
Package ‘QLearning’
January 20, 2025

Type Package

Title Reinforcement Learning using the Q Learning Algorithm

Version 0.1.1

Author Liam Bressler

Maintainer Liam Bressler <liam.bressler@yale.edu>

Description Implements Q-Learning, a model-free form of reinforcement
learning, described in work by Strehl, Li, Wiewiora, Langford &
Littman (2006) <doi:10.1145/1143844.1143955>.

License GNU General Public License

LazyData TRUE

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2017-09-21 07:59:42 UTC

Contents
qlearn . 1
qlearningaction . 3
qlearningupdate . 5

Index 7

qlearn qlearn

Description

Input a game that has variables statevars (which the player can keep track of). The player can
perform any of possibleactions. The output matrix will give the expected value of each action
(column) in each state (row).

1

https://doi.org/10.1145/1143844.1143955

2 qlearn

Usage

qlearn(game, statevars, possibleactions, playername="P1",
numiter=1000, prevstrategy=NULL, ...)

Arguments

game Name of the game to be played/learned.

statevars A vector of the states to be monitored inside game. These are the conditions
under which we the player has to make his decision.

possibleactions

A vector of the names of the possible actions inside game. This should be a list
of every possible action that can be taken, regardless of state.

playername The name of the variable that holds the name for the player’s action inside game.
See Details.

numiter Number of iterations of game. Defaults to 50.

prevstrategy Reward matrix returned by a previous qlearn function; serves as a starting point.
Defaults to a blank reward matrix.

... Additional arguments to be passed to game.

Details

At some point in game, there must be a line of the format

playername <- 'Choose'

where playername is substituted with the paramater "playername". This line should be at the point
where the user wants to have the player choose an action. Since playername defaults to "P1", it
sufficient to put the line:

P1 <- 'Choose'

somewhere in the function.

Value

A matrix describing the expected reward values of performing a certain action (columns) in a certain
state (rows).

Note

Contact at liam.bressler@yale.edu

Author(s)

Liam Bressler

References

http://labressler.github.io/analytics

qlearningaction 3

Examples

cardgame <- function()
{

playercards <- sample(1:8,4) #distribute the cards, we're player one
ourcard <- playercards[1] #our card
playertotals <- rep(-1,4) #including the antes
playersinpot <- vector()
for (player in 2:4) #other 3 players go first
{

if (playercards[player]>=2)
{

playertotals[player] <- (-3)
playersinpot <- append(playersinpot,player)

}
}
#the next line is where we want to choose our action
player1 <- 'Choose'
if (player1=="Call")
{
playertotals[1] <- (-3)
playersinpot <- append(playersinpot,1)

}
potsize <- -1*(sum(playertotals)) #the amount in the pot is how much the players put in
playercards[!(1:4 %in% playersinpot)] <- 0 #get rid of everyone who folded
winner <- which.max(playercards) #winner is the person with the highest card who didn't fold
playertotals[winner] <- playertotals[winner]+potsize
return(playertotals[1]) #return how much we won

}

strat <- qlearn(game="cardgame",statevars="ourcard",possibleactions=c("Call","Fold"),
playername="player1",numiter=25000) #make sure each function and variable name is a string

strat

qlearningaction qlearningaction

Description

This repository implements Q-Learning, a model-free form of reinforcement learning in R.

Usage

qlearningaction(q, currentstate, exploration=.5)

http://artint.info/html/ArtInt_265.html

4 qlearningaction

Arguments

q Input state/action matrix.

currentstate Current state of the game. Does not have to match any of the state for q.

exploration The probability of choosing a random state, rather than the one with the highest
EV. Default 0.5.

Details

For internal use for qlearn.

Value

An action to take, taken from the possible actions of q.

Note

Contact at liam.bressler@yale.edu

Author(s)

Liam Bressler

References

http://labressler.github.io/analytics

Examples

cardgame <- function()
{

playercards <- sample(1:8,4) #distribute the cards, we're player one
ourcard <- playercards[1] #our card
playertotals <- rep(-1,4) #including the antes
playersinpot <- vector()
for (player in 2:4) #other 3 players go first
{

if (playercards[player]>=2)
{

playertotals[player] <- (-3)
playersinpot <- append(playersinpot,player)

}
}
#the next line is where we want to choose our action
player1 <- 'Choose'
if (player1=="Call")
{
playertotals[1] <- (-3)
playersinpot <- append(playersinpot,1)

}
potsize <- -1*(sum(playertotals)) #the amount in the pot is how much the players put in
playercards[!(1:4 %in% playersinpot)] <- 0 #get rid of everyone who folded

qlearningupdate 5

winner <- which.max(playercards) #winner is the person with the highest card who didn't fold
playertotals[winner] <- playertotals[winner]+potsize
return(playertotals[1]) #return how much we won

}

strat <- qlearn(game="cardgame",statevars="ourcard",possibleactions=c("Call","Fold"),
playername="player1",numiter=25000) #make sure each function and variable name is a string

qlearningaction(strat,3,exploration=.75)
#Pick an action to perform when we have the 3 card, with high exploration

qlearningupdate qlearningupdate

Description

This repository implements Q-Learning, a model-free form of reinforcement learning in R.

Usage

qlearningupdate(q, currentstate, currentaction, currentreward, nextstate=NULL,
rewardcount=.5, gamma=.25)

Arguments

q Input state/action matrix.

currentstate Current state of the game. Does not have to match any of the state for q.

currentaction Action to take.

currentreward Reward for currentaction in current iteration.

nextstate State that the game is in after taking currentaction.

rewardcount Regularization constant for reward.

gamma Learning rate constant for Q-Learning.

Details

For internal use for qlearn.

Value

An updated state/action matrix.

Note

Contact at liam.bressler@yale.edu

Author(s)

Liam Bressler

http://artint.info/html/ArtInt_265.html

6 qlearningupdate

References

http://labressler.github.io/analytics

Examples

cardgame <- function()
{

playercards <- sample(1:8,4) #distribute the cards, we're player one
ourcard <- playercards[1] #our card
playertotals <- rep(-1,4) #including the antes
playersinpot <- vector()
for (player in 2:4) #other 3 players go first
{

if (playercards[player]>=2)
{

playertotals[player] <- (-3)
playersinpot <- append(playersinpot,player)

}
}
#the next line is where we want to choose our action
player1 <- 'Choose'
if (player1=="Call")
{
playertotals[1] <- (-3)
playersinpot <- append(playersinpot,1)

}
potsize <- -1*(sum(playertotals)) #the amount in the pot is how much the players put in
playercards[!(1:4 %in% playersinpot)] <- 0 #get rid of everyone who folded
winner <- which.max(playercards) #winner is the person with the highest card who didn't fold
playertotals[winner] <- playertotals[winner]+potsize
return(playertotals[1]) #return how much we won

}

strat <- qlearn(game="cardgame",statevars="ourcard",possibleactions=c("Call","Fold"),
playername="player1",numiter=25000) #make sure each function and variable name is a string

strat <- qlearningupdate(strat,currentstate=7,currentaction="Call",currentreward=5)
#Update the matrix after an example when we call with the 7 card as our state, winning 5 chips

Index

∗ machinelearning
qlearn, 1
qlearningaction, 3
qlearningupdate, 5

∗ optimize
qlearn, 1
qlearningaction, 3
qlearningupdate, 5

∗ reinforcementlearning
qlearn, 1
qlearningaction, 3
qlearningupdate, 5

qlearn, 1
qlearningaction, 3
qlearningupdate, 5

7

	qlearn
	qlearningaction
	qlearningupdate
	Index

