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Abstract

basicspace is an R package that conducts Aldrich-McKelvey and Blackbox scaling to
recover estimates of the underlying latent dimensions of issue scale data. We illustrate
several applications of the package to survey data commonly used in the social sciences.
Monte Carlo tests demonstrate that the procedure can recover latent dimensions and
reproduce the matrix of responses at moderate levels of error and missing data.
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1. Introduction

The basicspace package enables the spatial! analysis of self-placement and/or perceptual sur-
vey data in R (R Development Core Team 2009). Issue scales, where respondents place them-
selves and/or stimuli on a numeric scale, are a common form of data gathered and analyzed
by survey researchers and social scientists. For example, since 1968 the American National
Election Studies have gathered seven-point scale data on a variety of issues. Respondents
are shown scales with labeled endpoints such as “liberal” and “conservative” and are then
asked to place themselves and political figures on the scales. As with other forms of response
data, researchers are often interested in understanding the extent to which a set of issue scale
placements are driven by an underlying latent dimension. This package contains software
designed to recover the latent dimensions—i.e., a basic space—from issue scale data such as
surveys. The functions contained in basicspace will recover spatial estimates of respondent
positions and scale them and the stimuli into a common space. The package implements the
Blackbox method (Poole 1998) and the Aldrich-McKelvey (Aldrich and McKelvey 1977) scal-
ing procedures, which have been used in a number of previous social science studies including
Palfrey and Poole (1987), Poole (1998), and Saiegh (2009).

Scaling techniques are already widely used by political scientists in empirical models of voting
(also known as ideal point esimation) that allow legislator locations in an abstract policy or
ideological space to be inferred from their legislative votes. ? Similarly, the motivation for
recovering spatial information from issue scales, such as those in political surveys, is to detect

'Note that “spatial” in this context refers not to geography but to perceputal or ideological space, as
popularized in the work of Downs (1957) on the spatial model of voting.

2For a more extensive review of applications of spatial modeling in the social sciences, see Poole (2005).
The most prominent ideal point model in the political science literature, W-NOMINATE (Poole and Rosenthal
1997), estimates the policy preferences of legislators using observed roll call votes as the primary source of
data. The wnominate package on CRAN contains software used to estimate NOMINATE scores.
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the underlying dimensions behind the reported attitudes of survey respondents that explain
the basic relationships among the respondents and stimuli.

One technique for analyzing such data, Aldrich and McKelvey’s method (Aldrich and McK-
elvey 1977), makes use of respondent information regarding the positions of stimuli (e.g.
politicians or parties) to estimate the perceptual bias of each respondent ? and obtain esti-
mated locations for both stimuli and respondents along a single issue scale dimension (e.g.
liberal-conservative). Poole (1998) developed the Blackbox scaling procedure as a generaliza-
tion of Aldrich-McKelvey’s method, which is implemented in this package as the blackbox
and blackbox transpose functions. These methods apply to a wide range of issue scale
problems because it incorporates information from multiple issue scales to scale in multiple
dimensions and because it allows for missing data (e.g. survey non-response). The blackbox
function recovers n-dimensional ideal points (i.e. spatial coordinates) for respondents based
on their own preference data across any number of issue scales. The blackbox_transpose
function, meanwhile, recovers the spatial location of stimuli based on respondent estimates.

This paper proceeds in four steps. First, we begin with a description of the mathematics
that underlie the Blackbox estimator, which performs a singular value decomposition of a
rectangular matrix containing missing elements. We then provide three examples using the
basicspace package to implement this method in R. First, we show a Monte Carlo analysis that
suggests the estimator produces an accurate decomposition of our simulated data matrices,
even with 30 per cent of the data missing. Secondly, we show how the procedure can be
applied to self-placement survey data from the 1980 National Election Survey. Next, we
proceed with an application of the model to perceptual data from the 1980 National Election
Study, where various political candidates are ranked along a 7 point liberal-conservative scale.
Finally, we describe the earlier estimator developed by Aldrich and McKelvey (1977) which
is also included as a function in this package.

2. Model

The exposition of the model presented here closely follows Poole (1998). Consider a matrix
of survey data Xy with IV respondents and M issue scales, with individuals on the rows and
issues on the columns. Some cells of the matrix Xy are missing, and we let X denote the

version of Xy that has no missing data. In each cell x;;, respondent ¢ (¢ = 1, ..., N) reports
their position on issue scale j (j = 1, ..., M), with some responses missing.? Now let W;;
be the ith individual’s position on the kth basic dimension (k = 1, ..., s), W be an M by s

matrix of weights that map individual positions from the basic space to the issue dimensions,
c be a vector of issue dimension intercept terms of length m, Jy by an N length vector of
ones, and Ej be error terms in the data matrix. The model that we seek to estimate is:

Xo = [‘;[/W/ + JNC,]O + Ey (1)

Without loss of generality, we also assume that Ejy is drawn from a symmetric distribution
with mean 0 and the centroid of the basic space coordinates is at the origin (i.e., Jy¥ = 0).
Substituting into the model equation, this implies that Jy [X —Jyc] = 0, where 07 is an M

3The method thus provides a means to account for differential item functioning
4The ‘0’ subscript indicates that some elements are missing from the matrix.
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length vector of zeroes. Then in the situation where Xy has no missing data, the parameters
of interest can all be recovered using singular value decomposition. To see why this is true,
recall that for an N by M matrix of real elements with N > M, there exists an N by M
orthogonal matrix U, an M by M orthogonal matrix V', and an M by M matrix A such that:

X =UAV’ (2)
where A is a diagonal matrix of singular values.® To solve Equation 1, set ¢ equal to the column
N
2, @i
means of X, or ¢; = =5— = Z;. Then using Equation 2, the singular value decomposition

of X — Jyc can be expressed as:

X —Jyd = UANV' = W/

This implies that in the absence of missing data, one solution for ¥ and W is:

U = AP

W = VA®

with A%5 being a diagonal matrix where diagonal elements are the square roots of A. While
other solutions to this problem exist, Eckart and Young (1936) have shown that the least
squares approximation in s dimensions of a matrix A can be found by using only the first s
singular values of A along the diagonal of A and re-multiplying UAV”.

In the presence of missing data in data matrix Xy, the use of singular value decomposition
to solve for W and W is no longer possible, and we instead estimate W and ¥ using an
alternating least squares (ALS) technique that is similar to the procedures used in Carroll
and Chang (1970) and Takane, Young, and De Leeuw (1977). The objective function to be
minimized is the sum of the squared deviations across all cells in A after the columns have
been adjusted for column means, or:

N m; s

=D AR VaWi] + ¢ — x5}

i=1j=1 k=1

where m; is the number of non-missing entries on row ¢. In minimizing this objective function,
two constraints from the earlier analysis with no missing data are applied. First, we exploit
the fact that ¥ and W are orthogonal matrices, which implies that W/ = W/'W.6 Secondly,
following our earlier restriction that Jy[X — Jyc] = 0),, JyU = Jy¥ = 0), as well. These
restrictions produce the Lagrangian multiplier problem:

=&+ 29[V IN] + tr[@('T — W'W)]

5A more general form of this equation can be written in which A is instead an N by M matrix and U is N
by N.
5More specifically, U/ = ASU'UA®? = A%PT A% = A = W'W.

3
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where @ is a symmetric s by s matrix of Lagrangian multipliers and v is an s length vector
of Lagrangian multipliers. Since all Lagrangian multipliers are zero,” the partial derivatives
of £ are:

8\1% = 2; ;w]ﬂﬁu +¢j — xi5]wjk (3)

aw]k 2121 z::wmbzz + ¢j — T (4)
87 = 22 Zwﬂw + ¢ — wij] (5)
¢j i=1 I=1

Let W* be an m; by s matrix with appropriate rows corresponding to missing entries in
Xo removed, xy; be the length m; row of Xy, and ¢y be the length m; vector of constants
corresponding to the elements of xg;. Then if W*'W* exists, the ith row of ¥ can be estimated
by setting Equation 3 to zero, collecting the s partial derivatives of the ith row of W into a
vector and solving for ¢; as:

12}1' — (W*/W*)flw*/[xm o CO} (6)

which can of course by estimated using ordinary least squares. Similarly, let U7 = [Wol|Jo] be
an n; by s+ 1 matrix with the appropriate rows corresponding to missing data removed and
bordered by ones, w; be the s length vector of row j in W, ¢; be the jth element of ¢, and
xoj be the jth column of Xy. Then if \II}”\IJ;‘ exists, w; and c¢; can be jointly estimated by
combining Equations 4 and 5 as:

?j = (U305~ g, (7)
Equations 6 and 7 represent the core set of equations that are used to solve for W, ¢, and
. Once a set of starting values has been generated, Equations 6 and 7 are iterated until
convergence is complete. Generation of appropriate start values is conducted one dimension
at a time, and a more detailed justification of the procedure can be found in Poole (1998).
On the first dimension, start values are generated by using the following three equations:

j
D ij
Jj=1

%

Il
S
.

(8)

j =

wj1 = diag(l) 9)

where I is an M by M diagonal matrix with diagonal elements either set to 1 or -1 that max-
imizes the number of positive elements in the M by M covariance matrix I'[Xo — Jyc]'[Xo —

"See Appendix A in Poole (1998) for a full proof that all Lagrangian multipliers are zero.
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JndT. T is found by a simple iterative process similar to that used to speed eigenvec-
tor/eigenvalue decomposition (Poole 1998). Given Equations 8 and 9, starting values for ¢
are:

m;
Z wj1(wij — &)
I — (10)

m;

If more than one dimension is to be estimated (s > 1), start values for other dimensions can
be generated simply by replacing the data matrix Xy with the matrix of residuals Fys in
Equations 9 and 10. However, no further estimation of start values for ¢ is required. The
matrix of residuals to be used for generating start values on dimension s is:

S
Eos = Xo— Y Ve’ — Iné
j=1
This residual matrix allows the generation of higher-dimension start values by iterating I' to
maximize the positive elements in Eys. The starting values are now:

m;
D Wise(s—1)ij
A~ j=1
Yis = —; ) (11)
Ok
PR

where the initial w;s values of +1s and -1s are used to obtain 1/31-5 starting values. The starting
values of ws are now:

P (12)

Summarizing the preceding discussion in full, the basic space technique decomposes an N
by M matrix X¢ with N > M following Equation 1. Estimation of Equation 1 proceeds
in three steps. In the first stage, starting values on the first dimension are generated for
¢j, W1, and ¥;1 by iterating Equations 8-10 until convergence. In the second stage, if the
number of dimensions to be estimated s > 1, higher dimensional starting values for 1@5
and ;s are generated dimension by dimension using Equations 11-12. Finally, the starting
values generated in the preceding two stages are improved by iterating Equations 6-7 until
convergence.

3. Monte Carlo Test

In this section, we present the first of four motivating examples. We begin with a Monte
Carlo example that tests the basic space technique against simulated data. Four key variables
should be set in each simulation: the number of respondents N (set here to N = 1000), the

5
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number of issue scales (also referred to as stimuli, and set here to M = 20), the number of
explanatory dimensions (set here to s = 2), the fraction of observations that are missing (set
here as 0.3), and the distribution of error terms (set here as random uniform draws from
-0.5 to 0.5). These variables can be changed for other simulations, but the restriction that
N > M must be hold true. In cases where M > N please refer to the second example that
uses blackbox_transpose and aldmck.

> set.seed(1231)

> library("basicspace")

> N <- 1000

> M <- 20

> s <=2

> fraction.missing <- 0.3

> E <- matrix(runif(N * M, min = -0.5, max = 0.5), nrow = N, ncol = M)

To generate the X matrix (i.e., the matrix in Equation 1 before missing values are introduced),
separately generate the matrices that produce the singular value decomposition of X following
Equation 2. Also generate the J, and ¢ vectors from Equation 1. While X can be generated
directly in one step, creating the components separately enjoys two significant advantages.
First, recovery of the true values of ¥ and W is simplified. Secondly, the creation of A
separately allows us to more easily tune the dimensionality of the matrix as desired.

U <- matrix(runif(N * s), nrow = N, ncol = s)

D <- diag(seq(from = 2.1, by = -0.2, length.out = s))
V.prime <- matrix(runif(s * M), nrow = s, ncol = M)

¢ <- rnorm(M)

Jn <- rep(1, N)

V VvV Vv Vv Vv

With the intermediate matrices just generated, we can produce our X matrix by using Equa-
tion 1 and the true ¥ and W matrices using: ¥ = UA?® and W = VA?S,

> X.true <- U %), D %*} V.prime + Jn Joj c
> X.0 <- X.true + E

> Psi.true <- U %*} sqrt(D)

> W.true <- t(V.prime) 7*J sqrt(D)

Xy is simply the X matrix with missing data values included completely at random, so we
insert our missing data code (999 in the example) into the appropriate fraction of values as
follows:

> missing <- sample(1:(N * M), round(fraction.missing * N * M))
> X.0[missing] <- 999

The final step before estimation is to assign row and column names to the data set prior to
input. In most applications these names are generally pulled from a survey, but they can also
be generated manually:
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> rownames (X.0) <- paste("Legis", 1:N, sep = "")
> colnames(X.0) <- paste("V", 1:M, sep = "")

Estimation of the Monte Carlo data after formatting is trivial. The function that applies the
basic space decomposition described in this paper is blackbox. It takes four arguments: the
matrix to be decomposed, a vector of missing data values, a Boolean flag indicating whether
verbose output is desired, the number of dimensions to estimate, and the minimum number
of issue scales that an individual needs to provide responses to if they are to be included in
the estimation.

> result <- blackbox(X.0, missing = c(999), verbose = TRUE, dims = 3, minscale = 8)
Beginning Blackbox Scaling...20 stimuli have been provided.

Blackbox estimation completed successfully.
> names (result)

[1] "stimuli" "individuals" "fits" "Nrow" "Ncol"
[6] "Ndata" "Nmiss" "SS mean" "dims"

The output object contains multiple data frames summarizing the results of the estima-
tion. The key data frames are stimuli, which contain estimates of W and ¢, as well as
individuals, which contain estimates of ¥. The other quantities are fit statistics described
in greater detail in the standard documentation for the function.

With the estimates complete, we are now able to test the recovery of our parameters of
interest. In general, scaling problems are not fully identified. Stated differently, given X =
VW', ¥ and W’ are not unique solutions because X = WK K ~'W’' for any conformable and
invertible matrix K, so X can always be decomposed instead as X = U*W* where ¥* = UK
and W*¥ = K~'W’. When evaluating parameter fit, we are therefore largely concerned
with finding monotonic relationships between the true and estimated parameters of interest.
Figure 1 compares the true vs. estimated values of W across two dimensions, and the results
suggest a reasonable model fit. For this comparison, ¥ and ¥* are mean centered and rotated.

Figure 2 shows the results for the same procedure applied to W. In Figure 3 we repeat this
analysis for ¢, which is a column mean that is only estimated in one dimension. In both
cases the estimates for W and & are a monotonic transformation of the true parameters as
expected.®

Finally, we pool our estimates of W, \Tl, and ¢ together to estimate the full matrix X following
Equation 1. While social scientists are principally concerned with estimation of W and ¥,
others seeking to conduct singular value decomposition of matrices with missing data may find
X to be of value. One potential application of X is as an imputation tool for missing data.”

8In other estimates, the relationship may only be affine because X = UW' implies X = —(¥) — (W’) as
well.

9The simulation presented here simulates missing data under the Missing Completely at Random (MCAR)
assumption — nevertheless, this should not work under conditions where data are instead Missing at Random
(MAR).
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Psi.hat <- cbind(result$individuals[[2]]$cl, result$individuals[[2]]$c2)
c.hat <- result$stimuli[[2]]$c

xrow <- sapply(1:N, function(i) length(rep(1l,s)[!is.na(Psi.hat[i,])]1))
Psi.hat <- Psi.hat[!(xrow<2),]

Psi.true <- Psi.truel[! (xrow<2),]

Psi.hat[,1] <- Psi.hat[,1]-mean(Psi.hat[,1])

Psi.hat[,2] <- Psi.hat[,2]-mean(Psi.hat[,2])

Psi.true[,1] <- Psi.truel,1]-mean(Psi.truel,1])

Psi.true[,2] <- Psi.truel[,2]-mean(Psi.truel,2])

C <- t(Psi.true)/*}Psi.hat

svddecomp <- svd(C)

U.rotate <- svddecomp$u

V.rotate <- svddecomp$v

T <- V.rotate 7*} t(U.rotate)

Psi.hatrotate <- Psi.hat J*J), T

oldpar <- par(no.readonly = TRUE)

on.exit (par(oldpar))

par (mfrow=c(1,2))

plot(Psi.truel,1],Psi.hatrotate[,1], xlim= ¢(-0.7,0.7), ylim= c(-0.5, 0.5),
pch=20, cex=0.4, cex.lab=1.6, bty="n",

xlab="True Psi, first dimension",

ylab="Recovered Psi, first dimension")
plot(Psi.truel,2],Psi.hatrotatel,2], xlim= c(-0.7,0.7), ylim= c(-0.5, 0.5),
pch=20, cex=0.4, cex.lab=1.6, bty="n",

xlab="True Psi, second dimension", ylab="Recovered Psi, second dimension")

0.4

0.2
|

-0.2
|

Recovered Psi, first dimension

Recovered Psi, second dimension

-06 -04 -02 00 02 04 06 -06 -04 -02 00 02 04 06

True Psi, first dimension True Psi, second dimension

Figure 1: Plots of True vs. Estimated ¥ scores, first and second dimension.
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W.hat <- cbind(result$stimuli[[2]]$wl, result$stimulil[2]]$w2)

W.hatrotate <- W.hat/*)T

oldpar <- par(no.readonly = TRUE)

on.exit (par(oldpar))

par (mfrow=c(1,2))

plot(W.truel[,1],W.hatrotate[,1], xlim= c( 0.00, 1.50), ylim= c(-0.75, 2.75),
pch=20, cex=1.5, cex.lab=1.6, bty="n",

xlab="True W, first dimension", ylab="Recovered W, first dimension")
plot(W.truel,2],W.hatrotate[,2], xlim= c( 0.00, 1.50), ylim= c(-0.75, 2.75),
pch=20, cex=1.5, cex.lab=1.6, bty="n",

xlab="True W, second dimension", ylab="Recovered W, second dimension")

c
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c o N °
[T g ° ° o
E &7 R S ] %
o 4 ko)
“(7') ﬁ T L4 8 ﬁ T ...
E o | L 8 o | °
wn - wn

o S | . ; o 7 - o.
o ® 8 .
(<] B B .
3 = C w | °
o 9~ > o - e
o) [} 8 [}
a4 T T T ] @ T T T ]

0.0 05 1.0 15 X 0.0 05 1.0 15

True W, first dimension True W, second dimension

Figure 2: Plots of True vs. Estimated W scores, first and second dimension.
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oldpar <- par(no.readonly = TRUE)
on.exit (par(oldpar))
par (mfrow=c(1,1))

plot(c, c.hat,

pch=20, cex=1.2, cex.lab=1.1, bty="n",
xlab="True C", ylab="Recovered C")

Recovered C

[ I I I I I I
-1.5 -1.0 -05 0.0 0.5 1.0 15

True C

Figure 3: Plot of True vs. Estimated c scores.

2.0
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> W.hat <- cbind(result$stimuli[[2]]$wl, result$stimuli[[2]]$w2)

> Psi.hat <- cbind(result$individuals[[2]]$cl, result$individuals[[2]]$c2)
> X.hat <- Psi.hat 7*J, t(W.hat) + Jn JoJ, result$stimuli[[2]]$c

> oldpar <- par(no.readonly = TRUE)

> on.exit(par(oldpar))

> par (mfrow=c(1,2))

> plot(X.true[missing], X.hat[missing],

+ pch = 20, cex = 0.4, cex.lab = 1.2, bty = "n",

+ xlab = "True X, missing values", ylab = "Recovered X, missing values")
> plot(X.true[!(1:(N*M) Jinj, missing)], X.hat[!(1:(N*M) 7inj, missing)],

+ pch = 20, cex = 0.4, cex.lab = 1.2, bty = "n",

+ xlab = "True X, nonmissing values", ylab = "Recovered X, nonmissing values")

Recovered X, missing values

Recovered X, nonmissing values
1
|

True X, missing values True X, nonmissing values

Figure 4: Plots of True vs. Estimated X scores for missing vs. non-missing values.

To test the viability of this idea, we separately plot the true values of X against the estimated
values of X separately for the cells retained in the estimation, and compared those results to
estimates of X in cells that were discarded prior to estimation to simulate the missing data
mechanism. Figure 4 presents our results for retained vs. imputed X. What is particularly
notable about this result is the close similarity between these plots — the imputed values
not only appear reasonable (i.e., line up with the true values along a 45° line), but imputed
values do not appear to have significantly higher mean squared error than the values that were
retained (i.e., variance along the 45° line is similar in both plots). These results suggest that
the use of the techniques demonstrated here may have greater applicability beyond survey
research. Further discussion of imputation can be found in the unpublished appendix to Poole
(1998).

4. Example 1: 1980 NES Issue Scales

In this section we present an application of the basic space model to a set of issue scales
from the 1980 National Election Study. This survey contains N=1,614 respondents who were
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asked to place themselves on scales about desired levels of defense spending, inflation, tax cuts,
abortion, liberal-conservative scales, the role of women, the role of government in providing
jobs, busing, and other similar issues. We assume that each respondent has a location in
a common ideological space and attempt to recover estimates of those locations, which is
represented as ¥ in Equation 1. The data is simply stored in a standard matrix or data frame
with respondents on the rows and survey questions (i.e. stimuli) on the columns as follows:

> data("Issues1980")
> Issues1980([1:10, 1:4]

libconl defense govserv inflation

1 0 7 5 4
2 4 4 6 7
3 6 3 0 0
4 5 6 2 8
5 3 4 2 4
6 5 5 4 0
7 8 2 6 5
8 2 7 7 6
9 6 7 2 2
10 5 4 2 5

Virtually all surveys contain missing data, and for the two survey questions about abortion,
‘7’ is used as a missing data code. However, many of the other scales in this data set use 7
point scales, so we need to recode the missing data for those questions. For all questions, 0,
8, and 9 are missing data codes.'”

> Issues1980[Issues1980[, "abortionl"] == 7, "abortionl"] <- 8
> Issues1980[Issues1980[, "abortion2" ]== 7, "abortion2"] <- 8

Estimation of the scores is now trivial using the blackbox function, which takes the same
arguments already described in the Monte Carlo example:

> ## Commented to shorten runtimes

> # Issues1980_bb <- blackbox(Issues1980, missing=c(0,8,9), verbose=FALSE,
> # dims=3, minscale=8)

> data(Issues1980_bb)

Objects of class blackbox can also be summarized using the summary function, although the
summaries largely provide only summaries of the stimuli. For each dimension estimated, the
summary provides the intercept (c¢) and stretch (w; ...ws) parameters for each question, as
well as the number of respondents and various fit statistics.

> summary (Issues1980_bb)

0Data used for this estimator are typically opinion surveys where significant amounts of missing data are
commonplace — thus, recoding of this sort will typically be necessary for most applications.
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SUMMARY OF BLACKBOX OBJECT

N c wl R2
libconl 875 4.280 -3.028 0.414
defense 1163 5.210 -1.754 0.123
govserv 1119 4.323 4.302 0.450
inflation 816 4.106 2.015 0.159
abortionl 1238 2.856 0.627 0.031
taxcut 836 2.839 -1.074 0.055
libcon2 949 4.369 -2.755 0.414
govhelpmin 1160 4.542 -3.400 0.412
russia 1152 3.891 -3.034 0.231
womenrole 1223 2.845 -2.866 0.204
govjobs 1131 4.377 -4.488 0.518
equalrights 1144 2.663 -3.297 0.381
busing 1219 6.051 -2.699 0.255
abortion2 1246 2.675 0.724 0.047

N c wl w2 R2
libconl 875 4.300 -2.966 0.954 0.424
defense 1163 5.214 -1.779 0.899 0.147
govserv 1119 4.368 4.331 3.042 0.617
inflation 816 4.152 2.088 2.940 0.393
abortionl 1238 2.856 0.512 -2.211 0.290
taxcut 836 2.818 -1.103 -0.667 0.071
libcon2 949 4.377 -2.758 0.459 0.423
govhelpmin 1160 4.535 -3.456 -0.119 0.424
russia 1152 3.887 -3.140 0.241 0.247
womenrole 1223 2.872 -2.466 6.007 0.771
govjobs 1131 4.350 -4.595 -2.417 0.635
equalrights 1144 2.673 -3.148 2.438 0.491
busing 1219 6.049 -2.741 0.059 0.263
abortion2 1246 2.676 0.629 -2.112 0.318

N c wl w2 w3 R2
libconl 875 4.294 -2.976 0.708 -1.180 0.448
defense 1163 5.200 -1.806 1.586 2.562 0.315
govserv 1119 4.410 4.295 3.707 2.929 0.778
inflation 816 4.169 1.998 3.286 1.111 0.451
abortionl 1238 2.856 0.497 -2.004 1.174 0.312
taxcut 836 2.813 -1.049 -0.902 -0.891 0.091
libcon2 949 4.367 -2.785 0.265 -0.557 0.437
govhelpmin 1160 4.534 -3.457 0.140 0.961 0.440
russia 1152 3.831 -3.255 1.558 5.590 0.695
womenrole 1223 2.891 -2.372 5.602 -2.868 0.805
govjobs 1131 4.341 -4.632 -2.176 1.392 0.648
equalrights 1144 2.680 -3.159 1.860 -2.372 0.563
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busing 1219 6.042 -2.819 0.329 1.282 0.306
abortion2 1246 2.675 0.587 -1.980 0.906 0.329

Dimensions Estimated: 3

Number of Rows: 1270

Number of Columns: 14

Total Number of Data Entries: 15271
Number of Missing Entries: 2509
Percent Missing Data: 14.11%

Sum of Squares (Grand Mean): 52705.13

When using blackbox for applied research, the researcher’s principal goal is the recovery of
the individual parameters stored as the individuals data frame. These typically represent
our estimate of the individual’s ideological location in the basic space. Due to the model
identification issue discussed above, these measures are defined only up to an affine transfor-
mation of the true space. In particular, the rotation of the estimate is not specified, so if the
ideological location is to be substantively measured as a liberalism/conservatism score, its ro-
tation should be validated so that it can be transformed if necessary. Here we conduct such a
check by correlating our recovered scores with self-reported liberal-conservative scores, where
higher scores indicate higher levels of conservatism. The correlation is negative, suggesting
that as the recovered scores increase, the respondents become more liberal. Since the norm
in political science research is to orient liberal-conservative scores to increase as conservatism
increases, the researcher may wish to rotate the scores (i.e., by multiplying them by -1) before
using them for auxiliary analyses.

> cor(Issues1980_bb$individuals[[1]]$c1, Issues1980[, "libconl"], use="pairwise")

[1] -0.2310037

5. Example 2: 1980 NES Liberal-Conservative Scale

In our previous example applying the basic space model to analyze respondent self-placement
on issue scales, we considered an example where the bias and stretch parameters c and w were
estimated for the column parameters. However, we may instead wish to estimate a version of
the model where ¢ and w are estimated for the row parameters (i.e., the survey respondents)
instead. This is simply a transposed version of the basic space model, where M > N instead
of N < M. In this example we analyze perceptual data from the 1980 National Election
Study. A total of N = 888 respondents were asked to place six stimuli (Carter, Reagan,
Kennedy, Anderson, the Republicans, and the Democrats) on a 7 point liberal-conservative
scale. Our objective is to estimate the locations of the six stimuli in the basic space, which
each respondent perceives with some bias and stretch parameter. The data is input in a
manner identical to before, with survey respondents on the rows and stimuli on the columns.
One very important difference between blackbox and blackbox_transpose is that in most
survey data sets, the number of respondents is very large relative to the number of stimuli.
This typically means that blackbox_transpose takes much longer to estimate because it
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estimates both a bias ¢ and stretch W parameter for each respondent. To estimate the 1980
liberal-conservative placements using blackbox_transpose, we simply load the data and call
the function as follows:

> data("LC1980")
> LCdat=LC1980[, -1]
> LCdat[1:10,]

Carter Reagan Kennedy Anderson Republicans Democrats

1 2 6 1 7 5 5
8 4 6 4 7 6 4
9 3 6 3 3 6 2
10 6 4 3 3 5 4
11 7 2 5 5 7 5
13 6 6 2 5 7 4
14 3 6 2 5 6 3
16 3 7 4 2 7 3
17 5 3 5 2 8 8
19 3 6 4 5 6 2
> ## Commented to shorten runtimes

> # LC1980_bbt <- blackbox_transpose(LCdat, missing=c(0,8,9), dims=3,
> # minscale=5,verbose=TRUE)

> data(LC1980_bbt)

>

In an effort to simplify interpretation of results from blackbox_tranpose, we include two
plot functions. These functions plot the location of the stimuli against a probability and
cumulative distribution plot of locations of the population weights (see Figure 5).

We can also produce summary reports of the stimuli as follows:
> summary (LC1980_bbt)
SUMMARY OF BLACKBOX TRANSPOSE OBJECT

N coordilD R2

Carter 768 0.241 0.563
Reagan 765 -0.582 0.822
Kennedy 754 0.476 0.648
Anderson 689 0.061 0.230
Republicans 771 -0.519 0.757
Democrats 774 0.321 0.651

N coordlD coord2D R2
Carter 768 0.238 -0.407 0.720
Reagan 765 -0.580 -0.101 0.839
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> oldpar <- par(no.readonly = TRUE)
> on.exit (par(oldpar))

> par(mfrow = c(1, 2))

> plot (LC1980_bbt)

> plotcdf.blackbt (LC1980_bbt)

Stimuli and Population Distribution Stimuli and Population CDF
S Rl —————
N = 775 Anderson ——>
2
2
[
2z o
(%] Q
5 g
: g
€
)
O
— 1 T 1
1.0 0.5 1.0
Location Location
Figure 5: Blackbox Transpose PDF and CDF plots.
Kennedy 754 0.481 0.013 0.680

Anderson 689 0.059 0.864 0.946
Republicans 771 -0.518 -0.117 0.767
Democrats 774 0.321 -0.252 0.718

N coordlD coord2D coord3D R2

Carter 768 0.191 -0.261 -0.663 0.918
Reagan 765 0.216 0.556 0.141 0.856
Kennedy 754 0.162 -0.510 0.697 0.981
Anderson 689 -0.911 0.053 -0.002 1.000
Republicans 771 0.210 0.498 0.055 0.780
Democrats 774 0.131 -0.335 -0.228 0.765

Dimensions Estimated: 3

Number of Rows: 6

Number of Columns: 775

Total Number of Data Entries: 4521
Number of Missing Entries: 129
Percent Missing Data: 2.77%

Sum of Squares (Grand Mean): 12683.93

The second dimension is picking up John Anderson, a Representative from Illinois who ran
as a third party candidate in 1980. Respondents clearly had trouble placing Anderson on the
liberal-conservative scale. The second dimension is picking up this ambiguity of position.
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6. Example 3: Aldrich and McKelvey’s Estimator

The transposed basic space model is an alternative to a model developed by Aldrich and
McKelvey (1977), which is also intended for scaling perceptual data from survey. While the
Aldrich-McKelvey model is restricted to analyzing matrices with no missing values in only
one dimension, it also incorporates parameters accounting for individual bias and stretch.
The Aldrich-McKelvey model is:

Yij=2Zj+ €

where Z; is the true location of j and ¢;; is a random variable with mean 0, positive variance
that is independent of i and j (homoskedastic), and zero covariance across the i’s and j’s.
Aldrich and McKelvey then introduce two distortion parameters, ¢; and w;, that transform
the perceived candidate position into a reported candidate position R;;, according to:

1
Rijj = —(Yij —a)

ws

A least-squares minimization procedure is then used to obtain estimates of {Zj}le and
{wi, i}y

We begin by reestimating the earlier results using the 1980 Liberal-Conservative scale with the
Aldrich-McKelvey estimator. While the aldmck function accepts nearly identical arguments
the blackbox_transpose, one notable difference appears by default. aldmck also accepts a
column in the data matrix, specified by the respondent argument, that specifies the respon-
dent’s self placement on the issue scale. The reported respondent rating is then transformed
into an ideology score by applying the respondent’s personal stretch and bias parameters to
that score, with the results shown in Figure 6. Note that the results largely correspond to
those shown earlier with blackbox_transpose.

> data("LC1980")
> result <- aldmck(data = LC1980, polarity = 2, respondent = 1,
+ missing = c(0, 8, 9), verbose = TRUE)

Beginning Aldrich-McKelvey Scaling...
Column 'Self' is set as the self placement.
Column 'Carter' is set as the left-leaning stimulus.
646 of 888 observations are complete.
6 stimuli have been provided.
Aldrich-McKelvey estimation completed successfully.

> summary (result)

SUMMARY OF ALDRICH-MCKELVEY OBJECT

17
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Number of Stimuli: 6

Number of Respondents Scaled: 885

Number of Respondents (Positive Weights): 752

Number of Respondents (Negative Weights): 133
Reduction of normalized variance of perceptions: 0.25

Location
Kennedy -0.528
Democrats -0.276
Carter -0.249
Anderson -0.026
Republicans 0.515
Reagan 0.563

In addition, this summary shows that the Aldrich-McKelvey function also identifies a number
of individuals with negative weights. These represent the set of individuals who see the
space “backwards” (i.e. they see Reagan and the Republicans to the left of Carter and the
Democrats) .

Estimation of uncertainty for estimates using Aldrich-McKelvey can be obtained via the non-
parametric bootstrap (Efron and Tibshirani 1993). To simulate 100 samples from the 1980
Liberal-Conservative scales and estimate the standard error of the stimuli, we do the following:

> result <- boot_aldmck(data=LC1980, polarity=2, respondent=1,
+ missing=c(0,8,9), iter=100)
> apply(result, 2, sd)

Carter Reagan Kennedy Anderson Republicans Democrats
0.011490066 0.007384622 0.010067367 0.022748760 0.008456617 0.013631964

The Aldrich-McKelvey function can be used to replicate previously published Monte Carlo
results from Palfrey and Poole (1987). Palfrey and Poole find that the Aldrich-McKelvey
algorithm is robust in the presence of heteroskedasticity and test this by replacing the assumed
homoskedastic error term ¢;; with a respondent-specific ¢;. In this example we replicate their
result in a single trial, and show that the recovered stimuli 2j is almost perfectly correlated
with the true Z; (note that the correlation can be negative because polarity is set randomly).

> Nstimuli <- 6

> Nresp <- 500

> Z_j <- rnorm(6)

> Z_j <= (Z_j - mean(Z_j))/sd(Z_j)

> respondent.sd <- runif(Nresp, min = 0.3, max = 0.9)

> error_heteroskedastic <- matrix(NA, Nresp, Nstimuli)

> for(i in 1:Nresp) error_heteroskedastic <- rnorm(Nstimuli, sd = respondent.sd)
> w_i <- runif(Nresp, min=0, max=1)

> c_i <- rnorm(Nresp)

Hsee Palfrey and Poole (1987) for a discussion of the weights derived from Aldrich-McKelvey scaling
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> plot.aldmck(result)
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Figure 6: Aldrich-McKelvey plots.
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Y ij <- rep(1,500) Jok Z_j

Y ij <- Y_ij + error_heteroskedastic

R_ij <- 1/w_i JoJ rep(1,Nstimuli) * (Y_ij - c_i Jo/ rep(1,Nstimuli))
result <- aldmck(R_ij, polarity = 6, missing = c(999))

cor(Z_j, result$stimuli)

vV VvV Vv Vv Vv

[1] 0.9996103

Although we only show one trial in this paper, the result shown here is reproducible over
multiple simulations.'?

7. Conclusion

The basicspace package includes a number of functions that enable the estimation of a basic
space using self-placement and/or perceptual survey data in R. These include the following
functions:

Estimation functions: aldmck, blackbox, blackbox_transpose

Convenience extraction functions: individuals, fit, stimuli

Generic functions: predict, plot, summary

Bootstrap functions: boot_aldmck, boot_blackbt, and plot functions for these objects
In addition to the functions listed above, three example data sets have also been included.
These include the 1980 NES Issue scales (Issues1980), the 1980 NES Liberal-Conservative
Scales (LC1980), and the 2004 PELA Liberal-Conservative scales (columbia).

Social scientists often wish to infer the locations of survey respondents—such as voters or
legislators—in an abstract policy or ideological space. The basic space technique described
here has broad applicability to perceptual data. Given the abundance of perceptual data
questions found in most social science surveys, there will continue to be numerous potential
applications of the estimators included with this package. An R package that facilitates the

analysis of perceptual data in a popular statistics environment will enable broader use of these
methods.
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