient of fourier of the serie ẏ.
The first2N12−1 rows the A matrix are used to estimate the fourier coefficients

corresponding to cycles of low frequency, trend cycles, and rows 2N12 and 2N12 +1
are used to estimate the fourier coefficients of 1 cicle for year. The integer
multiplies re the rows 6N12 , 6N12 + 1, 8N12 ...should be used to obtain the seasonal
frequency.

Example:descomponse by amplitude domain-frequency regression. IPI base
2009 in Cantabria

The Industrial Price Index of Cantabria is presented in the table below
The time serie by trend an seasonal is named TDST . TD is calculate by

band spectrum regresion of the serie yt and the temporal index t, in which
regression is carried out in low amplitude- frequency. The seasonal serie ST
result to take away TD to TDST , and the irregular serie IR result to take
away TDST to yt . The temporal index t used in the exemple are the OLS
regression into IPI and the trend index t = (1, 2, 3, ....N)N .

> data(ipi)

> descomponer(ipi,12,1)$datos

y TDST TD ST IR

1 90.2 93.49148 97.29581 -3.8043288 -3.29147706

2 98.8 96.76618 97.40651 -0.6403355 2.03382281

3 92.1 105.16011 97.55957 7.6005392 -13.06010720

4 102.7 100.11383 97.73672 2.3771122 2.58616508

5 107.0 105.36545 97.91825 7.4471960 1.63455301

6 98.3 102.67619 98.08444 4.5917463 -4.37619107

8



7 100.9 99.14371 98.21717 0.9265446 1.75628888

8 66.3 72.41965 98.30134 -25.8816898 -6.11964836

9 101.4 100.48346 98.32624 2.1572165 0.91654243

10 111.8 107.36550 98.28651 9.0789861 4.43450007

11 111.4 105.66091 98.18276 7.4781476 5.73909316

12 85.2 86.24833 98.02170 -11.7733676 -1.04832922

13 94.4 94.02740 97.81584 -3.7884330 0.37259602

14 96.2 96.94503 97.58269 -0.6376590 -0.74503016

15 106.5 104.91231 97.34356 7.5687593 1.58768510

16 101.1 99.48917 97.12200 2.3671694 1.61083240

17 103.5 104.35813 96.94209 7.4160356 -0.85812832

18 99.9 101.39913 96.82661 4.5725269 -1.49913452

19 101.4 97.71791 96.79525 0.9226651 3.68208654

20 58.6 71.08983 96.86311 -25.7732827 -12.48982901

21 99.8 99.18765 97.03947 2.1481777 0.61234851

22 112.7 106.36795 97.32701 9.0409316 6.33205472

23 103.8 105.16833 97.72154 7.4467921 -1.36833257

24 89.0 86.48826 98.21225 -11.7239851 2.51173577

25 91.2 95.00995 98.78249 -3.7725372 -3.80995442

26 97.3 98.77602 99.41100 -0.6349825 -1.47601811

27 110.2 107.61046 100.07348 7.5369794 2.58954158

28 105.7 103.10165 100.74442 2.3572266 2.59835269

29 109.9 108.78390 101.39902 7.3848751 1.11610157

30 109.1 106.56835 102.01504 4.5533075 2.53165476

31 104.3 103.49319 102.57441 0.9187856 0.80680894

32 71.9 77.39968 103.06455 -25.6648756 -5.49967709

33 107.1 105.61838 103.47924 2.1391389 1.48162425

34 108.5 112.82176 103.81888 9.0028771 -4.32175586

35 116.6 111.50579 104.09036 7.4154366 5.09420740

36 96.5 92.63167 104.30628 -11.6746027 3.86832534

37 94.1 100.72716 104.48380 -3.7566413 -6.62715880

38 102.4 104.01079 104.64309 -0.6323060 -1.61078761

39 109.4 112.31078 104.80558 7.5051995 -2.91077599

40 109.0 107.33936 104.99208 2.3472838 1.66063840

41 113.3 112.57479 105.22108 7.3537147 0.72520870

42 116.5 110.04125 105.50717 4.5340881 6.45874503

43 107.9 106.77478 105.85988 0.9149060 1.12521823

44 76.7 80.72646 106.28293 -25.5564685 -4.02646394

45 111.0 108.90415 106.77405 2.1301001 2.09585363

46 109.3 116.29003 107.32521 8.9648227 -6.99002963

47 119.5 115.30756 107.92348 7.3840810 4.19244058

48 95.1 96.92699 108.55221 -11.6252202 -1.82698928

49 109.6 105.45181 109.19255 -3.7407455 4.14819131

50 109.0 109.19553 109.82516 -0.6296296 -0.19553175

51 125.2 117.90530 110.43188 7.4734196 7.29469750

52 104.8 113.33469 110.99734 2.3373410 -8.53468571
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53 123.7 118.83279 111.51024 7.3225543 4.86720973

54 119.7 116.47907 111.96420 4.5148687 3.22093379

55 105.4 113.26925 112.35822 0.9110265 -7.86924913

56 84.1 87.24847 112.69653 -25.4480614 -3.14846658

57 112.1 115.10896 112.98790 2.1210613 -3.00895781

58 121.6 122.17131 113.24454 8.9267682 -0.57131077

59 120.0 120.83332 113.48059 7.3527255 -0.83331896

60 98.6 102.13448 113.71031 -11.5758378 -3.53447654

61 117.6 110.22138 113.94623 -3.7248497 7.37861665

62 117.7 113.57038 114.19733 -0.6269531 4.12962237

63 129.7 121.90910 114.46747 7.4416398 7.79089518

64 111.8 117.08157 114.75418 2.3273982 -5.28157443

65 125.2 122.33939 115.04800 7.2913939 2.86060751

66 121.2 119.82801 115.33236 4.4956493 1.37198834

67 116.8 116.49127 115.58412 0.9071470 0.30873208

68 88.2 90.43504 115.77469 -25.3396543 -2.23503871

69 113.7 117.98378 115.87175 2.1120225 -4.28377603

70 129.0 124.73008 115.84137 8.8887137 4.26992094

71 121.7 122.97177 115.65040 7.3213700 -1.27177389

72 94.4 103.74264 115.26910 -11.5264553 -9.34264377

73 110.3 110.96455 114.67351 -3.7089538 -0.66455342

74 115.3 113.22345 113.84773 -0.6242766 2.07655123

75 112.9 120.19554 112.78568 7.4098599 -7.29553587

76 122.4 113.80977 111.49232 2.3174554 8.59022509

77 116.9 117.24442 109.98419 7.2602334 -0.34442458

78 111.2 112.76564 108.28921 4.4764299 -1.56563785

79 115.0 107.34901 106.44574 0.9032674 7.65098972

80 77.1 79.26977 104.50102 -25.2312472 -2.16976916

81 106.3 104.61189 102.50890 2.1029837 1.68811145

82 115.9 109.37796 100.52731 8.8506592 6.52203544

83 106.7 105.90524 98.61523 7.2900144 0.79475657

84 83.0 85.35274 96.82981 -11.4770729 -2.35273788

85 92.2 91.53037 95.22343 -3.6930580 0.66962853

86 94.3 93.21952 93.84112 -0.6216001 1.08048013

87 96.7 100.09652 92.71844 7.3780800 -3.39651790

88 87.2 94.18741 91.87990 2.3075126 -6.98741330

89 91.0 98.56716 91.33809 7.2290730 -7.56716185

90 91.0 95.55065 91.09344 4.4572105 -4.55065228

91 95.3 92.03412 91.13474 0.8993879 3.26587643

92 70.2 66.31734 91.44018 -25.1228401 3.88265582

93 98.3 94.07301 91.97906 2.0939449 4.22699051

94 106.9 101.52634 92.71374 8.8126048 5.37365804

95 103.4 100.86057 93.60191 7.2586589 2.53942747

96 86.8 83.17132 94.59901 -11.4276905 3.62867995

97 90.5 91.98328 95.66044 -3.6771622 -1.48327720

98 91.4 96.12477 96.74369 -0.6189236 -4.72476795
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99 107.7 105.15641 97.81010 7.3463001 2.54359493

100 100.6 101.12380 98.82623 2.2975698 -0.52379809

101 101.9 106.96265 99.76474 7.1979126 -5.06264944

102 105.8 105.04288 100.60489 4.4379911 0.75712158

103 101.5 102.22804 101.33254 0.8955084 -0.72804413

104 75.4 76.92534 101.93977 -25.0144330 -1.52533899

105 101.4 104.50915 102.42425 2.0849062 -3.10915268

106 109.1 111.56283 102.78828 8.7745503 -2.46283178

107 115.8 110.26517 103.03786 7.2273034 5.53483418

108 98.9 91.80330 103.18160 -11.3783080 7.09670316

109 97.6 99.56851 103.22978 -3.6612663 -1.96851275

110 102.7 102.57721 103.19346 -0.6162472 0.12278761

111 113.2 110.39836 103.08384 7.3145202 2.80163645

112 104.3 105.19939 102.91176 2.2876270 -0.89938650

113 107.6 109.85412 102.68737 7.1667522 -2.25412104

114 103.5 106.83880 102.42003 4.4187717 -3.33880379

115 97.9 103.00994 102.11831 0.8916288 -5.10993901

116 86.3 76.88402 101.79005 -24.9060259 9.41597537

117 108.4 103.51838 101.44251 2.0758674 4.88162432

118 103.5 109.81895 101.08246 8.7364958 -6.31895228

119 103.5 107.91219 100.71625 7.1959478 -4.41219319

120 89.0 89.02086 100.34979 -11.3289256 -0.02086087

121 94.5 96.34308 99.98845 -3.6453705 -1.84307991

122 97.7 99.02332 99.63689 -0.6135707 -1.32331522

123 112.9 106.58152 99.29878 7.2827404 6.31847874

124 97.6 101.25429 98.97660 2.2776842 -3.65428531

125 111.6 105.80694 98.67135 7.1355917 5.79306067

126 103.8 102.78193 98.38238 4.3995523 1.01806936

127 97.3 98.99509 98.10734 0.8877493 -1.69508506

128 86.6 73.04459 97.84221 -24.7976188 13.55540629

129 94.7 99.64840 97.58158 2.0668286 -4.94840385

130 100.3 106.01739 97.31895 8.6984413 -5.71739065

131 95.4 104.21194 97.04735 7.1645923 -8.81193975

132 85.4 85.48037 96.75991 -11.2795431 -0.08036676

133 96.3 92.82113 96.45061 -3.6294747 3.47886911

134 94.5 95.50404 96.11493 -0.6108942 -1.00403907

135 98.1 103.00152 95.75056 7.2509605 -4.90151667

136 105.0 97.62554 95.35780 2.2677414 7.37445589

137 101.0 102.04441 94.93997 7.1044313 -1.04440606

138 98.8 98.88375 94.50342 4.3803329 -0.08375036

139 91.5 94.94119 94.05732 0.8838697 -3.44119438

140 80.5 68.92406 93.61328 -24.6892117 11.57593655

141 94.6 95.24231 93.18452 2.0577898 -0.64231218

142 100.6 101.44547 92.78508 8.6603868 -0.84546802

143 91.8 99.56192 92.42868 7.1332368 -7.76191538

144 82.1 80.89749 92.12765 -11.2301607 1.20250882
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145 91.8 88.08756 91.89189 -3.8043288 3.71244372

146 92.6 91.08754 91.72788 -0.6403355 1.51245564

147 100.1 99.23859 91.63805 7.6005392 0.86141476

148 95.4 93.99740 91.62029 2.3771122 1.40259993

> gdescomponer(ipi,12,1,2002,1)
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Appendix
The multiplication of two harmonic series of diferent frequency:

[aj cos(ωj) + bj sin(ωj)]x[ai cos(ωi) + bi sin(ωi)]

gives the following sum:

ajai cos(ωj) cos( omegai) + ajbi cos(ωj) sin(ωi)

+aibj sin(ωj) cos(ωi)bi sin(ωi) + bjbi sin(ωj) sin(ωi)

that using the identity of the products of sines and cosines gives the following
results:

ajai + bjbi
2

cos(ωj − ωi) +
bjai − bjai

2
sin(ωj − ωi)

+
ajai − bjbi

2
cos(ωj + ωi) + +

bjai + bjai
2

sin(ωj + ωi)

The circularity of ω determines that the product of two harmonics series
resulting in a new series in which the Fourier coefficients it’s a linear combination
of the Fourier coefficients of the two harmonics series.

In the following two series:

yt = ηy+ay0 cos(ω0)+by0 sin(ω0)+ay1 cos(ω1)+by1 sin(ω1)+ay2 cos(ω2)+by2 sin(ω2)+ay3 cos(ω3)

xt = ηx+ax0 cos(ω0)+bx0 sin(ω0)+ax1 cos(ω1)+bx1 sin(ω1)+ax2 cos(ω2)+bx2 sin(ω2)+ax3 cos(ω3)

given a matrix Θẋẋ of size 8x8 :

Θẋẋ = ηxI8+
1

2



0 ax0 bx0 ax1 bx1 ax2 bx2 2ax3
2ax0 ax1 bx1 ax0 + ax2 bx0 + bx2 ax1 + 2ax3 bx1 2ax2
2bx0 bx1 −ax1 −bx0 + bx2 ax0 − ax2 −bx1 ax1 − ax3 −2bx2
2ax1 ax0 + ax2 −bx0 + bx2 2ax3 0 ax0 + ax2 bx0 − bx2 2ax1
2bx1 ax0 + bx2 −bx0 − ax2 0 −2ax3 −bx0 + bx2 ax0 − ax2 −2bx1
2ax2 ax1 + 2ax3 −bx1 ax0 + ax2 −bx0 − bx2 ax1 −bx1 2ax0
2bx2 bx1 ax1 − 2ax3 bx0 − bx2 ax0 − ax2 −bx1 −ax1 −2bx0
2ax3 ax2 −bx2 ax1 −bx1 ax0 −bx0 0


Demonstrates that:

ż = Θẋẋẏ

where ẏ = Wy,ẋ = Wx, and ż = Wz.

13



zt = xtyt = WT ẋWT ẏ = WTWxtW
T ẏ = xtInW

T ẏ

WT ż = xtInW
T ẏ

ż = WTxtInWẏ

It is true that;

xtIn = WTΘẋẋW

and

Θẋẋ = WTxtInW
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