
Package ‘RMVL’
January 20, 2025

Title Mappable Vector Library for Handling Large Datasets

Version 1.1.0.1

Description Mappable vector library provides convenient way to ac-
cess large datasets. Use all of your data at once, with few limits. Mem-
ory mapped data can be shared between multiple R processes. Access speed depends on stor-
age medium, so solid state drive is recommended, preferably with PCI Express (or M.2 nvme) in-
terface or a fast network file system. The data is memory mapped into R and then accessed us-
ing usual R list and array subscription operators. Convenience functions are provided for merg-
ing, grouping and indexing large vectors and data.frames. The layout of underly-
ing MVL files is optimized for large datasets. The vectors are stored to guarantee align-
ment for vector intrinsics after memory map. The package is built on top of lib-
MVL, which can be used as a standalone C library. libMVL has simple C API making it easy to in-
terchange datasets with outside programs. Large MVL datasets are distributed via Academic Tor-
rents <https://academictorrents.com/collection/mvl-datasets>.

URL https://academictorrents.com/collection/mvl-datasets,

https://github.com/volodya31415/RMVL,

https://github.com/volodya31415/libMVL

License LGPL-2.1

Depends R (>= 3.5.0)

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Author Vladimir Dergachev [aut, cre] (<https://orcid.org/0000-0003-4708-6625>)

Maintainer Vladimir Dergachev <support@altumrete.com>

Repository CRAN

Date/Publication 2024-09-14 13:40:02 UTC

Contents
dim.MVL_OBJECT . 3
length.MVL_OBJECT . 3

1

https://academictorrents.com/collection/mvl-datasets
https://academictorrents.com/collection/mvl-datasets
https://github.com/volodya31415/RMVL
https://github.com/volodya31415/libMVL
https://orcid.org/0000-0003-4708-6625

2 Contents

mvl2R . 4
mvl_add_directory_entries . 4
mvl_class . 5
mvl_close . 5
mvl_compute_repeats . 6
mvl_extent_index_lapply . 6
mvl_find_matches . 7
mvl_fused_write_objects . 8
mvl_get_groups . 9
mvl_get_neighbors . 10
mvl_group . 11
mvl_group_lapply . 12
mvl_hash_vectors . 12
mvl_indexed_copy . 13
mvl_index_lapply . 14
mvl_inherits . 15
mvl_merge . 16
mvl_neighbors_lapply . 17
mvl_object_stats . 18
mvl_open . 19
mvl_order_vectors . 20
mvl_remap . 21
mvl_start_write_vector . 22
mvl_status . 23
mvl_write_extent_index . 23
mvl_write_groups . 24
mvl_write_hash_vectors . 25
mvl_write_object . 26
mvl_write_serialized_object . 27
mvl_write_spatial_groups . 28
mvl_write_spatial_index1 . 29
mvl_xlength . 30
names.MVL . 30
names.MVL_OBJECT . 31
print.MVL . 31
print.MVL_OBJECT . 32
[.MVL . 32
[.MVL_OBJECT . 33
[[.MVL_OBJECT . 34
$.MVL . 34

Index 36

dim.MVL_OBJECT 3

dim.MVL_OBJECT Obtain dimensions of MVL object

Description

Obtain dimensions of MVL object

Usage

S3 method for class 'MVL_OBJECT'
dim(x)

Arguments

x MVL_OBJECT as retrieved by subscription operators

Value

object dimensions, or NULL if not present

length.MVL_OBJECT Obtain length of MVL object

Description

Obtain length of MVL object

Usage

S3 method for class 'MVL_OBJECT'
length(x)

Arguments

x MVL_OBJECT as retrieved by subscription operators

Value

object length as stored in MVL file. This is the total length of object for arrays, and number of
columns for data frames.

4 mvl_add_directory_entries

mvl2R Make sure the object is fully converted to its R representation

Description

If the object is stored in MVL file, we return its pure R representation. Otherwise, we return the
object itself.

Usage

mvl2R(obj, raw = FALSE)

Arguments

obj - MVL object retrieved by subscription of MVL library or other objects
raw - request to return data in raw format when it does not map exactly to R data

types.

Value

Stored object

mvl_add_directory_entries

Add entries to MVL directory

Description

Add one or more entries to MVL directory

Usage

mvl_add_directory_entries(MVLHANDLE, tag, offsets)

Arguments

MVLHANDLE handle to open MVL file created by mvl_open

tag a vector of one or more character tags
offsets a vector of MVL_OFFSET objects, one per tag, created by mvl_write_object

Details

This function is used to expand MVL directory. The offsets must be created by calling mvl_write_object
on the same handle. Note that mvl_write_object has an optional parameter name that will add an
entry when specified. Thus this function is meant for special circumstances, such as creating mul-
tiple entries in the directory that point to the same offset

mvl_class 5

mvl_class Return underlying R class of object

Description

This function returns the equivalent R class of underlying MVL object, i.e. the class it would have
if converted into a regular R object. For non-MVL objects the function simply calls the usual R
class(), so it can be used instead of class() for code that operates on both usual R objects and MVL
objects.

Usage

mvl_class(x)

Arguments

x any object

Value

character string giving object class

mvl_close Close MVL file

Description

Closes MVL file releasing all resources. For read-only files the memory is unmapped, reducing the
virtual memory footprint. For files opened for writing the directory is written out, so it is important
to call mvl_close or the newly written file will be corrupt. After mvl_close() all previously
obtained MVL_OBJECT’s with this handle become invalid.

Usage

mvl_close(MVLHANDLE)

Arguments

MVLHANDLE handle to opened MVL file as generated by mvl_open()

Value

None

See Also

mvl_open, mvl_remap

6 mvl_extent_index_lapply

mvl_compute_repeats Find stretches of repeated rows among vectors

Description

This function is passed a list of vector like MVL_OBJECTs which are considered as columns in a
table. It returns a vector V starting with 1 and ending with number of rows plus 1, so that stretches
of repeated rows can be found as V[i]:V[i+1]

Usage

mvl_compute_repeats(L)

Arguments

L list of vector like MVL_OBJECTs

Value

partition describing repeated rows

mvl_extent_index_lapply

Apply function to indices of rows with matching hashes

Description

Please use generic function mvl_index_lapply() instead.

Usage

mvl_extent_index_lapply(extent_index, data_list, fn)

Arguments

extent_index MVL_OBJECT computed by mvl_write_extent_index()

data_list a list of vectors of equal length. They can be MVL_OBJECTs or R vectors. If
missing, scan the entire table one hash at a time.

fn a function of two arguments - and index into data_list and a corresponding
list of indices

mvl_find_matches 7

Details

This function is passed the index computed by mvl_write_extent_index() and a list of vectors,
which rows are used to compute 64-bit hashes. For each row, we call the function fn(i, idx),
where i gives the index of query row, and idx gives the indices of with matching hashes.

64-bit hashes have very few collisions, nevertheless the user is advised to double check that the
values actually match.

The hash computation is type dependent, so 1 stored as an integer will produce a different hash than
when stored as floating point. This function accounts for this by internally converting to types the
index was generated with.

Value

a list of results of function fn

See Also

mvl_index_lapply, mvl_group

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=runif(100), y=(1:100) %% 10), "df1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_extent_index(Mtmp, list(Mtmp$df1[,"y",ref=TRUE]), "df1_extent_index_y")
Mtmp<-mvl_remap(Mtmp)
mvl_extent_index_lapply(Mtmp["df1_extent_index_y", ref=TRUE], list(c(2, 3)),

function(i, idx) { return(list(i, idx))})
Example of full scan
mvl_extent_index_lapply(Mtmp["df1_extent_index_y", ref=TRUE], ,

function(i, idx) { return(list(i, idx))})

End(Not run)

mvl_find_matches Find matching rows

Description

This function is passed two lists of MVL vectors which are interpreted in data.frame fashion. The
indices of pairwise matches are returned in order of the arguments ("index1" and "index2"). In
addition we return indices describing stretches with "index1" value constant (stretch_index1[i] to
stretch_index1[i+1]-1)

Usage

mvl_find_matches(L1, L2, indices1 = NULL, indices2 = NULL)

8 mvl_fused_write_objects

Arguments

L1 list of vector like MVL_OBJECTs

L2 list of vector like MVL_OBJECTs

indices1 list of indices into objects to sort. If absent or NULL it is assumed to be from 1
to the length of the object.

indices2 list of indices into objects to sort. If absent or NULL it is assumed to be from 1
to the length of the object.

Value

A list of matches and match stretches

See Also

mvl_hash_vectors, mvl_order_vectors, mvl_group, mvl_find_matches, mvl_indexed_copy,
mvl_merge

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=rep(c("a", "b"), 50), y=1:100), "df1")
mvl_write_object(Mtmp, data.frame(x=rep(c("b", "c"), 50), y=21:120), "df2")
Mtmp<-mvl_remap(Mtmp)
L<-mvl_find_matches(list(Mtmp$df1[,"x",ref=TRUE], Mtmp$df1[,"y", ref=TRUE]),

list(Mtmp$df2[,"x",ref=TRUE], Mtmp$df2[,"y", ref=TRUE]))

End(Not run)

mvl_fused_write_objects

Concatenate objects and write result into MVL file.

Description

This function can concatenate a mixture of R and MVL objects. For vectors it is the equivalent of
c(). For array and matrices it works as cbind() For data frames it works as rbind, but row names
are always dropped.

Usage

mvl_fused_write_objects(MVLHANDLE, L, name = NULL, drop.rownames = TRUE)

mvl_get_groups 9

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()

L a list of suitable R objects (vector, array, data.frame) or equivalent MVL objects.

name if specified add a named entry to MVL file directory

drop.rownames set to TRUE to prevent rownames from being written

Value

any object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, runif(100), "vec1")
mvl_write_object(Mtmp, runif(100), "vec2")
Mtmp<-mvl_remap(Mtmp)
mvl_fused_write_objects(Mtmp, list(Mtmp["vec1", ref=TRUE], Mtmp["vec2", ref=TRUE], runif(3)),

name="vec3")

End(Not run)

mvl_get_groups Retrieve indices belonging to one or more groups

Description

This function is passed the prev vector computed by mvl_write_groups and one or more indices
from the first vector.

Usage

mvl_get_groups(prev, first_indices)

Arguments

prev MVL_OBJECT prev computed by mvl_write_groups

first_indices indices from first vector computed by mvl_write_groups

Value

a vector of indices

See Also

mvl_group

10 mvl_get_neighbors

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=runif(100), y=1:100), "df1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_groups(Mtmp, list(Mtmp$df1[,"x",ref=TRUE], Mtmp$df1[,"y", ref=TRUE]), "df1_groups")
Mtmp<-mvl_remap(Mtmp)
print(mvl_get_groups(Mtmp["df1_groups", ref=TRUE]["prev", ref=TRUE], Mtmp$df1_groups$first[1:5]))

End(Not run)

mvl_get_neighbors Retrieve indices of nearby rows.

Description

This function is passed the index computed by mvl_write_spatial_index1 and a list of vectors,
which rows are interpreted as points. For each row, the function returns a vector of indices describ-
ing rows that are close to it.

Usage

mvl_get_neighbors(spatial_index, data_list)

Arguments

spatial_index MVL_OBJECT computed by mvl_write_spatial_index1

data_list a list of vectors of equal length. They can be MVL_OBJECTs or R vectors.

Value

a list of vectors of indices

See Also

mvl_write_spatial_index1, mvl_index_lapply

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=runif(100), y=1:100), "df1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_spatial_index1(Mtmp, list(Mtmp$df1[,"x",ref=TRUE], Mtmp$df1[,"y", ref=TRUE]),

c(2, 3), "df1_sp_groups")
Mtmp<-mvl_remap(Mtmp)
print(mvl_get_neighbors(Mtmp["df1_sp_groups", ref=TRUE], list(c(0.5, 0.6), c(2, 3))))

End(Not run)

mvl_group 11

mvl_group Group identical rows

Description

This function groups identical rows. The result is formatted as two vectors stretch_index and
index Vector index contains stretches of indices with identical rows. Vector stretch_index de-
scribes stretches as stretch_index[i] to stretch_index[i+1]-1 This allows fast iteration over indices
without creating excessive numbers of R objects when group sizes are small.

Usage

mvl_group(L, indices = NULL)

Arguments

L list of vector like MVL_OBJECTs

indices list of indices into objects to group. If absent or NULL it is assumed to be from
1 to the length of the object.

Value

A list of groups and group stretches

See Also

mvl_group_lapply, mvl_hash_vectors, mvl_find_matches, mvl_order_vectors, mvl_find_matches,
mvl_indexed_copy, mvl_merge

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=rep(c("a", "b"), 50), y=(1:100)/5), "df1")
Mtmp<-mvl_remap(Mtmp)
df1<-Mtmp["df1", ref=TRUE]
G<-mvl_group(list(df1[,"x",ref=TRUE], df1[,"y", ref=TRUE]))
mvl_group_lapply(G, function(idx) { return(sum(df1[idx, "y"]))})

End(Not run)

12 mvl_hash_vectors

mvl_group_lapply Apply function to index stretches

Description

Iteratively call function fn(idx) over index stretches previously computed with mvl_group

Usage

mvl_group_lapply(G, fn)

Arguments

G a list of groups and group stretches produced by mvl_group

fn a function of one argument - list of indices

Value

a list of results of function fn

See Also

mvl_group

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=rep(c("a", "b"), 50), y=(1:100)/5), "df1")
Mtmp<-mvl_remap(Mtmp)
df1<-Mtmp$df1
G<-mvl_group(list(df1[,"x",ref=TRUE], df1[,"y", ref=TRUE]))
mvl_group_lapply(G, function(idx) { return(sum(df1[idx, "y"]))})

End(Not run)

mvl_hash_vectors Return hash values for each row

Description

This function is passed a list of MVL vectors which are interpreted in data.frame fashion. For each
row, i.e. set of vector values with the same index we compute a hash value. Identical rows produce
identical hash values. The hash values have good entropy and can be used to map row values into
random numbers.

mvl_indexed_copy 13

Usage

mvl_hash_vectors(L, indices = NULL)

Arguments

L list of vector like MVL_OBJECTs
indices list of indices into objects to sort. If absent or NULL it is assumed to be from 1

to the length of the object.

Value

hash values in numeric format, with 52 valid bits. Each value is uniform between 1 and 2.

See Also

mvl_order_vectors, mvl_find_matches, mvl_group, mvl_find_matches, mvl_indexed_copy,
mvl_merge, mvl_write_hash_vectors

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, runif(100), "vec1")
Mtmp<-mvl_remap(Mtmp)
hash1<-mvl_hash_vectors(list(Mtmp["vec1", ref=TRUE]))

End(Not run)

mvl_indexed_copy Index copy vector

Description

This function creates new MVL vectors and data frames by copying only rows or values specified
by given indices. The vector indices can be an R integer or numeric vector, a logical vector of the
size matching to the object being copied, or a suitable vector stored in MVL file.

Usage

mvl_indexed_copy(MVLHANDLE, x, indices, name = NULL, only.columns = NULL)

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()
x a vector-like MVL_OBJECT or a data.frame stored in MVL file
indices a vector of indices into x
name if specified add a named entry to MVL file directory
only.columns if x is MVL_OBJECT with class data.frame copy only columns specified in this

character or integer vector

14 mvl_index_lapply

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

See Also

mvl_hash_vectors, mvl_find_matches, mvl_group, mvl_find_matches, mvl_order_vectors,
mvl_merge, mvl_write_object, mvl_fused_write_objects

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, runif(100), "vec1")
Mtmp<-mvl_remap(Mtmp)
permutation1<-mvl_order_vectors(list(Mtmp["vec1", ref=TRUE]))
mvl_indexed_copy(Mtmp, Mtmp["vec1", ref=TRUE], permutation1, name="vec1_sorted")
Mtmp<-mvl_remap(Mtmp)
print(Mtmp$vec1_sorted)

End(Not run)

mvl_index_lapply Apply function to indices of nearby rows

Description

This function is passed the index computed by mvl_write_spatial_index1 or mvl_write_extent_index
and a list of vectors, which are interpreted in a data frame fashion, or an R data.frame. For each row
we retrieve that set of indices that matches it and call function fn(i, idx) with index i of row being
processed and vector idx listing matched indices.

Usage

mvl_index_lapply(index, data_list, fn)

Arguments

index MVL_OBJECT computed by mvl_write_spatial_index1 or mvl_write_extent_index

data_list a list of vectors of equal length. They can be MVL_OBJECTs or R vectors, or a
data.fame.

fn a function of two arguments - and index into data_list and a corresponding
list of indices

mvl_inherits 15

Details

The notion of "matched indices" is specific to the type of index being used.

For an index created with mvl_write_spatial_index1 we return the indices of nearby rows. The
user should apply an additional cut to narrow down to actual indices needed.

For an index created with mvl_write_extent_index we return the indices of rows with identi-
cal hashes. Even though 64-bit hashes produce very few collisions, it is recommended to apply
additional cut to ensure that only the exactly matching rows are returned.

Value

a list of results of function fn

See Also

mvl_group

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=runif(100), y=1:100), "df1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_spatial_index1(Mtmp, list(Mtmp$df1[,"x",ref=TRUE], Mtmp$df1[,"y", ref=TRUE]),

c(2, 3), "df1_sp_groups")
Mtmp<-mvl_remap(Mtmp)
mvl_index_lapply(Mtmp["df1_sp_groups", ref=TRUE], list(c(0.5, 0.6), c(2, 3)),

function(i, idx) { return(list(i, idx))})

End(Not run)

mvl_inherits Check inheritance of R or MVL objects

Description

This function works just like the usual R inherits(), except that for MVL_OBJECTS it used the
class value stored in the MVL file. For non-MVL objects the function simply calls the usual R
inherit(), so it can be used instead of inherit() for code that operates on both usual R objects
and MVL objects.

Usage

mvl_inherits(x, clstr, which = FALSE)

16 mvl_merge

Arguments

x any object
clstr classes to match against
which when TRUE return a boolean array indicating of which classes named in clstr

are inherited by x. When FALSE return a single boolean indicating inheritance
of any class named in clstr.

Value

character string giving object class

mvl_merge Merge two MVL data frames and write the result

Description

Merge two MVL data frames and write the result

Usage

mvl_merge(
MVLHANDLE,
df1,
df2,
name = NULL,
by = NULL,
by.x = by,
by.y = by,
suffixes = c(".x", ".y"),
only.columns.x = NULL,
only.columns.y = NULL

)

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()

df1 a data.frame stored in MVL file
df2 a data.frame stored in MVL file
name if specified add a named entry to MVL file directory
by list of columns to use as key
by.x list of columns to use as key for df1
by.y list of columns to use as key for df1
suffixes rename columns with identical names using these suffixes
only.columns.x only copy these columns from df1
only.columns.y only copy these columns from df2

mvl_neighbors_lapply 17

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

See Also

mvl_hash_vectors, mvl_find_matches, mvl_group, mvl_find_matches, mvl_indexed_copy,
mvl_order_vectors, mvl_fused_write_objects

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=rep(c("a", "b"), 50), y=1:100), "df1")
mvl_write_object(Mtmp, data.frame(x=rep(c("b", "c"), 50), y=runif(100), z=21:120), "df2")
Mtmp<-mvl_remap(Mtmp)
mvl_merge(Mtmp, Mtmp$df1, Mtmp$df2, by.x="y", by.y="z", only.columns.y=c("x"), name="df_merged")
Mtmp<-mvl_remap(Mtmp)
print(Mtmp$df_merged[1:10,])

End(Not run)

mvl_neighbors_lapply Apply function to indices of nearby rows

Description

Please use generic function mvl_index_lapply() instead.

Usage

mvl_neighbors_lapply(spatial_index, data_list, fn)

Arguments

spatial_index MVL_OBJECT computed by mvl_write_spatial_index1

data_list a list of vectors of equal length. They can be MVL_OBJECTs or R vectors.

fn a function of two arguments - and index into data_list and a corresponding
list of indices

Details

This function is passed the index computed by mvl_write_spatial_index1 and a list of vectors,
which rows are interpreted as points. For each row, we call the function fn(i, idx), where i gives
the index of query row, and idx gives the indices of nearby rows.

18 mvl_object_stats

Value

a list of results of function fn

See Also

mvl_group

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=runif(100), y=1:100), "df1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_spatial_index1(Mtmp, list(Mtmp$df1[,"x",ref=TRUE], Mtmp$df1[,"y", ref=TRUE]),

c(2, 3), "df1_sp_groups")
Mtmp<-mvl_remap(Mtmp)
mvl_neighbors_lapply(Mtmp["df1_sp_groups", ref=TRUE], list(c(0.5, 0.6), c(2, 3)),

function(i, idx) { return(list(i, idx))})

End(Not run)

mvl_object_stats Return MVL object properties

Description

Provide detailed information on stored MVL object without retrieving it

Usage

mvl_object_stats(MVLHANDLE, offset = NULL, scan = FALSE)

Arguments

MVLHANDLE either a handle provided by mvl_open() or an MVL object such as produced by
indexing operators

offset offset to the object which properties are to be retrieved

scan scan vector element to obtain additional statistics

Details

This function is given either an MVL handle and an offset in MVL file to examine, or just a single
parameter of class MVL_OBJECT that contains both handle and offset

This function returns a list of object parameters describing total number of elements, element type
(as used by libMVL) and a pointer to the underlying data. The pointer is passed via a cast to double
to preserve its 64-bit value and can be used with custom C code, for example by using package
inline.

mvl_open 19

Value

list with object properties

mvl_open Open an MVL file

Description

Open an MVL format file for reading and/or writing.

Usage

mvl_open(filename, append = FALSE, create = FALSE)

Arguments

filename path to file.

append specify TRUE when you intend to write data into the file

create when TRUE create file if it did not exist

Details

MVL stands for "Mapped vector library" and is a file format designed for efficient memory mapped
access. An MVL file can be much larger than physical memory of the machine.

mvl_open returns a handle that can be used to access MVL files. Files opened read-only are memory
mapped and do not use a file descriptor, and thus are not subject to limits on the number of open
files. Files opened for writing data do use a file descriptor. Once opened for read access the data
can be accessed using usual R semantics for lists, data.frames and arrays.

Value

handle to opened MVL file

See Also

mvl_close, mvl_remap

Examples

Not run:
M1<-mvl_open("test1.mvl", append=TRUE, create=TRUE)
mvl_write_object(M1, data.frame(x=1:2, y=rnorm(2)), "test_frame")
mvl_close(M1)

M2<-mvl_open("test1.mvl")
print(names(M2))
print(M2["test_frame"])

20 mvl_order_vectors

mvl_close(M2)

M3<-mvl_open("test2.mvl", append=TRUE, create=TRUE)
L<-list()
df<-data.frame(x=1:1e6, y=rnorm(1e6), s=rep(c("a", "b"), 5e5))
L[["x"]]<-mvl_write_object(M3, df, drop.rownames=TRUE)
L[["description"]]<-"Example of large data frame"
mvl_write_object(M3, L, "test_object")
mvl_close(M3)

M4<-mvl_open("test2.mvl")
print(names(M4))
L<-M4["test_object"]
print(L)
print(L[["x"]][1:20,])
mvl_object_stats(L[["x"]])
If you need to get the whole x, one can use mvl2R(L[["x"]])
mvl_close(M4)

End(Not run)

mvl_order_vectors Return permutation sorting vector entries

Description

This function is similar to R order() function, but operates on MVL_OBJECTS.

Usage

mvl_order_vectors(
L,
indices = NULL,
decreasing = FALSE,
sort_function = ifelse(decreasing, 2, 1)

)

Arguments

L list of vector like MVL_OBJECTs

indices list of indices into objects to sort. If absent or NULL it is assumed to be from 1
to length of the object.

decreasing whether to sort in ascending or decreasing order. This parameter is provided for
compatibility with order() function

sort_function specifies desired sort order

Value

sorted indices

mvl_remap 21

See Also

mvl_hash_vectors, mvl_find_matches, mvl_group, mvl_find_matches, mvl_indexed_copy,
mvl_merge

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, runif(100), "vec1")
Mtmp<-mvl_remap(Mtmp)
permutation1<-mvl_order_vectors(list(Mtmp["vec1", ref=TRUE]))

End(Not run)

mvl_remap Enlarge memory map to include recently loaded data.

Description

This function operates on MVL files opened for writing. When writing new data to the MVL file
that data is appended at the end and past the end of previously mapped data. Calling mvl_remap()
updates the memory mapping to include all the data written before mvl_remap() was called. The
MVL file directory is also updated to include recently added entries. Old handles can still be used,
but will not include updated directory information. MVL_OBJECT’s previously obtained from this
handle continue to be valid.

Usage

mvl_remap(MVLHANDLE, append = TRUE)

Arguments

MVLHANDLE handle to opened MVL file as generated by mvl_open() or mvl_remap()

append specify FALSE when you do not intend to write the file.

Details

mvl_remap returns a handle with updated directory.

Value

handle to MVL file, with updated directory.

See Also

mvl_open, mvl_close

22 mvl_start_write_vector

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, runif(100), "vec1")
Mtmp<-mvl_remap(Mtmp)
print(Mtmp["vec1"])

End(Not run)

mvl_start_write_vector

Piecewise output of very long numeric and integer vectors

Description

While mvl_fused_write_objects can be used to create very large vectors and data frames of arbi-
trary type, it requires piecewise data to be written first into an MVL file. Functions mvl_start_write_vector()
and mvl_rewrite_vector() provide a way to create very long vectors in one pass. Only numeric
and integer vectors are supported.

Usage

mvl_start_write_vector(MVLHANDLE, x, expected.length = NULL, name = NULL)

mvl_rewrite_vector(obj, offset, x)

Arguments

MVLHANDLE handle to opened MVL file as generated by mvl_open()

x an integer or numeric vector
expected.length

the length of vector to create. Use double to pass large values

name if specified add a named entry to MVL file directory

obj an MVL vector object to modify

offset the offset into MVL vector (starting with 1) to write x

Details

One convenient use is to compute f(x,y,z,...) with very long vector arguments by iterating over
indices. The iteration can be done using fixed blocks of indices, or by using groups of indices
computed with other MVL functions.

It is generally recommended to call mvl_rewrite_vector() with large blocks to improve I/O per-
formance and reduce number of writes to underlying media.

See Also

mvl_fused_write_objects

mvl_status 23

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
offset<-mvl_start_write_object(Mtmp, runif(10), expected.length=1000, "vec1")
Mtmp<-mvl_remap(Mtmp)
mvl_rewrite_vector(Mtmp[offset], 50, rnorm(20))

End(Not run)

mvl_status Return status of MVL package

Description

Return status of MVL package

Usage

mvl_status()

Value

list of status values

mvl_write_extent_index

Compute and write extent index

Description

This function computes a hash-based index that allows to find indices of rows which hashes match
query values. While it can be applied to arbitrary data, it is optimized for the common case when
vectors contain stretches of repeated values describing row groups to be processed. This is particu-
larly relevant for R because vectorized processing of row batches is the only practical way to scan
very large tables using pure-R code.

Usage

mvl_write_extent_index(MVLHANDLE, L, name = NULL)

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()
L list of vector like MVL_OBJECTs
name if specified add a named entry to MVL file directory

24 mvl_write_groups

Details

mvl_write_extent_index() creates the index in memory and then writes it out. The memory
usage is proportional to the number of repeat stretches. Sorting tables improves performance, but is
not a requirement.

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

See Also

mvl_order_vectors, mvl_index_lapply, mvl_find_matches, mvl_group, mvl_find_matches,
mvl_indexed_copy, mvl_merge, mvl_hash_vectors, mvl_get_groups

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=runif(100), y=(1:100) %% 10), "df1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_extent_index(Mtmp, list(Mtmp$df1[,"y",ref=TRUE]), "df1_extent_index_y")
Mtmp<-mvl_remap(Mtmp)
mvl_index_lapply(Mtmp["df1_extent_index_y", ref=TRUE], list(c(2, 3)),

function(i, idx) { return(list(i, idx))})
Example of full scan
mvl_index_lapply(Mtmp["df1_extent_index_y", ref=TRUE], ,

function(i, idx) { return(list(i, idx))})

End(Not run)

mvl_write_groups Write group information for each row

Description

This function is passed a list of MVL vectors which are interpreted in data.frame fashion. These
rows are split into groups so that identical rows are guaranteed to belong to the same group. This is
done internally based on 20-bit hash values. This function is convenient to use as a way to partition
very large datasets before applying mvl_group or mvl_find_matches. The groups can be obtained
by using mvl_get_groups

Usage

mvl_write_groups(MVLHANDLE, L, name = NULL)

mvl_write_hash_vectors 25

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()
L list of vector like MVL_OBJECTs
name if specified add a named entry to MVL file directory

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

See Also

mvl_order_vectors, mvl_find_matches, mvl_group, mvl_find_matches, mvl_indexed_copy,
mvl_merge, mvl_hash_vectors, mvl_get_groups

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=runif(100), y=1:100), "df1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_groups(Mtmp, list(Mtmp$df1[,"x",ref=TRUE], Mtmp$df1[,"y", ref=TRUE]), "df1_groups")
Mtmp<-mvl_remap(Mtmp)
print(mvl_get_groups(Mtmp["df1_groups", ref=TRUE]["prev", ref=TRUE], Mtmp$df1_groups$first[1:5]))

End(Not run)

mvl_write_hash_vectors

Write hash values for each row

Description

This function is passed a list of MVL vectors which are interpreted in data.frame fashion. For each
row, i.e. set of vector values with the same index we compute a 64-bit hash value. Identical rows
produce identical hash values. The hash values are written into 64-bit integer vector. This function
is meant for use with data that is too large to handle comfortably.

Usage

mvl_write_hash_vectors(MVLHANDLE, L, name = NULL)

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()
L list of vector like MVL_OBJECTs
name if specified add a named entry to MVL file directory

26 mvl_write_object

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

See Also

mvl_order_vectors, mvl_find_matches, mvl_group, mvl_find_matches, mvl_indexed_copy,
mvl_merge, mvl_hash_vectors

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, runif(100), "vec1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_hash_vectors(Mtmp, list(Mtmp["vec1", ref=TRUE]), "vec1_hash")
Mtmp<-mvl_remap(Mtmp)
print(length(Mtmp["vec1_hash"]))

End(Not run)

mvl_write_object Write R object into MVL file

Description

Write R object into MVL file

Usage

mvl_write_object(MVLHANDLE, x, name = NULL, drop.rownames = FALSE)

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()

x a suitable R object (vector, array, list, data.frame) or a vector-like MVL_OBJECT

name if specified add a named entry to MVL file directory

drop.rownames set to TRUE to prevent rownames from being written

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

mvl_write_serialized_object 27

See Also

mvl_indexed_copy, mvl_merge

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, runif(100), "vec1")
L<-list()
L[["x"]]<-mvl_write_object(Mtmp, 1:5)
L[["y"]]<-mvl_write_object(Mtmp, c("a", "b"))
L[["df"]]<-mvl_write_object(Mtmp, data.frame(x=1:100, z=runif(100)))
mvl_write_object(Mtmp, L, "L")
Mtmp<-mvl_remap(Mtmp)
print(Mtmp$L)

End(Not run)

mvl_write_serialized_object

Write R object in serialized form

Description

This function packages the object into a raw vector before writing it out. The raw vector is tagged
with special class that assures the object is automatically converted back to R representation when
reading. Serialized objects can only be read completely.

Usage

mvl_write_serialized_object(MVLHANDLE, x, name = NULL)

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()
x a suitable R object (vector, array, list, data.frame) or a vector-like MVL_OBJECT
name if specified add a named entry to MVL file directory

Details

This function can be used in rare cases when it is important to store a complete R object, but it is
not important for it to be accessible by other programs, and it is not important to conserve memory
or bandwidth.

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

28 mvl_write_spatial_groups

See Also

mvl_write_object

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_serialized_object(Mtmp, lm(rnorm(100)~runif(100)), "LM1")
Mtmp<-mvl_remap(Mtmp)
print(mvl2R(Mtmp$LM1))

End(Not run)

mvl_write_spatial_groups

Write spatial group information for each row

Description

Please use mvl_write_spatial_index1() instead.

Usage

mvl_write_spatial_groups(MVLHANDLE, L, bits, name = NULL)

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()

L list of vector like MVL_OBJECTs

bits a vector of bit values to use for each member of L

name if specified add a named entry to MVL file directory

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

See Also

mvl_order_vectors, mvl_find_matches, mvl_group, mvl_find_matches, mvl_indexed_copy,
mvl_merge, mvl_hash_vectors, mvl_get_groups

mvl_write_spatial_index1 29

mvl_write_spatial_index1

Write spatial group information for each row

Description

This function is passed a list of MVL vectors which are interpreted in data.frame fashion. These
rows are split into groups so that identical rows are guaranteed to belong to the same group. This is
done using partition into equal sized bins. This function is meant for constructing spatial indexes.

Usage

mvl_write_spatial_index1(MVLHANDLE, L, bits, name = NULL)

Arguments

MVLHANDLE a handle to MVL file produced by mvl_open()

L list of vector like MVL_OBJECTs

bits a vector of bit values to use for each member of L

name if specified add a named entry to MVL file directory

Value

an object of class MVL_OFFSET that describes an offset into this MVL file. MVL offsets are
vectors and can be concatenated. They can be written to MVL file directly, or as part of another
object such as list.

See Also

mvl_order_vectors, mvl_find_matches, mvl_group, mvl_find_matches, mvl_indexed_copy,
mvl_merge, mvl_hash_vectors, mvl_get_groups

Examples

Not run:
Mtmp<-mvl_open("tmp_a.mvl", append=TRUE, create=TRUE)
mvl_write_object(Mtmp, data.frame(x=runif(100), y=1:100), "df1")
Mtmp<-mvl_remap(Mtmp)
mvl_write_spatial_index1(Mtmp, list(Mtmp$df1[,"x",ref=TRUE], Mtmp$df1[,"y", ref=TRUE]),

c(2, 3), "df1_sp_groups")
Mtmp<-mvl_remap(Mtmp)
print(mvl_get_neighbors(Mtmp["df1_sp_groups", ref=TRUE], list(c(0.5, 0.6), c(2, 3))))

End(Not run)

30 names.MVL

mvl_xlength Return length of MVL or R vector as a numeric value

Description

Internally this calls R function xlength() rather than length(). This allows to obtain length of larger
vectors. For MVL vectors this returns the length of the vector.

Usage

mvl_xlength(x)

Arguments

x any R object

Value

length of object as as numeric value

names.MVL Print MVL directory

Description

Print MVL directory

Usage

S3 method for class 'MVL'
names(x)

Arguments

x handle to MVL file as created by mvl_open

Value

character vector of names present in the directory

names.MVL_OBJECT 31

names.MVL_OBJECT Retrieve MVL object names

Description

Retrieve MVL object names

Usage

S3 method for class 'MVL_OBJECT'
names(x)

Arguments

x MVL_OBJECT as retrieved by subscription operators

Value

character vector of names

print.MVL Print MVL

Description

Print MVL

Usage

S3 method for class 'MVL'
print(x, ...)

Arguments

x handle to MVL file as created by mvl_open

... not used.

Value

invisible(MVLHANDLE)

32 [.MVL

print.MVL_OBJECT Print MVL object This is a convenience function for displaying
MVL_OBJECTs.

Description

Print MVL object This is a convenience function for displaying MVL_OBJECTs.

Usage

S3 method for class 'MVL_OBJECT'
print(x, ..., small_length = 10)

Arguments

x MVL_OBJECT as retrieved by subscription operators

small_length do not list more than this number of columns in data frames

... not used.

Value

invisible(obj)

[.MVL MVL handle subscription operator

Description

Retrieve objects stored in mappable vector library

Usage

S3 method for class 'MVL'
MVLHANDLE[y, raw = FALSE, ref = FALSE, drop = TRUE]

Arguments

MVLHANDLE - handle to opened MVL file as generated by mvl_open

y - name of object to retrieve

raw - request to return data in raw format when it does not map exactly to R data
types.

ref - always return an MVL_OBJECT

drop - whether to drop dimensionality, such as when a sublist contains only one ele-
ment

[.MVL_OBJECT 33

Details

See mvl_open for example.

Value

Stored object

[.MVL_OBJECT MVL object subscription operator

Description

Retrieve objects stored in mappable vector library. Large nested objects are returned as instances of
MVL_OBJECT to delay access until needed.

Usage

S3 method for class 'MVL_OBJECT'
obj[i, ..., drop = TRUE, raw = FALSE, recurse = FALSE, ref = FALSE]

Arguments

obj - MVL object retrieved by subscription of MVL library or other objects

i - optional index.

drop - whether to drop dimensionality, such as done with R array or data frames

raw - request to return data in raw format when it does not map exactly to R data
types.

recurse - force recursive conversion to pure R objects.

ref - always return an MVL_OBJECT

... optional additional indices for multidimensional arrays and data frames

Details

See mvl_open for example.

Value

Stored object

34 $.MVL

[[.MVL_OBJECT MVL object subscription operator

Description

Retrieve objects stored in mappable vector library. Large nested objects are returned as instances of
MVL_OBJECT to delay access until needed.

Usage

S3 method for class 'MVL_OBJECT'
obj[[i, raw = FALSE, recurse = FALSE, ref = FALSE]]

Arguments

obj - MVL object retrieved by subscription of MVL library or other objects

i - index.

raw - request to return data in raw format when it does not map exactly to R data
types.

recurse - force recursive conversion to pure R objects.

ref - always return an MVL_OBJECT

Details

See mvl_open for example.

Value

Stored object

$.MVL MVL handle subscription operator

Description

Retrieve objects stored in the library. Unlike for R lists the match on name is always exact.

Usage

S3 method for class 'MVL'
MVLHANDLE$name

Arguments

MVLHANDLE - handle to opened MVL file as generated by mvl_open

name - name of object to retrieve

$.MVL 35

Value

Stored object

Index

[.MVL, 32
[.MVL_OBJECT, 33
[[.MVL_OBJECT, 34
$.MVL, 34

dim.MVL_OBJECT, 3

length.MVL_OBJECT, 3

mvl2R, 4
mvl_add_directory_entries, 4
mvl_class, 5
mvl_close, 5, 19, 21
mvl_compute_repeats, 6
mvl_extent_index_lapply, 6
mvl_find_matches, 7, 8, 11, 13, 14, 17, 21,

24–26, 28, 29
mvl_fused_write_objects, 8, 14, 17
mvl_get_groups, 9, 24, 25, 28, 29
mvl_get_neighbors, 10
mvl_group, 7–9, 11, 12–15, 17, 18, 21, 24–26,

28, 29
mvl_group_lapply, 11, 12
mvl_hash_vectors, 8, 11, 12, 14, 17, 21,

24–26, 28, 29
mvl_index_lapply, 7, 10, 14, 24
mvl_indexed_copy, 8, 11, 13, 13, 17, 21,

24–29
mvl_inherits, 15
mvl_merge, 8, 11, 13, 14, 16, 21, 24–29
mvl_neighbors_lapply, 17
mvl_object_stats, 18
mvl_open, 5, 19, 21
mvl_order_vectors, 8, 11, 13, 14, 17, 20,

24–26, 28, 29
mvl_remap, 5, 19, 21
mvl_rewrite_vector

(mvl_start_write_vector), 22
mvl_start_write_vector, 22
mvl_status, 23

mvl_write_extent_index, 23
mvl_write_groups, 24
mvl_write_hash_vectors, 13, 25
mvl_write_object, 14, 26, 28
mvl_write_serialized_object, 27
mvl_write_spatial_groups, 28
mvl_write_spatial_index1, 10, 29
mvl_xlength, 30

names.MVL, 30
names.MVL_OBJECT, 31

print.MVL, 31
print.MVL_OBJECT, 32

36

	dim.MVL_OBJECT
	length.MVL_OBJECT
	mvl2R
	mvl_add_directory_entries
	mvl_class
	mvl_close
	mvl_compute_repeats
	mvl_extent_index_lapply
	mvl_find_matches
	mvl_fused_write_objects
	mvl_get_groups
	mvl_get_neighbors
	mvl_group
	mvl_group_lapply
	mvl_hash_vectors
	mvl_indexed_copy
	mvl_index_lapply
	mvl_inherits
	mvl_merge
	mvl_neighbors_lapply
	mvl_object_stats
	mvl_open
	mvl_order_vectors
	mvl_remap
	mvl_start_write_vector
	mvl_status
	mvl_write_extent_index
	mvl_write_groups
	mvl_write_hash_vectors
	mvl_write_object
	mvl_write_serialized_object
	mvl_write_spatial_groups
	mvl_write_spatial_index1
	mvl_xlength
	names.MVL
	names.MVL_OBJECT
	print.MVL
	print.MVL_OBJECT
	[.MVL
	[.MVL_OBJECT
	[[.MVL_OBJECT
	$.MVL
	Index

