
An Introduction to the R Package Agrmt

Didier Ruedin
University of Neuchâtel and University of the Witwatersrand

didier.ruedin@unine.ch

November 22, 2023

1 Overview
This package provides functions to calculate concentration and dispersion in
ordered rating scales. Concentration may also be described as agreement, con-
sensus; dispersion is also known as polarization. It also implements other related
measures to classify distributions. At its core, the package provides a generic
city-block based concentration measure, and a generic measure of dispersion
(disper). To use Van der Eijk’s [2001] algorithmic approach agreement ‘A’, call
agreement. The derived polarization lets you calculate a polarization score
based on agreement A. Values are inverted and standardized to [0, 1]. Other
specific measures implemented: Leik’s measure of ordinal dispersion (Leik),
Tatsle and Wierman’s (consensus), Blair and Lacy’s (dsquared, lsquared,
and BlairLacy), the measure by Kvalseth (Kvalseth), Berry and Mielke’s IOV
(BerryMielke), Reardon (Reardon) and Garcia-Montalvo and Reynal-Querol’s
(MRQ)

The package includes functions to classify distributions according to Gal-
tung’s [1969] AJUS-system (ajus), and changes over time according to Gal-
tung’s [1969] ISD-system (isd). Moreover, the function modes can identify the
position of multiple modes.

2 Getting Data In
The functions in this package use what I refer to as frequency vectors. A fre-
quency vector describes the number of observations in a given category. For
example, the vector [10, 20, 30, 15, 4] describes 10 observations with position 1,
20 observations with position 2, 30 observations with position 3, 15 observations
with position 4, and 4 observations with position 5 (see Figure for a graphical
distribution of this frequency vector). At least three categories are required to
calculate agreement.

1

1 2 3 4 5 6

5
15

25

F
re

qu
en

cy

There are many ways to create frequency vectors, including the table func-
tion in R. Your data may already come in the form of a frequency vector. The
package provides a helper function collapse to cater with empty cells. Consider
a very simple case to illustrate the difference:

> library(agrmt)
> x = c(1,1,3) # these are our data
> # 2 observations with position 1,
> # 1 observation with position 3
> table(x)

x
1 3
2 1

> collapse(x)

[1] 2 1

> collapse(x, pos=1:3) # now we specify which categories exist

[1] 2 0 1

Using table we simply get a summary of the positions and number of obser-
vations at these positions. The helper function collapse lets us specify which
categories actually exist. In this example, we specify that these are observa-
tions on a variable with 3 categories: 1, 2, and 3. The fact that there are no
observations at position 2 is important information when calculating agreement.

Some measures require standardized frequency vectors, that is the frequen-
cies expressed as a proportion. In this example, the proportion of responses at

2

position 1 is 0.67, the proportion at position 2 is 0, and the proportion at po-
sition 3 is 0.33. Where standardized frequency vectors are required, frequency
vectors that do not sum to 1 (i.e. that are not standardized) are automatically
standardized by dividing each element of the frequency vector by the sum of
the vector. This assumes complete data; a general assumption of the measures
in this package.

3 Agreement

3.1 Concept: Agreement in Ordered Rating Scales
Ordered rating scales are a common format in surveys, and often we are in-
terested in the extent to which responses are in agreement (whether there is
consensus, whether there is concentration among the responses). Although fre-
quently used, several researchers questioned whether standard deviations are
appropriate in this case. Van der Eijk’s measure of agreement ‘A’ is an algo-
rithm that disaggregates frequency distributions into component parts called
layers. At the level of these layers, agreement can easily be determined, and the
measure of agreement provides the weighted average.

We can use the example provided by van der Eijk (p.331) to illustrate the
use of layers.

Position on rating scale 1 2 3 4 5 6 7
Observed frequencies 30 40 210 130 530 50 10

The observed frequencies (30, 40, 210, 130, 530, 50, 10) constitute a frequency
vector. The measure of agreement divides this into layers, starting with the
lowest observed frequencies. The level of agreement for this layer is calculated,
and weighted by the number of observations in this layer. This is repeated for all
layers, using any additional observations, until we reach the highest observed
frequencies. We begin with the cell with the lowest frequencies, in this case
position 7 with 10 observations. This means that for the first layer, there are 10
observations for each position. This gives a level of agreement of 0 for this level.
The weight of the level is the number of observations in this layer (70; that is 7
[positions] times 10 [observations]) divided by the total number of observations
(1000). In this example, the weight of the first layer is 70

1000 = 0.07. For the
second layer, we have already used all 10 observations for position 7, so a 0 will
be added. The second lowest frequency is the 20 left for position 1 (30 original
observations minus 10 in level 1). The level of agreement for the second layer is
0.17, with a weight of 0.12.

We continue this way until all observations are used:
The frequency vector is visible in the bottom row (‘total’). To calculate the

level of agreement of each layer, the pattern of this layer is considered. A pattern
consists of 0 and 1. A 1 denotes any value other than 0 in the layer. For instance,
in layer 2, all 20 are replaced with 1 to give the pattern; in layer 6 all the 80 are
replaced with 1 to give the pattern.

3

1 2 3 4 5 6 7 Layer Pattern Weight
Layer 1 10 10 10 10 10 10 10 0 1111111 0.07
Layer 2 20 20 20 20 20 20 0 0.167 1111110 0.12
Layer 3 0 10 10 10 10 10 0 0.333 0111110 0.05
Layer 4 0 0 10 10 80 10 0 0.5 0011110 0.04
Layer 5 0 0 80 80 80 0 0 0.667 0011100 0.24
Layer 6 0 0 80 0 80 0 0 0.467 0010100 0.16
Layer 7 0 0 0 0 320 0 0 1 0000100 0.32
Total 30 40 210 130 530 50 10

Using the weighted average, we get a level of agreement of 0.61 in this ex-
ample. The outlined procedure can be applied to any ordered frequency distri-
bution.

3.2 Interpretation of Agreement Scores
Levels of agreement range from −1 to 1. There are three ideal-typical positions
that help interpretation of the scores. If all respondents agree on the category
(position), agreement is 1. This is illustrated in the top-left corner of the figure.
If the respondents are evenly spread, and each category has the same number
of responses, agreement is 0. This is illustrated at the top right of the figure.
If respondents are divided, and half the responses are in one extreme category,
and the other half are in the other extreme category, agreement is −1. This is
shown at the bottom left of the figure. The following figure also includes an
example between these ideal types (bottom right). Agreement is only defined if
there are at least three response categories, and it does not tell you which of the
categories is the most common one. For this reason, it is also advisable to look
at an appropriate measure of central tendency, such as the interpolated median.

4

Agreement

Agreement = 1

F
re

qu
en

cy

0 2 4

0
2

4

No Agreement

Agreement = 0

F
re

qu
en

cy

0 2 4

0
2

4
Polarization

Agreement = −1

F
re

qu
en

cy

0 2 4

0
2

4

Agreement = 0.08

F
re

qu
en

cy

0 2 4

0
2

4

3.3 Calculating Agreement
To calculate agreement, we simply call agreement with the frequency vector as
the argument. There is normally no reason to use the old algorithm, which can
be set using old=TRUE. This is the ‘old’ algorithm as described by Van der Eijk.

Let us illustrate this using the data from above.

> x <- c(30, 40, 210, 130, 530, 50, 10) # these are our data
> agreement(x)

[1] 0.6113333

Here are two additional examples, using data from van der Ejik’s article. Van
der Eijk gives the example of respondents placing political parties on a 7-point
rating scale.

5

Position 1 2 3 4 5 6 7
PvdA 2.4% 2.8% 3.2% 6.2% 13.5% 30.4% 41.6%
D66 1.6% 2.6% 8.2% 21% 29.3% 27% 10.3%

To calculate the level of agreement for these two frequency distributions,
we can simply type agreement(c(2.4,2.8,3.2,6.2,13.5,30.4,41.6)) for the
PvdA, and agreement(c(1.6,2.6,8.2,21,29.3,27,10.3)) for the D66. This
gives us levels of agreement of 0.61 for the PvdA, and 0.48 for the D66.

> agreement(c(2.4,2.8,3.2,6.2,13.5,30.4,41.6)) # PvdA

[1] 0.6097236

> agreement(c(1.6,2.6,8.2,21,29.3,27,10.3)) # D66

[1] 0.4823333

3.4 Using Agreement with Survey Data
When using survey data (or other similarly structured data), it is easy to
call agreement together with the helper function and a variable name (e.g.
var99): agreement(collapse(var99, pos=0:7)). Subscripting works as ex-
pected: agreement(collapse(var99[country=="UK"], pos=0:7)), so sapply
plays nicely.

3.5 Agreement A with and without Simulated Coding Er-
ror

When agreement is calculated on ordered rating scales from sources that are
manually coded, the influence of coding error on the resulting value of agreement
can result in uncertainty. Using simulated coding error, it is possible to express
this uncertainty, subject to certain assumptions.

The function compareAgreement returns a list with agreement ‘A’ without
simulated coding errors (i.e. simply calculated), the mean of agreement with
simulated coding error, and the standard deviation of agreement with simu-
lated coding error. Default values for the simulation are: n=500 samples, e=0.01
proportion of samples that are simulated as mis-coded, N=500 replications for
calculating the mean and standard deviation. Given that these coding errors
are simulated, each run will give a different value of the mean and standard
deviation.

The helper function agreementError is used for the actual simulations, so
different measures of central tendency can be calculated. Contrary to bootstrap-
ping, it is not necessary to have all positions observed in the frequency vector.
To understand the advantage, take an extreme example: [30000]. Here we have
three observations at the first position, but none at the others. Bootstrapping
will always lead to the same agreement score (perfect agreement). This can be

6

misleading if coding error can be assumed. For example, if these three obser-
vations refer to a ‘strongly agree’ answer, it is usually conceivable that some
of these answers could refer to ‘somewhat agree’. The function lets you specify
how many of the observations should be assumed to be potentially mis-coded,
and calculates agreement accordingly. If an observation is assumed to be po-
tentially mis-coded, it is randomly set to the position to the left, the position
to the right, or the position itself. If the first or last observation is chosen, the
simulation takes care not to suggest values that could not occur.

Usage: compareAgreement(expand(V)).
Usage: compareAgreement(c(1,1,1), pos=1:5)

3.6 Calculating Polarization
The agreement scores are suitable to express polarization, but the numbers are
not intuitive to interpret. The function polarization offers easily interpretable
values by re-scaling agreement A. More precisely, it gives (1 − agreement)/2.
This means that a polarization value of 1 means perfect polarization (bottom-
left corner of the figure above), and a value of 0 means perfect agreement. A
value of 0.5 corresponds to the ‘no agreement’ in the above graph.

Usage is equivalent to agreement. In the first example, we specify the entire
data, use the collapse helper function to determine the frequency vector (note:
there are no observations at position 6, even though this position is permitted),
and calculate polarization values.

> polarization(collapse(c(1,2,4,2,5,2,7,7,3,1,2,1,3,2,4,
+ 1,5,2,3,2,4,2,3,1,1,3), pos=1:7))

[1] 0.3038462

Or to continue using the Dutch parties:

> polarization(c(2.4,2.8,3.2,6.2,13.5,30.4,41.6)) # PvdA

[1] 0.1951382

> polarization(c(1.6,2.6,8.2,21,29.3,27,10.3)) # D66

[1] 0.2588333

In a typical setting, we would probably use a variable name from a data set
(e.g. POSITION): polarization(collapse(POSITION, pos=0:5)).

4 Leik’s Consensus
Leik [1966] introduced a measure of ordinal dispersion in 1966. It uses the cu-
mulative frequency distribution to determine ordinal dispersion. The extremes
(agreement, polarization) largely correspond to the types used by Cees van der

7

Eijk. By contrast, the mid-point depends on the number of categories: it tends
toward 0.5 as the number of categories increases. The van der Eijk measure
has a fixed mid-point that is independent from the number of categories. Leik
defends this difference by highlighting the increased probability of falling into
polarized patterns when there are fewer categories. If all observations are in the
same category, ordinal dispersion is 0. With half the observations in one extreme
category, and half the observations in the other extreme, Leik’s measure gives
a value of 1.

Leik’s ordinal dispersion measure is a percentage, and can be interpreted
accordingly. Ordinal dispersion can be used to express consensus or agreement,
simply by taking: 1 - ordinal dispersion.

5 Tatsle and Wierman’s Consensus
Tastle and Wierman [2007] take a different approach to measuring consensus,
using the Shannon entropy as the basis.

If you come across an error that the vector supplied does not contain whole
numbers, try round(V,0) to remove any detritus from calculating the frequency
vector.

Usage: consensus(V).

5.1 Entropy
The Shannon entropy can be calculated using entropy. This function follows
TW and ignores categories with zero observations. The Shannon entropy ignores
the order of categories; use consensus to consider the order of categories.

6 Berry and Mielke’s IOV
Berry and Mielke [1992] introduced a measure of dispersion based on squared
Euclidean distances (IOV). Contrary to the presentation in Blair and Lacy
[2000], the adjustment for Tmax omitted by Blair and Lacy is included here,
as there is no reason to leave it out when a computer does the calculation. A
derived measure COV by Kvalseth [1995] is implemented separately as Kvalseth.
Usually, the IOV is equivalent to 1-lsquared by Blair and Lacy [2000].

6.1 Kvalseth COV
Kvalseth COV is a measure of dispersion derived from BerryMielke, based on
Euclidean distances.

8

7 Blair and Lacy’s “l” (squared)
Blair and Lacy [2000] introduced a measure of concentration “l” (squared), based
on linear Euclidean distances. It is implemented as lsquared.

7.1 “d” (squared)
Blair and Lacy [2000] introduced a measure of concentration “d” squared, based
on linear Euclidean distances. This measure does not normalize values, which is
done by lsquared. The non-normalized measure is implemented as dsquared.

8 Garcia-Montalvo and Reynal-Querol
Garcia-Montalvo and Reynal-Querol [2005] calculate polarization as introduced
by Reynal-Querol [2002]. This measure is known as the Reynal-Querol index of
polarization (RQ), Montalvo and Reynal-Querol (MRQ), or Garcia-Montalvo
and Reynal-Querol. The measure of dispersion based on squared Euclidean dis-
tances. The frequency vector needs to be standardized for the Reynal-Querol
index to work; if the sum of the frequency vector is not 1 (i.e. it is not standard-
ized), the function automatically standardizes the frequency vector by dividing
each element of the vector by the sum of the vector. The assumption is that the
frequencies are complete.

9 AJUS
The package includes a few additional functions for frequency vectors. The AJUS
classification of distributions is one: Galtung [1969] introduced a system to clas-
sify distributions according to shape. This is a means to reduce complexity. For
full details refer to Galtung’s book on social research.

ajus(distribution) gives you the shape or type of the distribution, as well
as whether there is a skew. I have added two new types F and L to complement
the ones identified by Galtung. The skew is given as −1 for a negative skew, 0
for absence of skew, or +1 for a positive skew.

You can choose whether to use a strict AJUS system following Galtung, or
use the modified AJUSFL system that includes the L and F types. The default
is the modified variant. The modified system draws a distinction between J and
L distributions, depending on whether they increase or decrease: J types have
a peak on the right, L types have the peak on the left. The strict AJUS system
has no F type and returns NA instead.

• A: unimodal distribution, peak in the middle

• J: unimodal, peak at either end (strict) or peak on right (modified)

• L: unimodal, peak on left (modified only)

9

• U: bimodal, peak at both ends

• S: bimodal or multi-modal, multiple peaks

• F: flat, no peak (modified only)

Galtung developed the AJUS system for a somewhat systematic classification
of distributions, but not for the use on computers. The advantage of using a
function on the computer is twofold. On the one hand, we can easily apply the
AJUS system to many distributions, sapply may be your friend there. On the
other hand, the tolerance used in the AJUS system is applied in a systematic
manner. When using human judgement on whether two values are ‘roughly the
same’ or different, a really systematic approach cannot guaranteed. In the AJUS
function, you can specify the argument tolerance to change the tolerance. The
AJUS function ignores all differences equal to or smaller than the tolerance
parameter. The package default is 0.1, possibly useful when working with values
between 0 and 1, in which case it corresponds to 10 per cent. The tolerance
parameter is not a trivial choice, and it can affect results.

> # Example 1: different types of distributions
> V1 <- c(0,1,0) # A
> ajus(V1)

$type
[1] "A"

$skew
[1] 0

$pattern
[1] 1 -1

> V2 <- c(0,0,1) # J
> ajus(V2)

$type
[1] "J"

$skew
[1] 1

$pattern
[1] 0 1

> V3 <- c(1,0,1) # U
> ajus(V3)

10

$type
[1] "U"

$skew
[1] 0

$pattern
[1] -1 1

> V4 <- c(1,0,1,0) # S
> ajus(V4)

$type
[1] "S"

$skew
[1] 0

$pattern
[1] -1 1 -1

> V5 <- c(0,0,0) # F
> ajus(V5)

$type
[1] "F"

$skew
[1] 0

$pattern
[1] 0 0

> V6 <- c(1,0,0) # L
> ajus(V6)

$type
[1] "L"

$skew
[1] -1

$pattern
[1] -1 0

> ajus(V6, variant="strict") # gives J

11

$type
[1] "J"

$skew
[1] -1

$pattern
[1] -1 0

Additional functions are provided to use the AJUS system: ajusCheck takes
a vector of tolerance values to test the sensitivity of the classification to the
tolerance parameter; ajusPlot plots the distribution along with its type and
skew. The latter function can deal with missing values, such as when using time
series data with missing values.

> # Example 2: varying tolerance to check sensitivity
> V7 <- c(0,0,1,2,1)
> ajus(V7, tolerance=0.5)

$type
[1] "A"

$skew
[1] 1

$pattern
[1] 0 1 1 -1

> ajus(V7, tolerance=1)

$type
[1] "F"

$skew
[1] 1

$pattern
[1] 0 0 0 0

> ajusCheck(V7, t=c(0.1, 0.5, 0.6, 1))

$tolerance
[1] 0.1 0.5 0.6 1.0

$type
[1] "A" "A" "A" "F"

$skew
[1] 1 1 1 1

12

> # Example 3: plotting AJUS
> ajusPlot(V7)

1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

type A

skew 1

10 ISD
The ISD system by Galtung [1969] is another way to reduce complexity, this
time for changes over time. The ISD takes a vector with three time points. These
three points describe two periods during which changes may occur (that is two

13

transition points). isd(distribution) gives you a type (i.e the number) and a
description of the type (i.e. the description in words).

• Type 1: increase in both periods

• Type 2: increase in first period, flat in second period

• Type 3: increase in first period, decrease in second period

• Type 4: flat in first period, increase in second period

• Type 5: flat in both periods

• Type 6: flat in first period, decrease in second period

• Type 7: decrease in first period, increase in second period

• Type 8: decrease in first period, flat in second period

• Type 9: decrease in both periods

The tolerance parameter works like described in the previous section on
AJUS.

11 (Multiple) Modes
The function modes tells you at which position the mode is. This can be used,
for instance, in conjunction with the agreement function to identify at which
point agreement is reached (not only that). The function accepts frequency
distributions where multiple positions are the most common ones, which can
happen in ordered rating scales. The function secondModes additionally gives
you the value and position(s) of the second most common value. In addition to
the mode and the positions, the functions also indicate whether these values are
contiguous (i.e. in neighbouring response categories).

A tolerance parameter is used to ignore small differences. See the section
on AJUS above for details.

Let us look at made-up examples to illustrate the function. The output first
shows the categories at which observations occur; use the parameter pos to
specify the values. If there are categories with 0 observations, these need to
be indicated in the frequency vector accordingly (you might want to use the
helper function collapse. If the length of the pos argument does not match
the length of the frequency vector, a warning is shown and the pos argument is
discarded. Second, it shows the number of observations at each position. This
is the frequency vector. The mode is identified, and the position at which it
occurs. If there are multiple positions where the mode occurs, these are all
listed. Finally, it is stated whether the modes are contiguous (true/false). This
factor is interesting if there are multiple modes – if they are not contiguous, this
can be understood as polarization; with a single mode it is always ‘contiguous’.

14

In the first example, we look at a simple frequency vector. No categories are
specified (pos argument not declared), so the categories are assumed to be 1:7
in this case.

> # Example 1: finding the mode
> V1 <- c(30,40,210,130,530,50,10)
> modes(V1) # will find position 5

$at
[1] 1 2 3 4 5 6 7

$frequencies
[1] 30 40 210 130 530 50 10

$mode
[1] 5

$positions
[1] 5

$contiguous
[1] TRUE

Here is a shorter frequency vector, again without specifying the categories –
1 to 4 are assumed.

> # Example 2:
> V2 <- c(3,0,4,1)
> modes(V2) # will find position 3

$at
[1] 1 2 3 4

$frequencies
[1] 3 0 4 1

$mode
[1] 3

$positions
[1] 3

$contiguous
[1] TRUE

This example illustrates the pos argument. The frequency vector from the
previous example is reused, but it is specified that the categories refer to values
of [−1, 0, 1, 2]. The mode identified reflects this change, while the position is
unchanged (since the same frequency vector is used).

15

> # Example 3: providing categories
> modes(V2,pos=-1:2) # will still find position 3, but give the value of 1 as mode

$at
[1] -1 0 1 2

$frequencies
[1] 3 0 4 1

$mode
[1] 1

$positions
[1] 3

$contiguous
[1] TRUE

This example illustrates multiple modes. The frequencies of 528 and 530 are
nearly the same, that is to say given the (default) tolerance they are considered
the same.

> # Example 4: similar values
> V3 <- c(30,40,510,130,530,50,10)
> modes(V3, tolerance=30) # will find positions 3 and 5 (510 and 530 are nearly the same)

$at
[1] 1 2 3 4 5 6 7

$frequencies
[1] 30 40 510 130 530 50 10

$mode
[1] 3 5

$positions
[1] 3 5

$contiguous
[1] FALSE

12 Going Further
For further documentation, please refer to the original contributions by Van der
Eijk [2001], Leik [1966], Tastle and Wierman [2007], Berry and Mielke [1992],
Blair and Lacy [2000], Reynal-Querol [2002], and Galtung [1969], and refer to
the package help files.

16

References
K. Berry and P. Mielke. Assessment of variation in ordinal data. Perceptual
and Motor Skills, 74(1):63–66, 1992. doi: 10.2466/pms.1992.74.1.63.

J. Blair and M. Lacy. Statistics of Ordinal Variation. Sociological Methods &
Research, 28(3):251–280, 2000. doi: 10.1177/0049124100028003001.

J. Galtung. Theory and Methods of Social Research. Universitetsforlaget, Oslo,
1969. ISBN 0043000177.

Jose G. Garcia-Montalvo and Marta Reynal-Querol. Ethnic diversity and eco-
nomic development. Journal of Development Economics, 76(2):293–323, 2005.

T. Kvalseth. Coefficients of variation for nominal and ordinal categorical data.
Perceptual and Motor Skills, 80(3):843–847, 1995. doi: 10.2466/pms.1995.80.
3.843.

R. Leik. A measure of ordinal consensus. Pacific Sociological Review, 9(2):
85–90, 1966.

Marta Reynal-Querol. Ethnicity, political systems, and civil wars. Journal of
Conflict Resolution, 46(1):29–54, 2002.

W. Tastle and M. Wierman. Consensus and dissention: A measure of ordinal
dispersion. International Journal of Approximate Reasoning, 45(3):531–545,
2007.

C. Van der Eijk. Measuring agreement in ordered rating scales. Quality and
Quantity, 35(3):325–341, 2001.

17

	Overview
	Getting Data In
	Agreement
	Concept: Agreement in Ordered Rating Scales
	Interpretation of Agreement Scores
	Calculating Agreement
	Using Agreement with Survey Data
	Agreement A with and without Simulated Coding Error
	Calculating Polarization

	Leik's Consensus
	Tatsle and Wierman's Consensus
	Entropy

	Berry and Mielke's IOV
	Kvalseth COV

	Blair and Lacy's ``l'' (squared)
	``d'' (squared)

	Garcia-Montalvo and Reynal-Querol
	AJUS
	ISD
	(Multiple) Modes
	Going Further

