Package 'SSRTcalc'

January 20, 2025

Type Package

Title Easy SSRT Calculation

Version 0.3.3

Description This is a collection of functions to calculate stop-signal reaction time (SSRT). Includes functions for both ``integration" and ``mean" methods; both fixed and adaptive stop-signal delays are supported (see appropriate functions). Calculation is based on Verbruggen et al. (2019) <doi:10.7554/eLife.46323.001> and Verbruggen et al. (2013) <doi:10.1177/0956797612457390>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.1.1

LazyData True

Depends R (>= 3.5.0)

Imports stats (>= 4.0.5)

NeedsCompilation no

Author Anton Leontyev [aut, cre] (<https://orcid.org/0000-0001-8880-6161>)

Maintainer Anton Leontyev <a.g.leontiev@tamu.edu>

Repository CRAN

Date/Publication 2021-04-19 08:50:07 UTC

Contents

adaptive	2
fixed	3
integration_adaptiveSSD	4
integration_fixedSSD	4
mean_adaptiveSSD	5
mean_fixedSSD	6
plotInhFunc	7

8

Index

adaptive

Description

Data from a mouse movement-based stop-signal experiment, using dynamically set stop-signal delays, with random dot kinematogram as the "go" task, collected from 63 participants

Usage

data(adaptive)

Format

A data frame with 36288 rows and 7 variables

new_id Subject identifier

soa stop-signal delay (ignore for "go" trials)

vol stop (1) or go (0) trial

coh Percent coherent dots in the kinematogram go task

RT_exp Response time in seconds, NA if no response was made

correct Did the participant correctly respond in "go" trials/omit response in "stop" trials (1) or not(0)?

Source

OSF archive

References

Leontyev and Yamauchi (2019) PLoS One (doi: 10.1371/journal.pone.0225437)

Examples

```
data(adaptive)
head(adaptive)
```

fixed

Description

Data from a mouse movement-based stop-signal experiment, using preset stop-signal delays, with random dot kinematogram as the "go" task, collected from 51 participants

Usage

data(fixed)

Format

A data frame with 29376 rows and 7 variables

new_id Subject identifier

soa stop-signal delay (ignore for "go" trials)

vol stop (1) or go (0) trial

coh Percent coherent dots in the kinematogram go task

RT_exp Response time in seconds, NA if no response was made

response Which button did the participant click?

acc Did the participant respond in "go" trials/omit response in "stop" trials (1) or not(0)?

Source

OSF archive

References

Leontyev and Yamauchi (2019) PLoS One (doi: 10.1371/journal.pone.0225437)

Examples

data(fixed)
head(fixed)

```
integration_adaptiveSSD
```

SSRT using integration method for studies with "adaptive" method of setting SSD

Description

Estimating SSRT using integration method for studies that use adaptive (increasing/decreasing by a given increment) stop-signal delays.

Usage

```
integration_adaptiveSSD(df, stop_col, rt_col, acc_col, ssd_col)
```

Arguments

df	Dataframe with response time, accuracy, indication whether trial is stop or go, and delays for a given trial.
stop_col	Name of the column in the dataframe df that indicates whether a given trial is a "stop" or a "go" trial ($0 = go, 1 = stop$)
rt_col	Name of the column in the dataframe df that contains response time in seconds
acc_col	Name of the column in the dataframe df that contains accuracy of inhibition ($0 = $ incorrect, $1 = $ correct)
ssd_col	Name of the column in the dataframe df that contains stop-signal delays

Value

SSRT corresponding to the nth rt - ssd; n = p(respond|signal)*number of goRTs

Examples

```
data(adaptive)
sapply(split(adaptive, adaptive$new_id), integration_adaptiveSSD, stop_col = 'vol',
ssd_col = 'soa', rt_col = 'RT_exp', acc_col = 'correct')
```

integration_fixedSSD	SSRT using integration method for studies with "fixed" method of set-
	ting SSD

Description

Estimating SSRT using integration method for studies that use fixed (randomly chosen on each trial from a pre-determined set) stop-signal delays.

Usage

integration_fixedSSD(df, stop_col, rt_col, acc_col, ssd_col, ssd_list)

Arguments

df	Dataframe with response time, accuracy, indication whether trial is stop or go, and delays for a given trial.
stop_col	Name of the column in the dataframe df that indicates whether a given trial is a "stop" or a "go" trial ($0 = go, 1 = stop$)
rt_col	Name of the column in the dataframe df that contains response time in seconds
acc_col	Name of the column in the dataframe df that contains accuracy of inhibition ($0 = $ incorrect, $1 = $ correct)
ssd_col	Name of the column in the dataframe df that contains stop-signal delays
ssd_list	List of stop-signal delays used in the experiment

Value

SSRT corresponding to the nth rt - ssd; n = p(respond|signal)*number of goRTs

Examples

```
data(fixed)
sapply(split(fixed, fixed$new_id), integration_fixedSSD, stop_col = 'vol',acc_col ='acc',
rt_col = 'RT_exp', ssd_col = 'soa',ssd_list = c(0.1, 0.2,0.3, 0.4, 0.5, 0.6))
```

<pre>mean_adaptiveSSD</pre>	SSRT using mean method for studies with "adaptive" method of setting
	SSD

Description

Estimating SSRT using mean method for studies that use adaptive (increasing/decreasing by a given increment) stop-signal delays

Usage

```
mean_adaptiveSSD(df, rt_col, ssd_col, stop_col)
```

Arguments

df	Dataframe with response time, accuracy, indication whether trial is stop or go, and delays for a given trial.
rt_col	Name of the column in the dataframe df that contains response time in seconds
ssd_col	Name of the column in the dataframe df that contains stop-signal delays
stop_col	Name of the column in the dataframe df that indicates whether a given trial is a "stop" or a "go" trial ($0 = go, 1 = stop$)

Value

Spline-interpolated stop-signal reaction time corresponding roughly to 50

Examples

```
data(adaptive)
sapply(split(adaptive, adaptive$new_id), mean_adaptiveSSD, stop_col = 'vol',
ssd_col = 'soa', rt_col = 'RT_exp')
```

<pre>mean_fixedSSD</pre>	Estimating SSRT using mean method for studies that use fixed (ran-
	domly chosen on each trial from a pre-determined set) stop-signal de-
	lays

Description

Estimating SSRT using mean method for studies that use fixed (randomly chosen on each trial from a pre-determined set) stop-signal delays

Usage

mean_fixedSSD(df, stop_col, rt_col, acc_col, ssd_col, ssd_list)

Arguments

df	Dataframe with response time, accuracy, indication whether trial is stop or go, and delays for a given trial.
stop_col	Name of the column in the dataframe df that indicates whether a given trial is a "stop" or a "go" trial ($0 = go, 1 = stop$)
rt_col	Name of the column in the dataframe df that contains response time in seconds
acc_col	Name of the column in the dataframe df that contains accuracy of inhibition (0 = incorrect, 1 = correct)
ssd_col	Name of the column in the dataframe df that contains stop-signal delays
ssd_list	List of stop-signal delays used in the experiment

Value

Stop-signal reaction time corresponding roughly to 50 percent inhibition accuracy.

Examples

```
data(fixed)
sapply(split(fixed, fixed$new_id), mean_fixedSSD, stop_col = 'vol',acc_col ='acc',
rt_col = 'RT_exp', ssd_col = 'soa',ssd_list = c(0.1, 0.2,0.3, 0.4, 0.5, 0.6))
```

plotInhFunc

Description

Plots and prints stop-signal delays and corresponding accuracies. For studies that use fixed (randomly chosen on each trial from a pre-determined set) stop-signal delays.

Usage

plotInhFunc(df, stop_col, ssd_col, acc_col)

Arguments

df	Dataframe with response time, accuracy, indication whether trial is stop or go, and delays for a given trial.
stop_col	Name of the column in the dataframe df that indicates whether a given trial is a "stop" or a "go" trial ($0 = go, 1 = stop$)
ssd_col	Name of the column in the dataframe df that contains stop-signal delays
acc_col	Name of the column in the dataframe df that contains accuracy of inhibition (0 = incorrect, 1 = correct)

Value

Line plot of the inhibition function.

Examples

```
data(fixed)
df <- subset(fixed, new_id == 3)
plotInhFunc(df = df, stop_col='vol', ssd_col='soa', acc_col='acc')</pre>
```

Index

* datasets adaptive, 2 fixed, 3

 ${\tt adaptive, 2}$

 ${\tt fixed, 3}$

integration_adaptiveSSD,4
integration_fixedSSD,4

mean_adaptiveSSD, 5
mean_fixedSSD, 6

plotInhFunc, 7