Package 'clttools'

October 12, 2022

Type Package

Title Central Limit Theorem Experiments (Theoretical and Simulation)

Version 1.3

Date 2016-02-18

Author Simiao Ye, Jingning Mei

Maintainer Simiao Ye <simiao.ye@gmail.com>

Description

Central limit theorem experiments presented by data frames or plots. Functions include generating theoretical sample space, corresponding probability, and simulated results as well.

License GPL-2

LazyData true

NeedsCompilation no

Repository CRAN

Date/Publication 2016-02-19 08:49:57

R topics documented:

a.simu.plot	. 2
om.simu.plot	. 3
sq.simu.plot	. 3
n	. 4
n.plot	. 5
n.simu	. 5
n.simu.plot	. 6
e	. 7
e.plot	. 8
e.simu	. 8
e.simu.plot	. 9
tr.simu.plot	. 10
o.simu.plot	. 11
vt	. 11
pt.mse	. 12

beta.simu.plot

expt.plot	13
expt.simu	14
expt.simu.plot	14
gamm.simu.plot	15
geom.simu.plot	16
hyper.simu.plot	17
nbinom.simu.plot	17
normal.simu.plot	18
pois.simu.plot	19
unif.simu.plot	19
-	
	21

Index

beta.simu.plot Histogram and Q-Q plot of simulated Beta distribution

Description

Histogram and Q-Q plot of simulated Beta distribution

Usage

```
beta.simu.plot(n, shape1, shape2, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of trials in one simulation
shape1	non-negative parameters of the Beta distribution
shape2	non-negative parameters of the Beta distribution
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Beta distribution, red curve represents theoretical density

Examples

beta.simu.plot(n = 5, shape1 = 3, shape2 = 1, times = 100)

binom.simu.plot *Histogram and Q-Q plot of simulated Binomial distribution*

Description

Histogram and Q-Q plot of simulated Binomial distribution

Usage

```
binom.simu.plot(n, size, prob, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of observations
size	number of trials (zero or more)
prob	probability of success on each trial
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Binomial distribution, red curve represents theoretical density

Examples

binom.simu.plot(n = 10, size = 5, prob = 0.2, times = 100)

chisq.simu.plot *Histogram and Q-Q plot of simulated Chi-Squared distribution*

Description

Histogram and Q-Q plot of simulated Chi-Squared distribution

Usage

```
chisq.simu.plot(n, df, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of trials in one simulation
df	degrees of freedom (non-negative, but can be non-integer)
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Chi-Squared distribution, red curve represents theoretical density

Examples

chisq.simu.plot(n = 5, df = 4, times = 100)

coin

Theoretical Probability Distribution of Flipping Coins

Description

Mean and probability of flipping fair or loaded coin

Usage

coin(n, prob = NULL)

Arguments

n	number of trials
prob	probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Mean value and corresponding probabilities for all possible outcomes.

Examples

coin(n = 4)
coin(6, c(0.1, 0.9))

coin.plot

Description

Probability plot of flipping fair or loaded coin

Usage

```
coin.plot(n, prob = NULL, col = "black", type = NULL,
main = NULL, sub = NULL)
```

Arguments

n	number of trials
prob	probability assigned to each possible outcome
col	color of the plot
type	type of plot
main	an overall title for the plot
sub	a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all possible outcomes.

Examples

coin.plot(n = 4, col ='red', type = 'p')
coin.plot(3, prob = c(0.3, 0.7))

coin.simu Probability Distribution of Simulated Coin	s Flipping
--	------------

Description

Mean and probability plot of flipping fair or loaded coin

Usage

coin.simu(n, times, prob = NULL)

Arguments

n	number of trials in one simulation
times	number of simulations
prob	probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Mean value and corresponding probabilities for all simulated outcomes.

Examples

coin.simu(n = 4, times = 1000)
coin.simu(4, 1000, prob = c(0.3, 0.7))

coin.simu.plot Probability Distribution Plot of Simulated Coins Flipping

Description

Probability plot of simulated experiments on flipping coins

Usage

coin.simu.plot(n, times, prob = NULL, qqplot = FALSE, col = "black", type = NULL, main = NULL, sub = NULL)

Arguments

n	number of trials in one simulation
times	number of simulations
prob	probability assigned to each possible outcome
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE
col	color of the plot
type	type of plot
main	an overall title for the plot
sub	a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

dice

Value

Plot of mean value and corresponding probabilities for all simulated outcomes.

Examples

```
coin.simu.plot(n = 4, times = 1000, col = 'red')
coin.simu.plot(4, 1000, prob = c(0.3, 0.7), type = 'p')
```

dice

Theoretical Probability Distribution of Rolling Dice

Description

Mean and probability of rolling fair or loaded dice

Usage

dice(n, prob = NULL)

Arguments

n	number of trials
prob	probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Mean value and corresponding probabilities for all possible outcomes.

Examples

```
dice(n = 4)
dice(2, c(0.1, 0.2, 0.2, 0.1, 0.3, 0.1))
```

dice.plot

Description

Probability plot of rolling fair or loaded dice

Usage

```
dice.plot(n, prob = NULL, col = "black", type = NULL,
main = NULL, sub = NULL)
```

Arguments

n	number of trials
prob	probability assigned to each possible outcome
col	color of the plot
type	type of plot
main	an overall title for the plot
sub	a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all possible outcomes.

Examples

dice.plot(n = 4, col ='red', type = 'p')
dice.plot(3, prob = c(0.3, 0.1, 0.2, 0.1, 0.1, 0.2))

		simu

```
Probability Distribution of Simulated Dice Rolling
```

Description

Mean and probabilityf of flipping fair or loaded dice

Usage

dice.simu(n, times, prob = NULL)

dice.simu.plot

Arguments

n	number of trials in one simulation
times	number of simulations
prob	probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Mean value and corresponding probabilities for all simulated outcomes.

Examples

dice.simu(n = 4, times = 1000) dice.simu(4, 1000, prob = c(0.3, 0.1, 0.1, 0.1, 0.3, 0.1))

dice.simu.plot	Probability Distribution Plot of Simulated Dice Rolling

Description

Probability plot of dice simulated experiments

Usage

```
dice.simu.plot(n, times, prob = NULL, qqplot = FALSE, col = "black", type = NULL,
main = NULL, sub = NULL)
```

Arguments

n	number of trials in one simulation
times	number of simulations
prob	probability assigned to each possible outcome
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE
col	color of the plot
type	type of plot
main	an overall title for the plot
sub	a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Plot of mean value and corresponding probabilities for all simulated outcomes.

Examples

```
dice.simu.plot(n = 4, times = 1000, col = 'red')
dice.simu.plot(4, 1000, prob = c(0.3, 0.1, 0.1, 0.1, 0.1, 0.3), type = 'p')
```

distr.simu.plot *Histogram and Q-Q plot of any given continuous distribution*

Description

Histogram and Q-Q plot of any given continuous distribution

Usage

```
distr.simu.plot(distr, n, times, prob = NULL, qqplot = FALSE, col = "black", type = NULL,
main = NULL, sub = NULL)
```

Arguments

distr	vector, all possible outcomes, population distribution
n	number of trials in one simulation
times	number of simulations
prob	probability assigned to each possible outcome
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE
col	color of the plot
type	type of plot
main	an overall title for the plot
sub	a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all simulated outcomes.

Examples

distr.simu.plot(distr = c(1,0.2,3.4,5,6.6,1.1,5,4.7,2.33,3), n = 4, times = 1000, col = 'red')

expo.simu.plot

Description

Histogram and Q-Q plot of simulated Exponential distribution

Usage

```
expo.simu.plot(n, rate = 1, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of trials in one simulation
rate	vector of rates
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Exponential distribution, red curve represents theoretical density

Examples

expo.simu.plot(n = 5, rate = 2, times = 100)

expt

Theoretical Probability Distribution of General Experiment

Description

General experiment with basic probability

Usage

expt(x, n, prob = NULL)

Arguments

Х	vector, possible outcomes in one trial of experiment
n	number of trials
prob	probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Mean value and corresponding probabilities for all possible outcomes.

Examples

```
expt(x = c(1:3), n = 4)
expt(c(2:4), 3, prob = c(0.3, 0.5, 0.2))
```

expt.mse

Mean square error of simulated experiments

Description

Mean square error of simulated experiments

Usage

expt.mse(x, n, times, prob = NULL)

Arguments

х	vector, possible outcomes in one trial of experiment
n	number of trials
times	number of simulations
prob	probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Mean square error of simulated experiments

Examples

```
expt.mse(x = c(1:3), n = 4, times = 100)
expt.mse(c(0.1, 4, 2), 3, times = 50, prob = c(0.3, 0.5, 0.2))
```

expt.plot

Description

General experiment plot with basic probability

Usage

```
expt.plot(x, n, prob = NULL, col = "black", type = NULL,
main = NULL, sub = NULL)
```

Arguments

х	vector, possible outcomes in one trial of experiment
n	number of trials
prob	probability assigned to each possible outcome
col	color of the plot
type	type of plot
main	an overall title for the plot
sub	a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all possible outcomes.

Examples

```
expt.plot(x = c(1:3), n = 4, col ='red', type = 'p')
expt.plot(c(2:4), 3, prob = c(0.3, 0.5, 0.2))
```

expt.simu

Description

Mean and probability of general simulated experiments

Usage

```
expt.simu(x, n, times, prob = NULL)
```

Arguments

Х	vector, possible outcomes in one trial of experiment
n	number of trials in one simulation
times	number of simulations
prob	probability assigned to each possible outcome

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Mean value and corresponding probabilities for all simulated outcomes.

Examples

expt.simu(x = c(1:3), n = 4, times = 1000)
expt.simu(c(1:3), 4, 1000, prob = c(0.3, 0.1, 0.6))

expt.simu.plot Probability Distribution Plot of Simulated General Experiments

Description

Probability plot of general simulated experiments

Usage

```
expt.simu.plot(x, n, times, prob = NULL, qqplot = FALSE, col = "black", type = NULL,
main = NULL, sub = NULL)
```

gamm.simu.plot

Arguments

х	vector, possible outcomes in one trial of experiment
n	number of trials in one simulation
times	number of simulations
prob	probability assigned to each possible outcome
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE
col	color of the plot
type	type of plot
main	an overall title for the plot
sub	a sub title for the plot

Details

The default probability equals to 1/n. All the assigned probabilites must between 0 and 1.

Value

Plot of mean value and corresponding probabilities for all simulated outcomes.

Examples

```
expt.simu.plot(x = c(1:3), n = 4, times = 1000, col = 'red')
expt.simu.plot(c(1:3), 4, 1000, prob = c(0.3, 0.1, 0.6), type = 'p')
```

gamm.simu.plot	Histogram and Q-Q	<i>Q</i> plot of simulated Gamma distribution
----------------	-------------------	---

Description

Histogram and Q-Q plot of simulated Gamma distribution

Usage

```
gamm.simu.plot(n, shape, rate = 1, scale = 1/rate, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of trials in one simulation
shape	shape parameter
rate	vector of rates
scale	scale parameter
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Gamma distribution, red curve represents theoretical density

Examples

```
gamm.simu.plot(n = 5, shape = 3, rate = 1, times = 100)
```

geom.simu.plot *Histogram and Q-Q plot of simulated Geometric distribution*

Description

Histogram and Q-Q plot of simulated Geometric distribution

Usage

```
geom.simu.plot(n, prob, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of observations
prob	probability of success on each trial
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Geometric distribution, red curve represents theoretical density

Examples

geom.simu.plot(n = 10, prob = 0.2, times = 100)

hyper.simu.plot

Description

Histogram and Q-Q plot of simulated Hypergeometric distribution

Usage

```
hyper.simu.plot(n, a, b, k, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of observations
а	the number of white balls in the urn
b	the number of black balls in the urn
k	the number of balls drawn from the urn
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Hypergeometric distribution, red curve represents theoretical density

Examples

hyper.simu.plot(n = 10, a = 10, b = 10, k = 5, times = 100)

nbinom.simu.plot	Histogram and Q-Q plot of simulated Negative Binomial distribution
------------------	--

Description

Histogram and Q-Q plot of simulated Negative Binomial distribution

Usage

```
nbinom.simu.plot(n, size, prob, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of observations
size	number of trials (zero or more)
prob	probability of success on each trial
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Negative Binomial distribution, red curve represents theoretical density

Examples

nbinom.simu.plot(n = 10, size = 5, prob = 0.2, times = 100)

normal.simu.plot	Histogram and Q-Q plot of simulated Normal distribu	tion

Description

Histogram and Q-Q plot of simulated Normal distribution

Usage

```
normal.simu.plot(n, mean=0, sd=1, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of trials in one simulation
mean	vector of means
sd	vector of standard deviations
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Normal distribution, red curve represents theoretical density

Examples

normal.simu.plot(n = 5, mean = 3, sd =2, times = 100)

pois.simu.plot

Description

Histogram and Q-Q plot of simulated Poisson distribution

Usage

```
pois.simu.plot(n, lambda, times, ylim = NULL, qqplot = FALSE)
```

Arguments

n	number of trials in one simulation
lambda	parameter of Poisson distribution
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Value

Histogram and Q-Q plot of simulated Poisson distribution, red curve represents theoretical density

Examples

pois.simu.plot(n = 5, lambda = 3, times = 100)

unif.simu.plot	Histogram and Q-Q plot of simulated Uniform distributio	n

Description

Histogram and Q-Q plot of simulated Uniform distribution

Usage

unif.simu.plot(n, min = 0, max = 1, times, ylim = NULL, qqplot = FALSE)

Arguments

n	number of trials in one simulation
min	possible minimum value of Uniform distribution. Must be finite
max	possible maximum value of Uniform distribution. Must be finite
times	number of simulations
ylim	range of y-axis
qqplot	an argument to output Q-Q plot or not, can be TRUE or FALSE

Histogram and Q-Q plot of simulated Uniform distribution, red curve represents theoretical density

Examples

unif.simu.plot(n = 5, min = 3, max = 5, times = 100)

Index

beta.simu.plot, 2binom.simu.plot, 3 chisq.simu.plot, 3coin, 4 coin.plot, 5 coin.simu,5 coin.simu.plot,6 dice,7 dice.plot, 8 dice.simu, 8 dice.simu.plot,9 distr.simu.plot, 10 expo.simu.plot, 11 expt, 11 expt.mse, 12 expt.plot, 13 expt.simu, 14 expt.simu.plot, 14 gamm.simu.plot, 15 geom.simu.plot, 16 hyper.simu.plot, 17 nbinom.simu.plot, 17 normal.simu.plot, 18 pois.simu.plot, 19 unif.simu.plot, 19