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batest Bland-Altman Test of Method Agreement

Description

Function to perform a Bland-Altman test of differences in method agreement. Additional functions
are given for printing and plotting.

Usage

batest(formula, data, subset, na.action, weights, ...)

## S3 method for class 'batest'
print(x, digits = 2, type = c("test", "model", "both"), ...)

## S3 method for class 'batest'
plot(x, ...)

Arguments

formula symbolic description of the model used to perform the Bland-Altman test of type
y1 + y2 ~ x. The left-hand side should specify a pair of measurements (y1 and
y2) to assess the agreement. The right-hand side should specify a factor with
two levels indicating two independent groups or samples to be compared. Al-
ternatively, multilevel factors or continuously scaled variables can be specified
to perform a Bland-Altman test of association, followed by binary splitting into
two subgroups.

data, subset, na.action
arguments controlling the formula processing via model.frame.

weights optional numeric vector of weights (case/frequency weights, by default).

... further control arguments, passed to ctree_control

x an object as returned by batest.

digits a numeric specifying the number of digits to display.

type character string specifying whether "test" statistics (default), the "model" or
"both" should be printed.



coat 3

Value

Object of class batest with elements

test result of the Bland-Altman test.

model tree model used to perform the Bland-Altman test.

Methods (by generic)

• print(batest): function to print the result of the Bland-Altman test.

• plot(batest): function to plot the result of the Bland-Altman test.

Examples

## package and data (reshaped to wide format)
library("coat")
data("VitCap", package = "MethComp")
VitCap_wide <- reshape(VitCap, v.names = "y", timevar = "instrument",

idvar = c("item", "user"), drop = "meth", direction = "wide")

## two-sample BA-test
testresult <- batest(y.St + y.Exp ~ user, data = VitCap_wide)

## display
testresult
print(testresult, digits = 1, type = "both")
plot(testresult)

coat Conditional Method Agreement Trees (COAT)

Description

Tree models capturing the dependence of method agreement on covariates. The classic Bland-
Altman analysis is used for modeling method agreement while the covariate dependency can be
learned either nonparametrically via conditional inference trees (CTree) or using model-based re-
cursive partitioning (MOB).

Usage

coat(
formula,
data,
subset,
na.action,
weights,
means = FALSE,
type = c("ctree", "mob"),



4 coat

minsize = 10L,
minbucket = minsize,
minsplit = NULL,
...

)

Arguments

formula symbolic description of the model of type y1 + y2 ~ x1 + ... + xk. The left-
hand side should specify a pair of measurements (y1 and y2) for the Bland-
Altman analysis. The right-hand side can specify any number of potential split
variables for the tree.

data, subset, na.action
arguments controlling the formula processing via model.frame.

weights optional numeric vector of weights (case/frequency weights, by default).

means logical. Should the intra-individual mean values of measurements be included
as potential split variable?

type character string specifying the type of tree to be fit. Either "ctree" (default) or
"mob".

minsize, minbucket
integer. The minimum number of observations in a subgroup. Only one of the
two arguments should be used (see also below).

minsplit integer. The minimum number of observations to consider splitting. Must be at
least twice the minimal subgroup size (minsplit or minbucket). If set to NULL
(the default) it is set to be at least 2.5 times the minimal subgroup size.

... further control arguments, either passed to ctree_control or mob_control,
respectively.

Details

Conditional method agreement trees (COAT) employ unbiased recursive partitioning in order to
detect and model dependency on covariates in the classic Bland-Altman analysis. One of two
recursive partitioning techniques can be used to find subgroups defined by splits in covariates to
a pair of measurements, either nonparametric conditional inference trees (CTree) or parametric
model-based trees (MOB). In both cases, each subgroup is associated with two parameter estimates:
the mean of the measurement difference (“Bias”) and the corresponding sample standard deviation
(“SD”) which can be used to construct the limits of agreement (i.e., the corresponding confidence
intervals).

The minimum number of observations in a subgroup defaults to 10, so that the mean and variance
of the measurement differences can be estimated reasonably for the Bland-Altman analysis. The
default can be changed with with the argument minsize or, equivalently, minbucket. (The different
names stem from slightly different conventions in the underlying tree functions.) Consequently, the
minimum number of observations to consider splitting (minsplit) must be, at the very least, twice
the minimum number of observations per subgroup (which would allow only one possible split,
though). By default, minsplit is 2.5 times minsize. Users are encouraged to consider whether
for their application it is sensible to increase or decrease these defaults. Finally, further control
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parameters can be specified through the ... argument, see ctree_control and mob_control,
respectively, for details.

In addition to the standard specification of the two response measurements in the formula via y1
+ y2 ~ ..., it is also possible to use y1 - y2 ~ .... The latter may be more intuitive for users that
think of it as a model for the difference of two measurements. Finally cbind(y1, y2) ~ ... also
works. Internally, all of these are processed in the same way, namely as a bivariate dependent
variable that can then be modeled and plotted appropriately.

To add the means of the measurement pair as a potential splitting variable, there are also different
equivalent strategies. The standard specification would be via the means argument: y1 + y2 ~ x1 +
..., means = TRUE. Alternatively, the user can also extend the formula argument via y1 + y2 ~ x1
+ ... + means(y1, y2).

The SD is estimated by the usual sample standard deviation in each subgroup, i.e., divided by the
sample size n − 1. Note that the inference in the MOB algorithm internally uses the maximum
likelihood estimate (divided by n) instead so the the fluctuation tests for parameter instability can
be applied.

Value

Object of class coat, inheriting either from constparty (if ctree is used) or modelparty (if mob
is used).

References

Karapetyan S, Zeileis A, Henriksen A, Hapfelmeier A (2023). “Tree Models for Assessing Covariate-
Dependent Method Agreement.” arXiv 2306.04456, arXiv.org E-Print Archive. doi: 10.48550/
arXiv.2306.04456

Examples

## package and data (reshaped to wide format)
library("coat")
data("scint", package = "MethComp")
scint_wide <- reshape(scint, v.names = "y", timevar = "meth", idvar = "item", direction = "wide")

## coat based on ctree() without and with mean values of paired measurements as predictor
tr1 <- coat(y.DTPA + y.DMSA ~ age + sex, data = scint_wide)
tr2 <- coat(y.DTPA + y.DMSA ~ age + sex, data = scint_wide, means = TRUE)

## display
print(tr1)
plot(tr1)

print(tr2)
plot(tr2)

## tweak various graphical arguments of the panel function (just for illustration):
## different colors, nonparametric bootstrap percentile confidence intervals, ...
plot(tr1, tp_args = list(

xscale = c(0, 150), linecol = "deeppink",
confint = TRUE, B = 250, cilevel = 0.5, cicol = "gold"

https://doi.org/10.48550/arXiv.2306.04456
https://doi.org/10.48550/arXiv.2306.04456
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))

diffs Convenience Functions for Bland-Altman Analysis

Description

Auxiliary functions for obtain the differences and means of a measurement pair, as used in the
classic Bland-Altman analysis.

Usage

diffs(y1, y2)

means(y1, y2)

Arguments

y1, y2 numeric. Vectors of numeric measurements of the same length.

Value

Numeric vector with the differences or means of y1 and y2, respectively.

Examples

## pair of measurements
y1 <- 1:4
y2 <- c(2, 2, 1, 3)

## differences and means
diffs(y1, y2)
means(y1, y2)

print.coat Methods for Conditional Method Agreement Trees (COAT)

Description

Extracting information from or visualization of conditional method agreement trees. Visualizations
use trees with Bland-Altman plots in terminal nodes, drawn via grid graphics.
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Usage

## S3 method for class 'coat'
print(
x,
digits = 2L,
header = TRUE,
footer = TRUE,
title = "Conditional method agreement tree (COAT)",
...

)

## S3 method for class 'coat'
coef(object, node = NULL, drop = TRUE, ...)

## S3 method for class 'coat'
plot(x, terminal_panel = node_baplot, tnex = 2, drop_terminal = TRUE, ...)

node_baplot(
obj,
level = 0.95,
digits = 2,
pch = 1,
cex = 0.5,
col = 1,
linecol = 4,
lty = c(1, 2),
bg = "white",
confint = FALSE,
B = 500,
cilevel = 0.95,
cicol = "lightgray",
xscale = NULL,
yscale = NULL,
ylines = 3,
id = TRUE,
mainlab = NULL,
gp = gpar()

)

Arguments

x, object, obj a coat object as returned by coat.

digits numeric. Number of digits used for rounding the displayed coefficients or limits
of agreement.

header, footer logical. Should a header/footer be printed for the tree?

title character with the title for the tree.

... further arguments passed to methods.
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node integer. ID of the node for which the Bland-Altman parameters (coefficients)
should be extracted.

drop logical. Should the matrix attribute be dropped if the parameters from only a
single node are extracted?

terminal_panel a panel function or panel-generating function passed to plot.party. By default,
node_baplot is used to generate a suitable panel function for drawing Bland-
Altman plots based on the the provided coat object. It can be customized using
the tp_args argument (passed through ...).

tnex numeric specification of the terminal node extension relative to the inner nodes
(default is twice the size).

drop_terminal logical. Should all terminal nodes be "dropped" to the bottom row?

level numeric level for the limits of agreement.
pch, cex, col, linecol, lty, bg

graphical parameters for the scatter plot and limits of agreement in the Bland-
Altman plot (scatter plot character, character extension, plot color, line color,
line types, and background color).

confint logical. Should nonparametric bootstrap percentile confidence intervals be plot-
ted?

B numeric. Number of bootstrap samples to be used if confint = TRUE.

cilevel numeric. Level of the confidence intervals if confint = TRUE.

cicol color specification for the confidence intervals if confint = TRUE.

xscale, yscale numeric specification of scale of x-axis and y-axis, respectively. By default the
range of all scatter plots and limits of agreement across all nodes are used.

ylines numeric. Number of lines for spaces in y-direction.

id logical. Should node IDs be plotted?

mainlab character or function. An optional title for the plots. Either a character or a
function(id, nobs).

gp grid graphical parameters.

Details

Various methods are provided for trees fitted by coat, in particular print, plot (via grid/partykit)
and coef. The plot method draws Bland-Altman plots in the terminal panels by default, using the
function node_baplot.

In addition to these dedicated coat methods, further methods are inherited from ctree or mob,
respectively, depending on which type of coat was fitted.

Value

The print() method returns the printed object invisibly. The coef() method returns the vector (for
a single node) or matrix (for multiple nodes) of estimated parameters (bias and standard deviation).
The plot() method returns NULL. The node_baplot() panel-generating function returns a function
that can be plugged into the plot() method.
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Examples

## package and data (reshaped to wide format)
library("coat")
data("scint", package = "MethComp")
scint_wide <- reshape(scint, v.names = "y", timevar = "meth", idvar = "item", direction = "wide")

## conditional method agreement tree
tr <- coat(y.DTPA + y.DMSA ~ age + sex, data = scint_wide)

## illustration of methods (including some customization)

## printing
print(tr)
print(tr, header = FALSE, footer = FALSE)

## extracting Bland-Altman parameters
coef(tr)
coef(tr, node = 1)

## visualization (via grid with node_baplot)
plot(tr)
plot(tr, ip_args = list(id = FALSE),

tp_args = list(col = "slategray", id = FALSE, digits = 3, pch = 19))
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