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PtProcess-package Overview of PtProcess Package

Description

This topic gives an introductory overview to the package PtProcess. Links are given to follow up
topics where more detail can be found.

Introduction

This package contains routines for the fitting of time dependent point process models, particularly
marked processes with “jumps”. These models have particular application to earthquake data. A
detailed theoretical background to these and other point process models can be found in Daley &
Vere-Jones (2003, 2008). An overview of the package structure is given by Harte (2010).

The direction of the development of the package has been influenced by our research on the applica-
tion of point process models to seismology. The package was originally written for S-PLUS, being
part of the Statistical Seismology Library (Harte, 1998; Brownrigg & Harte, 2005). The package
ptproc by Peng (2002, 2003) analyses multi-dimensional point process models, and the package
spatstat by Baddeley et al (2005, 2005a, 2008) analyses spatial point processes.

The topic Changes lists recent changes made to the package. Version 3 of the package has some
major changes from Version 2, and code for Version 2 will not work in Version 3 without modifica-
tion. Some examples giving the old code and the required new code are given in the topic Changes.
Changes made in Version 3 enable one to fit a more general class of model.

Classes of Point Process Models Analysed

The classes of models currently fitted by the package are listed below. Each are defined within an
object that contains the data, current parameter values, and other model characteristics.

Marked Point Process Model: is described under the topic mpp. This model can be simulated or
fitted to data by defining the required model structure within an object of class "mpp".

Linked Stress Release Model: is described under the topic linksrm. This model is slightly pecu-
liar, and doesn’t fit naturally in the mpp framework.
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Main Tasks Performed by the Package

The main tasks performed by the package are listed below. These can be achieved by calling the
appropriate generic function.

Simulation: can be performed by the function simulate.

Parameter Estimation: can be achieved by using the function neglogLik.

Model Residuals: can be calculated with the function residuals.

Model Summary: can be extracted with the function summary.

Log-Likelihood: can be calculated with the function logLik.

Ground Intensity Plot: can be performed by the function plot.

The method function conforms to the following naming convention, for example, the function
logLik.mpp provides the method to calculate the log-likelihood for mpp objects. The function
code can be viewed by entering PtProcess:::logLik.mpp on the R command line.

If you want to modify such a function, dump the code to your local directory, modify in a text editor,
then use source at the beginning of your program script, but after library(PtProcess). Your
modified version will then be used in preference to the version in the PtProcess package.

Organisation of Topics in the Package

Cited References: anywhere in the manual are only listed within this topic.

General Documentation: topics summarising general structure are indexed under the keyword
“documentation” in the Index.
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Change Log Changes Made to the Package

Description

This page contains a listing of recent changes made to functions, and known general problems.

Recent Changes

1. Version 3 contains major changes, and code that worked in Version 2 will no longer work in
Version 3. The models included in Version 2 are also contained in Version 3, but the framework
has been extended so that the original models can now contain a variety of mark distributions.
This has been achieved by giving a more general structure and utilising the object orientated
aspects of the R language. Examples are given below that show how models were defined in
Version 2 and how the corresponding models are now defined in Version 3. (28 Apr 2008)

2. Naming changes to the *.cif functions. In Version 2, these were referred to as “conditional
intensity functions”, which is really a slightly more general class. In keeping with Daley &
Vere-Jones (2003) we now call them ground intensity functions, with a suffix of “gif”. Further,
the dot has been replaced by an underscore, e.g. etas.cif to etas_gif. This is to lessen the
possibility of future conflicts with object orientated naming conventions in the R language.
(28 Apr 2008)

3. Arguments eval.pts and t.plus in the ground intensity functions have been renamed to
evalpts and tplus, respectively. This is to lessen the possibility of future conflicts with
object orientated naming conventions in the R language. (28 Apr 2008)

4. logLik: the log-likelihood calculated in package Versions before Version 3 did not have the
sum over the mark density term (see topic logLik, under “Details”). This term can also be
excluded in this Version of the package by placing NULL for the mark density in the mpp object,
see example below. (28 Apr 2008)

5. Version 2 had a framework to assign prior densities to the estimated parameters. This has
not been retained in Version 3. However, some of the features like holding a parameter at a
fixed value, and restricting it to an open or closed interval can be achieved in Version 3; see
neglogLik for further details. (28 Apr 2008)

6. neglogLik: the format of this function has been changed to be consistent with that in package
HiddenMarkov. Argument updatep renamed as pmap. (07 Aug 2008)

7. simulate: manual page revised to include more information about controlling the length of
the simulated series. (18 Nov 2008)

8. mpp: example modified due to warning messages caused by negative λg(t|Ht). (18 Nov 2008)

9. marks: manual page revised to include more information. (18 Nov 2008)

10. mpp: fuller description to argument marks on manual page. (19 Nov 2008)

https://doi.org/10.1007/BF01772406
https://doi.org/10.1111/j.1467-9868.2006.00559.x
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11. Phuket: new dataset added. (4 Dec 2008)

12. linksrm_gif, marks: remove some LaTeX specific formatting to be compatible with R 2.9.0.
(26 Jan 2009)

13. Phuket: clarify magnitude scale used in the dataset. (11 Jul 2009)

14. Attribute type is no longer required on the gif functions, removed. (7 Oct 2009)

15. logLik, neglogLik: Parallel processing support, using package snow, has been added. (8
Oct 2009)

16. plot: Correct hyperlink to generic plot function. (10 Oct 2009)

17. etas_normal0: New function. Test version of a spatial ETAS conditional intensity function.
(12 Oct 2009)

18. logLik: Fixed bug when using parallel processing on only two nodes. (22 Oct 2009)

19. Tidied HTML representation of equations in manual pages. Removal of “synopsis” on manual
pages of functions with multiple forms of usage. (26 Jan 2010)

20. logLik.mpp, summary.mpp: Changed to inherits to determine class. (27 Jan 2010)

21. Phuket: Additional data, until the beginning of 2009, have been added. The magnitude is
now the maximum of the body wave and surface wave magnitudes, mb and Ms, respectively.
Earlier it was simply mb. (01 Feb 2010)

22. simulate.linksrm, simulate.mpp, logLik.mpp: Inconsistency in nomenclature between
“mark” and “marks”, will standardise on the plural. (07 May 2010)

23. simulate.mpp: Two bugs:
use <- (data[, "time"] < TT[1]) changed to use <- (data[, "time"] <= TT[1]),
and else data <- data[use, c("time", "magnitude")] changed to
else data <- data[use, ]. (18 Jun 2010)

24. etas_normal0: Errors in some terms involving beta. (18 Jun 2010)

25. Minor citation and reference inclusion changes to manual pages. (19 Jul 2010)

26. simulate.mpp: Bug fix on 18 June 2010 induced another bug;
data <- rbind(data, newevent) changed to
data <- rbind(data[, names(newevent)], newevent). (11 Dec 2010)

27. Implement very basic NAMESPACE. (5 Nov 2011)

28. List functions explicitly in NAMESPACE; “LazyData: no” and “ZipData: no” in DESCRIP-
TION file. (9 Dec 2011)

29. logLik.mpp: Enable one to specify the relative CPU speeds of the nodes when parallel pro-
cessing. (9 Dec 2011)

30. mpp and etas_normal0: Restrict the number of iterations in examples on manual pages to
minimise time during package checks. (13 Dec 2011)

31. residuals and linksrm: Include example using cusum of residuals on manual page. (15 Dec
2011)

32. dpareto, dtappareto, ltappareto (etc): Include parameter consistency checks. (6 Jan
2014)

33. etas_gif: Documentation example error: marks=list(rmagn_mark, rmagn_mark) should
be marks=list(dmagn_mark, NULL). (23 Jan 2014)
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34. linksrm1_gif: Function deleted, alternative discussed on manual page of linksrm_gif. (19
Mar 2014)

35. Correct html problem in ‘inst/doc/index.html’. (14 Aug 2014)
36. logLik.mpp: Call to clusterApply changed to snow::clusterApply. (20 Aug 2014)
37. logLik.mpp: The package snow has been superseded by parallel. Change snow to parallel,

also in file ‘DESCRIPTION’. (15 Oct 2014)
38. makeSOCKcluster: This function is in snow but not in parallel. This function points to the

closest eqivalent in parallel, makePSOCKcluster. makeSOCKcluster will eventually become
deprecated. Was added to the export list in file ‘NAMESPACE’ too. (15 Oct 2014)

39. logLik.mpp, neglogLik: Update consistent with changes from snow to parallel. (17 Oct
2014)

40. logLik.mpp: Change require(parallel) to requireNamespace("parallel"). (21 Jan
2015)

41. Added to NAMESPACE:
importFrom(graphics, plot)
importFrom(stats, dexp, integrate, logLik, pnorm,
qexp, rexp, runif, simulate, ts)
(03 Jul 2015)

42. PtProcess: Add DOI to some references, rename topic to appear first in table of contents.
(16 Oct 2015)

43. plot.mpp: Activate argument ylim. (17 Aug 2016)
44. etas_normal0: This has been removed. Adding a spatial dimension requires more generality

in other package functions like logLik.mpp. For a reasonable amount of generality, it requires
the addition of new model class, currently under development. (01 Sep 2016)

45. simulate.mpp: Did not allow argument marks = list(NULL, NULL) in mpp object.
simulate.mpp now tests to see if NULL marks. (17 Nov 2017)

46. fourier_gif: Example added on manual page with NULL marks. (17 Nov 2017)
47. Phuket: Hyperlink to data source updated, others updated to https where possible. (24 Apr

2021)
48. Updated ‘DESCRIPTION’ file. (03 Jun 2025)

Future Development

1. Currently spatial versions of the ETAS model are being written and tested.
2. In the model object, allow one to alternatively specify the name of the gif function.
3. Function linksrm_gif: Use of St1 and St2. Is there a tidier way? Also utilise this feature in

srm_gif.
4. Want a generic function, possibly called forecast, to produce probability forecasts. This

would be based on simulating empirical probability distributions.
5. Want a function like linksrm_convert to map between the two main parametrisations of the

ETAS model.
6. Add general forms of the truncated exponential and gamma distributions as marks for the

magnitude of the event.
7. A tidy way to pass the values of the gif function into the mark distributions, if required.
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References

Cited references are listed on the PtProcess manual page.

Examples

# SRM: magnitude is iid exponential with bvalue=1
# simulate and calculate the log-likelihood

TT <- c(0, 1000)
bvalue <- 1
params <- c(-1.5, 0.01, 0.8, bvalue*log(10))

# --- Old Method ---
# x <- pp.sim(NULL, params[1:3], srm.cif, TT, seed=5, magn.sim=1)
# print(pp.LL(x, srm.cif, params[1:3], TT))
# [1] -601.3941

# --- New Method, no mark density ---
x1 <- mpp(data=NULL,

gif=srm_gif,
marks=list(NULL, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)

x1 <- simulate(x1, seed=5)
print(logLik(x1))

# An advantage of the object orientated format is that it
# simplifies further analysis, e.g. plot intensity function:
plot(x1)
# plot the residual process:
plot(residuals(x1))

#---------------------------------------------------
# SRM: magnitude is iid exponential with bvalue=1
# simulate then estimate parameters from data

# --- Old Method ---
# TT <- c(0, 1000)
# bvalue <- 1
# params <- c(-2.5, 0.01, 0.8)
#
# x <- pp.sim(NULL, params, srm.cif, TT, seed=5, magn.sim=1)
#
# posterior <- make.posterior(x, srm.cif, TT)
#
# neg.posterior <- function(params){
# x <- -posterior(params)
# if (is.infinite(x) | is.na(x)) return(1e15)
# else return(x)
# }
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#
# z <- nlm(neg.posterior, params, typsize=abs(params),
# iterlim=1000, print.level=2)
#
# print(z$estimate)
# [1] -2.83900091 0.01242595 0.78880647

# --- New Method, no mark density ---
# maximise only SRM parameters (like old method)

TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

x1 <- mpp(data=NULL,
gif=srm_gif,
marks=list(dexp_mark, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)

# note that dexp_mark above is not used below
# and could alternatively be replaced by NULL

x1 <- simulate(x1, seed=5)

# maximise only SRM parameters
onlysrm <- function(y, p){

# maps srm parameters into model object
# the exp rate for magnitudes is unchanged
y$params[1:3] <- p
return(y)

}

params <- c(-2.5, 0.01, 0.8)

z1 <- nlm(neglogLik, params, object=x1, pmap=onlysrm,
print.level=2, iterlim=500, typsize=abs(params))

print(z1$estimate)

distribution General Notes on Distribution Fitting

Description

This page contains general notes about fitting probability distributions to datasets.

Details

We give examples of how the maximum likelihood parameters can be estimated using standard op-
timisation routines provided in the R software (nlm and optim). We simply numerically maximise
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the sum of the logarithms of the density evaluated at each of the data points, i.e. log-likelihood func-
tion. In fact, by default, the two mentioned optimizers find the minimum, and hence we minimise
the negative log-likelihood function.

Both optimization routines require initial starting values. The optimisation function optim uses a
grid search technique, and is therefore more robust to poor starting values. The function nlm uses
derivatives and the Hessian to determine the size and direction of the next step, which is generally
more sensitive to poor initial values, but faster in the neighbourhood of the solution. One possible
strategy is to start with optim and then use its solution as a starting value for nlm. This is done
below in the example for the tapered Pareto distribution.

The function nlm numerically calculates the Hessian and derivatives, by default. If the surface is
very flat, the numerical error involved may be larger in size than the actual gradient. In this case
the process will work better if analytic derivatives are supplied. This is done in the tapered Pareto
example below. Alternatively, one could simply use the Newton-Raphson algorithm (again, see the
tapered Pareto example below).

We also show that parameters can be constrained to be positive (or negative) by transforming the
parameters with the exponential function during the maximisation procedure. Similarly, parameters
can be restricted to a finite interval by using a modified logit transform during the maximisation
procedure. The advantage of using these transformations is that the entire real line is mapped onto
the positive real line or the required finite interval, respectively; and further, they are differentiable
and monotonic. This eliminates the “hard” boundaries which are sometimes enforced by using a
penalty function when the estimation procedure strays into the forbidden region. The addition of
such penalty functions causes the function that is being optimised to be non-differentiable at the
boundaries, which can cause considerable problems with the optimisation routines.

Examples

# Random number generation method
RNGkind("Mersenne-Twister", "Inversion")
set.seed(5)

#--------------------------------------------
# Exponential Distribution

# simulate a sample
p <- 1
x <- rexp(n=1000, rate=p)

# Transform to a log scale so that -infty < log(p) < infty.
# Hence no hard boundary, and p > 0.
# If LL is beyond machine precision, LL <- 1e20.

neg.LL <- function(logp, data){
x <- -sum(log(dexp(data, rate=exp(logp))))
if (is.infinite(x)) x <- 1e20
return(x)

}

p0 <- 5
logp0 <- log(p0)
z <- nlm(neg.LL, logp0, print.level=0, data=x)
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print(exp(z$estimate))

# Compare to closed form solution
print(exp(z$estimate)-1/mean(x))

#--------------------------------------------
# Normal Distribution

# simulate a sample
x <- rnorm(n=1000, mean=0, sd=1)

neg.LL <- function(p, data){
x <- -sum(log(dnorm(data, mean=p[1], sd=exp(p[2]))))
if (is.infinite(x)) x <- 1e20
return(x)

}

p0 <- c(2, log(2))
z <- nlm(neg.LL, p0, print.level=0, data=x)
p1 <- c(z$estimate[1], exp(z$estimate[2]))
print(p1)

# Compare to closed form solution
print(p1 - c(mean(x), sd(x)))

#--------------------------------------------
# Gamma Distribution
# shape > 0 and rate > 0
# use exponential function to ensure above constraints

# simulate a sample
x <- rgamma(n=2000, shape=1, rate=5)

neg.LL <- function(p, data){
# give unreasonable values a very high neg LL, i.e. low LL
if (any(exp(p) > 1e15)) x <- 1e15
else{

x <- -sum(log(dgamma(data, shape=exp(p[1]), rate=exp(p[2]))))
if (is.infinite(x)) x <- 1e15

}
return(x)

}

p0 <- c(2, 2)
z <- optim(p0, neg.LL, data=x)
print(exp(z$par))

z <- nlm(neg.LL, p0, print.level=0, data=x)
print(exp(z$estimate))

#--------------------------------------------
# Beta Distribution
# shape1 > 0 and shape2 > 0
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# use exponential function to ensure above constraints

# simulate a sample
x <- rbeta(n=5000, shape1=0.5, shape2=0.2)

# exclude those where x=0
x <- x[x!=1]

neg.LL <- function(p, data)
-sum(log(dbeta(data, shape1=exp(p[1]), shape2=exp(p[2]))))

p0 <- log(c(0.1, 0.1))

z <- optim(p0, neg.LL, data=x)
print(exp(z$par))

z <- nlm(neg.LL, p0, typsize=c(0.01, 0.01), print.level=0, data=x)
print(exp(z$estimate))

#--------------------------------------------
# Weibull Distribution
# shape > 0 and scale > 0
# use exponential function to ensure above constraints

# simulate a sample
x <- rweibull(n=2000, shape=2, scale=1)

neg.LL <- function(p, data)
-sum(log(dweibull(data, shape=exp(p[1]), scale=exp(p[2]))))

p0 <- log(c(0.1, 0.1))
z <- optim(p0, neg.LL, data=x)
print(exp(z$par))

#--------------------------------------------
# Pareto Distribution
# lambda > 0
# Use exponential function to enforce constraint

# simulate a sample
x <- rpareto(n=2000, lambda=2, a=1)

neg.LL <- function(p, data){
# give unreasonable values a very high neg LL, i.e. low LL
if (exp(p) > 1e15) x <- 1e15
else x <- -sum(log(dpareto(data, lambda=exp(p), a=1)))
if (is.infinite(x)) x <- 1e15
return(x)

}

p0 <- log(0.1)
z <- nlm(neg.LL, p0, print.level=0, data=x)
print(exp(z$estimate))
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#--------------------------------------------
# Tapered Pareto Distribution
# lambda > 0 and theta > 0

# simulate a sample
x <- rtappareto(n=2000, lambda=2, theta=4, a=1)

neg.LL <- function(p, data){
x <- -ltappareto(data, lambda=p[1], theta=p[2], a=1)
attr(x, "gradient") <- -attr(x, "gradient")
attr(x, "hessian") <- -attr(x, "hessian")
return(x)

}

# use optim to get approx initial value
p0 <- c(3, 5)
z1 <- optim(p0, neg.LL, data=x)
p1 <- z1$par
print(p1)
print(neg.LL(p1, x))

# nlm with analytic gradient and hessian
z2 <- nlm(neg.LL, p1, data=x, hessian=TRUE)
p2 <- z2$estimate
print(z2)

# Newton Raphson Method
p3 <- p1
iter <- 0
repeat{

LL <- ltappareto(data=x, lambda=p3[1], theta=p3[2], a=1)
p3 <- p3 - as.numeric(solve(attr(LL,"hessian")) %*%

matrix(attr(LL,"gradient"), ncol=1))
iter <- iter + 1
if ((max(abs(attr(LL,"gradient"))) < 1e-8) |

(iter > 100)) break
}
print(iter)
print(LL)
print(p3)

dpareto Pareto and Tapered Pareto Distributions

Description

Density, cumulative probability, quantiles and random number generation for the Pareto and tapered
Pareto distributions with shape parameter λ, tapering parameter θ and range a ≤ x < ∞; and log-
likelihood of the tapered Pareto distribution.
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Usage

dpareto(x, lambda, a, log=FALSE)
ppareto(q, lambda, a, lower.tail=TRUE, log.p=FALSE)
qpareto(p, lambda, a, lower.tail=TRUE, log.p=FALSE)
rpareto(n, lambda, a)

dtappareto(x, lambda, theta, a, log=FALSE)
ltappareto(data, lambda, theta, a)
ptappareto(q, lambda, theta, a, lower.tail=TRUE, log.p=FALSE)
qtappareto(p, lambda, theta, a, lower.tail=TRUE, log.p=FALSE,

tol=1e-8)
rtappareto(n, lambda, theta, a)

ltappareto(data, lambda, theta, a)

Arguments

x, q vector of quantiles.

p vector of probabilities.

data vector of sample data.

n number of observations to simulate.

lambda shape parameter, see Details below.

theta tapering parameter, see Details below..

a the random variable takes values on the interval a ≤ x < ∞. This is a scalar
and is assumed to be a constant for all values in a given function call.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are Pr{X ≤ x}, otherwise, Pr{X > x}.

tol convergence criteria for the Newton Raphson algorithm for solving the quantiles
of the tapered Pareto distribution.

Details

For all functions except ltappareto, arguments lambda and theta can either be scalars or vectors
of the same length as x, p, or q. If a scalar, then this value is assumed to hold over all cases. If a
vector, then the values are assumed to have a one to one relationship with the values in x, p, or q.
The argument a is a scalar.

In the case of ltappareto, all data are assumed to be drawn from the same distribution and hence
lambda, theta and a are all scalars.

Let Y be an exponential random variable with parameter λ > 0. Then the distribution function of
Y is

FY (y) = Pr{Y < y} = 1− exp(−λy),

and the density function is
fY (y) = λ exp(−λy).

Further, the mean and variance of the distribution of Y is 1/λ and 1/λ2, respectively.
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Now transform Y as
X = a exp(Y ),

where a > 0. Then X is a Pareto random variable with shape parameter λ and distribution function

FX(x) = Pr{X < x} = 1−
(a
x

)λ

,

where a ≤ x < ∞, and density function

fX(x) =
λ

a

(a
x

)λ+1

.

We simulate the Pareto deviates by generating exponential deviates, and then transforming as de-
scribed above.

As above, let X be Pareto with shape parameter λ, and define W − a to be exponential with
parameter 1/θ, i.e.

Pr{X > x} =
(a
x

)λ

and

Pr{W > w} = exp

(
a− w

θ

)
,

where a ≤ w < ∞. Say we sample one independent value from each of the distributions X and
W , then

Pr{X > z & W > z} = Pr{X > z}Pr{W > z} =
(a
z

)λ

exp

(
a− z

θ

)
.

We say that Z has a tapered Pareto distribution if it has the above distribution, i.e.

FZ(z) = Pr{Z < z} = 1−
(a
z

)λ

exp

(
a− z

θ

)
.

The above relationship shows that a tapered Pareto deviate can be simulated by generating inde-
pendent values of X and W , and then letting Z = min(X,W ). This minimum has the effect of
“tapering” the tail of the Pareto distribution.

The tapered Pareto variable Z has density

fZ(z) =

(
λ

z
+

1

θ

)(a
z

)λ

exp

(
a− z

θ

)
.

Given a sample of data z1, z2, · · · , zn, we write the log-likelihood as

logL =

n∑
i=1

log fZ(zi).

Hence the gradients are calculated as

∂ logL

∂λ
= θ

n∑
i=1

1

λθ + zi
−

n∑
i=1

log(zi/a)
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and
∂ logL

∂θ
=

−1

θ

n∑
i=1

zi
λθ + zi

− 1

θ2

n∑
i=1

(a− zi).

Further, the Hessian is calculated using

∂2 logL

∂λ2
= −θ2

n∑
i=1

1

(λθ + zi)2
,

∂2 logL

∂θ2
=

1

θ2

n∑
i=1

zi(2λθ + zi)

(λθ + zi)2
− 2

θ3

n∑
i=1

(a− zi),

and
∂2 logL

∂θ ∂λ
=

∂2 logL

∂λ∂θ
=

n∑
i=1

zi
(λθ + zi)2

.

See the section “Seismological Context” (below), which outlines its application in Seismology.

Value

dpareto and dtappareto give the densities; ppareto and ptappareto give the distribution func-
tions; qpareto and qtappareto give the quantile functions; and rpareto and rtappareto generate
random deviates.

ltappareto returns the log-likelihood of a sample using the tapered Pareto distribution. It also
calculates, using analytic expressions (see “Details”), the derivatives and Hessian which are attached
to the log-likelihood value as the attributes "gradient" and "hessian", respectively.

Seismological Context

The Gutenberg-Richter (GR) Law says that if we plot the base 10 logarithm of the number of events
with magnitude greater than M (vertical axis) against M (horizontal axis), there should be a straight
line. This is equivalent to magnitudes having an exponential distribution.

Assume that the magnitude cutoff is M0, and let Y = M −M0. Given that Y has an exponential
distribution with parameter λ, it follows that

log10 (1− FY (y)) =
−λy

loge 10
.

The coefficient λ/(loge 10) is often referred to as the b-value, and its negative value is the slope of
the line in the GR plot.

Now define S as
S = 10γ(M−M0) = 10γY .

When γ = 0.75, S is the “stress”; and when γ = 1.5, S is the “seismic moment”. Still assum-
ing that Y is exponential with parameter λ, then Y γ loge 10 is also exponential with parameter
λ/(γ loge 10). Hence, by noting that S can be rewritten as

S = exp{Y γ loge 10},

it is seen that S is Pareto with parameter λ/(γ loge 10), and 1 ≤ S < ∞.
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While the empirical distribution of magnitudes appears to follow an exponential distribution for
smaller events, it provides a poor approximation for larger events. This is because it is not physically
possible to have events with magnitudes much greater than about 9.5. Consequently, the tail of the
Pareto distribution will also be too long. Hence the tapered Pareto distribution provides a more
realistic description.

See Also

See dexp for the exponential distribution. Generalisations of the exponential distribution are the
gamma distribution dgamma and the Weibull distribution dweibull.

See the topic distribution for examples of estimating parameters.

Examples

# Simulate and plot histogram with density for Pareto Distribution

a0 <- 2
lambda0 <- 2
x <- rpareto(1000, lambda=lambda0, a=a0)
x0 <- seq(a0, max(x)+0.1, length=100)
hist(x, freq=FALSE, breaks=x0, xlim=range(x0),

main="Pareto Distribution")
points(x0, dpareto(x0, lambda0, a0), type="l", col="red")

#-----------------------------------------------
# Calculate probabilities and quantiles for Pareto Distribution

a0 <- 2
lambda0 <- 2
prob <- ppareto(seq(a0, 8), lambda0, a0)
quan <- qpareto(prob, lambda0, a0)
print(quan)

#-----------------------------------------------
# Simulate and plot histogram with density for tapered Pareto Distribution

a0 <- 2
lambda0 <- 2
theta0 <- 3
x <- rtappareto(1000, lambda=lambda0, theta=theta0, a=a0)
x0 <- seq(a0, max(x)+0.1, length=100)
hist(x, freq=FALSE, breaks=x0, xlim=range(x0),

main="Tapered Pareto Distribution")
points(x0, dtappareto(x0, lambda0, theta0, a0), type="l", col="red")

#-----------------------------------------------
# Calculate probabilities and quantiles for tapered Pareto Distribution

a0 <- 2
lambda0 <- 2
theta0 <- 3
prob <- ptappareto(seq(a0, 8), lambda0, theta0, a0)
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quan <- qtappareto(prob, lambda0, theta0, a0)
print(quan)

#-----------------------------------------------
# Calculate log-likelihood for tapered Pareto Distribution
# note the Hessian and gradient attributes

a0 <- 2
lambda0 <- 2
theta0 <- 3
x <- rtappareto(1000, lambda=lambda0, theta=theta0, a=a0)
LL <- ltappareto(x, lambda=lambda0, theta=theta0, a=a0)
print(LL)

etas_gif Ground Intensity for ETAS Model

Description

This function calculates the value of the ground intensity of a time-magnitude Epidemic Type Af-
tershock Sequence (ETAS) model. Spatial coordinates of the events are not taken into account.

Usage

etas_gif(data, evalpts, params, TT=NA, tplus=FALSE)

Arguments

data a data frame containing the event history, where each row represents one event.
There must be columns named "time", usually the number of days from some
origin; and "magnitude" which is the event magnitude less the magnitude thresh-
old, i.e. Mi −M0.

evalpts a vector, matrix or data.frame. If a vector, the elements will be assumed
to represent the required evaluation times. Other objects must include a col-
umn named "time" that can be referred to as evalpts[,"time"], at which the
intensity function will be evaluated.

params vector of parameter values in the following order: (µ,A, α, c, p).

TT vector of length 2, being the time interval over which the integral of the ground
intensity function is to be evaluated.

tplus logical, λg(t|Ht) is evaluated as λg(t
+|Ht) if TRUE, else λg(t

−|Ht).
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Details

The ETAS model was proposed by Ogata (1988, 1998, 1999) for the modelling of earthquake
mainshock-aftershock sequences. The form of the ground intensity function used here is given by

λg(t|Ht) = µ+A
∑
i:ti<t

eα(Mi−M0)

(
1 +

t− ti
c

)−p

,

where ti denotes the event times and the summation is taken over those i such that ti < t.

Value

Two usages are as follows.

etas_gif(data, evalpts, params, tplus=FALSE)
etas_gif(data, evalpts=NULL, params, TT)

The first usage returns a vector containing the values of λg(t) evaluated at the specified points. In
the second usage, it returns the value of the integral.

Function Attributes

rate is "decreasing".

References

Cited references are listed on the PtProcess manual page.

See Also

General details about the structure of ground intensity functions are given in the topic gif.

Examples

# Tangshan: ground intensity and magnitude time plots

data(Tangshan)
p <- c(0.007, 2.3, 0.98, 0.008, 0.94)
bvalue <- 1
TT <- c(0, 4018)

x <- mpp(data=Tangshan,
gif=etas_gif,
marks=list(dexp_mark, NULL),
params=p,
gmap=expression(params),
mmap=expression(bvalue*log(10)),
TT=TT)

par.default <- par(mfrow=c(1,1), mar=c(5.1, 4.1, 4.1, 2.1))
par(mfrow=c(2,1), mar=c(4.1, 4.1, 0.5, 1))
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plot(x, log=TRUE, xlab="")

plot(Tangshan$time, Tangshan$magnitude+4, type="h",
xlim=c(0, 4018),
xlab="Days Since 1 January 1974", ylab="Magnitude")

par(par.default)

gif General Notes on Ground Intensity Functions

Description

This page contains general notes about the required structure of ground intensity functions (includ-
ing those that are not conditional on their history) to be used with this package.

Forms of Usage

The usage of a ground intensity function takes two forms, one to evaluate the gif at specified
evalpts, or to evaluate the integral of the gif on the interval TT, each shown below, respectively.
gif(data, evalpts, params, tplus=FALSE)
gif(data, NULL, params, TT)

Arguments

All ground intensity functions should be defined to contain the following arguments, in the order
below, even though they may not be required (see Details below).

data a data frame containing the history of the process, denoted below as Ht. It should contain
all variables that are required to evaluate the gif function, though can contain others too. No
history is represented as NULL.

evalpts a object containing the values at which the gif function is to be evaluated, consistent with
what is required by the gif function.

params vector containing values of the parameters required by the gif function.

TT vector of length 2, being the time interval over which the integral of the ground intensity function
is to be evaluated.

tplus logical, λg(t|Ht) is evaluated as λg(t
+|Ht) if TRUE, else λg(t

−|Ht). It is important if a
“jump” occurs at t.

Details

Note that the gif functions not only evaluate values of λg(ti|Ht), but also the integral. The value of
the ground intensity function is returned at each time point specified in evalpts when TT==NA. If TT
is not missing, the integral between TT[1] and TT[2] of the ground intensity function is calculated.
In this last situation, anything assigned to the argument evalpts will have no effect.

At the moment, we have the following types of processes: those jump processes that are conditional
on their history (etas_gif, srm_gif, linksrm_gif), and non-homogeneous Poisson processes that
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are not conditional on their history (simple_gif). Another case is where we have a collection of
point like “regions” (or lattice nodes), each with their own ground intensity function, but where
each is also dependent on what is happening in the other regions (linksrm_gif).

Functions have been given an attribute “rate”, taking the values of "bounded", "decreasing" or
"increasing". This is used within the simulation function simulate.mpp which uses the thinning
method. This method requires a knowledge of the maximum of λg(t|Ht) in a given interval. The
argument tplus is also used by the simulation routine, where it is necessary to determine the value
of the intensity immediately after a simulated event.

Value

The returned value is either λg(ti|Ht), where the ti are specified within evalpts; or∫
λg(t|Ht)dt

where the limits of the integral are specified by the function argument TT.

Function Attributes

Each function should have some of the following attributes if it is to be used in conjunction with
residuals.mpp or simulate.mpp:

rate must be specified if the default method for simulate.mpp is to be used. Takes the values
"bounded", "decreasing" or "increasing"; see Details.

regions an expression giving the number of regions; required with linksrm_gif.

See Also

etas_gif, expfourier_gif, exppoly_gif, fourier_gif, linksrm_gif, poly_gif, simple_gif,
srm_gif

Examples

# Ogata's Data: ground intensity function
# evaluate lambda_g(t) at certain times

data(Ogata)

p <- c(0.02, 70.77, 0.47, 0.002, 1.25)
times <- sort(c(seq(0, 800, 0.5), Ogata$time))
TT <- c(0, 800)

plot(times, log(etas_gif(Ogata, times, params=p)), type="l",
ylab=expression(paste(log, " ", lambda[g](t))),
xlab=expression(t), xlim=TT)

# Evaluate the integral
# The first form below is where the arguments are in their
# default positions, the 2nd is where they are not, hence
# their names must be specified
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print(etas_gif(Ogata, NULL, p, TT))
# or
print(etas_gif(Ogata, params=p, TT=TT))

linksrm Linked Stress Release Model Object

Description

Creates a point process model object with class "linksrm".

Usage

linksrm(data, gif, marks, params, gmap, mmap, TT)

Arguments

data a data.frame containing the history of the process, denoted below as Ht. It
should contain all variables that are required to evaluate the gif function and
the mark distribution, though can contain others too. No history is represented
as NULL.

gif ground intensity function. At this stage, this can only be linksrm_gif or mod-
ifications of that function; see “Details” below.

marks mark distribution. See topic marks for further details.

params numeric vector of all model parameters.

gmap expression, maps the model parameters (params) into the parameter sub-space
of the ground intensity function; see “Details” below.

mmap expression, maps the model parameters (params) into the parameter sub-space
of the mark distribution; see “Details” below.

TT vector of length 2, being the time interval over which the integral of the ground
intensity function is to be evaluated.

Details

The linked stress release model has a slightly peculiar structure which makes it difficult to fit into
the mpp class. While the region should be thought of as a mark, it is completely defined by the
function linksrm_gif, and hence from the programming perspective the region mark is really
tied in with the gif function. Hence at the moment, the linked stress release model is treated as a
special case. There may be other models that could be grouped into this class.
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Examples

p <- c(-1.5, -1.5, 0.01, 0.03, 2, -0.5, 0.2, 1, 1*log(10), 3)
TT <- c(0, 1000)

rexptrunc_mark <- function(ti, data, params){
x <- rexp(n=1, params[1])
x[x > params[2]] <- params[2]
names(x) <- "magnitude"
return(x)

}

x <- linksrm(data=NULL,
gif=linksrm_gif,
marks=list(NULL, rexptrunc_mark),
params=p,
gmap=expression(params[1:8]),
mmap=expression(params[9:10]),
TT=TT)

x <- simulate(x, seed=5)
print(logLik(x))

# estimate parameters
temp_map <- function(y, p){

# map only gif parameters into model object
y$params[1:8] <- p
return(y)

}

weight <- c(0.1, 0.1, 0.005, 0.005, 0.1, 0.1, 0.1, 0.1)

# see manual page for linksrm_gif for modifications to
# make calculations faster

# for testing, restrict to 5 iterations
z <- nlm(neglogLik, p[1:8], object=x, pmap=temp_map,

hessian=TRUE, gradtol=1e-08, steptol=1e-10,
print.level=2, iterlim=5, typsize=weight)

param.names <- c("a1", "a2", "b1", "b2", "c11", "c12", "c21", "c22")
param.est <- cbind(p[1:8], z$estimate, sqrt(diag(solve(z$hessian))))
dimnames(param.est) <- list(param.names,

c("Actual", "Estimate", "StdErr"))
print(param.est)

# place parameter estimates into model object
x <- temp_map(x, z$estimate)

# plot ground intensity function
par.default <- par(mfrow=c(2,1), mar=c(4.1, 4.1, 0.5, 1))
x$gif <- linksrm_gif
plot(x, 1, xlab="")
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plot(x, 2)
par(par.default)

# plot "residuals" for each region
tau <- residuals(x)
par(mfrow=c(2,1))
for (i in 1:2){

plot(tau[[i]], ylab="Transformed Time",
xlab="Event Number", main=paste("Region", i))

abline(a=0, b=1, lty=2, col="red")
}

# plot cusum of "residuals" for each region
for (i in 1:2){

plot(tau[[i]] - 1:length(tau[[i]]), ylab="Cusum of Transformed Time",
xlab="Event Number", main=paste("Region", i))

abline(h=0, lty=2, col="red")
}

par(mfrow=c(1,1))

linksrm_convert Parameter Conversion for Linked Stress Release Model

Description

Converts parameter values between two different parameterisations (described in Details below) of
the linked stress release model.

Usage

linksrm_convert(params, abc=TRUE)

Arguments

params a vector of parameter values of length n2+2n, where n is the number of regions
in the model.

abc logical. If TRUE (default), then the input value of params is that of the abc
parameterisation. See Details for further explanation.

Details

If abc == TRUE, the conditional intensity for the ith region is assumed to have the form

λg(t, i|Ht) = exp

ai + bi

t− n∑
j=1

cijSj(t)


with params= (a1, · · · , an, b1, · · · , bn, c11, c12, c13, · · · , cnn).
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If abc == FALSE, the conditional intensity for the ith region is assumed to have the form

λg(t, i|Ht) = exp

αi + νi

ρit− n∑
j=1

θijSj(t)


where θii = 1 for all i, n =

√
length(params)+ 1− 1, and params

= (α1, · · · , αn, ν1, · · · , νn, ρ1, · · · , ρn, θ12, θ13, · · · , θ1n, θ21, θ23, · · · , θn,n−1).

Value

A list object with the following components is returned:

params vector as specified in the function call.

a vector of length n as in the abc parameterisation.

b vector of length n as in the abc parameterisation.

c n by n matrix as in the abc parameterisation.

alpha vector of length n as in the alternative parameterisation.

nu vector of length n as in the alternative parameterisation.

rho vector of length n as in the alternative parameterisation.

theta n by n matrix with ones on the diagonal as in the alternative parameterisation.

See Also

linksrm_gif

linksrm_gif Ground Intensity for Linked Stress Release Model

Description

Calculates the value of the ground intensity of a Linked Stress Release Model (LSRM). This model
allows for multiple linked regions, where the stress can be transferred between the regions.

Usage

linksrm_gif(data, evalpts, params, TT=NA, tplus=FALSE, eta=0.75)
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Arguments

data a data frame containing the event history, where each row represents one event.
There must be columns named "time", usually the number of days from some
origin; "magnitude" which is the event magnitude less the magnitude threshold,
i.e. Mk −M0; and "region" which are consecutively numbered starting at 1.

evalpts a matrix or data.frame. It must include two columns named "time" and
"region" that can be referred to as evalpts[,"time"] and evalpts[,"region"],
respectively. The function will be evaluated at these points.

params vector of parameters of length n2 + 2n, where n is the number of regions, for
the proposed LSRM in the following order:

(a1, · · · , an, b1, · · · , bn, c11, c12, c13, · · · , cnn).

TT vector of length 2, being the time interval over which the integral of the ground
intensity function is to be evaluated.

tplus logical, λg(t, i|Ht) is evaluated as λg(t
+, i|Ht) if TRUE, else λg(t

−, i|Ht).

eta a scalar used in the stress calculations, see Details below.

Details

The ground intensity for the ith region is assumed to have the form

λg(t, i|Ht) = exp

ai + bi

t− n∑
j=1

cijSj(t)


with params= c(a1, · · · , an, b1, · · · , bn, c11, c12, c13, · · · , cnn); and

Sj(t) =
∑
k

10η(Mk−M0),

where the summation is taken over those events in region j with time tk < t. This model has been
discussed by Bebbington & Harte (2001, 2003). The default value of η = eta = 0.75.

Value

Two usages are as follows.

linksrm_gif(data, evalpts, params, tplus=FALSE, eta=0.75)
linksrm_gif(data, evalpts=NULL, params, TT, eta=0.75)

The first usage returns a vector containing the values of λg(t, i) evaluated at the specified “time-
region” points. In the second usage, it returns a vector containing the value of the integral for each
region.

Function Attributes

rate is "increasing".

regions is expression(sqrt(length(params) + 1) - 1).
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Modify Function to Decrease Calculation Time

The function linksrm_gif calculates the stress reduction matrices St1 and St2 every time that
the function is called. Ideally, these should be calculated once and be included within the model
object. Currently, the structure of the model object is not sufficiently flexible. However, the user
can create a new function to calculate St1 and St2 once. This will only work if the event history
is not changing between successive calls (e.g. parameter estimation). However, in a simulation, the
history changes with the addition of each new event, and in this situation St1 and St2 need to be
calculated with every function call.

The modified function, as described below, will write the objects St1 and St2 to a temporary
database (position 2 in the search path). Consequently, it cannot be defined within the package itself
because this violates the CRAN rules. The function linksrm_gif contains markers indicating the
beginning and ending of the parts where St1 and St2 are calculated. The modified function is made
by editing the function linksrm_gif. We firstly deparse the function linksrm_gif (i.e. put the
contents into a character vector). We initially create a temporary database called PtProcess.tmp
in which to write St1 and St2. We then search for the line numbers that mark the beginning and
ending of the parts where St1 and St2 are calculated. We replace the beginning of each with a
conditional statement so that the contents are only run if these two objects do not already exist. We
then parse the lines of code in the character vector back into a function, and call this new function
linksrm1_gif. The same thing can be achieved by dumping linksrm_gif to a text file and editing
manually.

# define linksrm1_gif by modifying linksrm_gif

# put function linksrm_gif into a character vector
tmp <- deparse(linksrm_gif)

# remove "if (FALSE)" lines
linenum <- grep("if \(FALSE\)", tmp)
tmp <- tmp[-linenum]

# attach new database at pos=2 in search path called PtProcess.tmp
linenum <- grep("attach new database to search path", tmp)
tmp[linenum] <- "if (!any(search()==\"PtProcess.tmp\")) attach(NULL,

pos=2L, name=\"PtProcess.tmp\", warn.conflicts=TRUE)"

# calc St1 if St1 does not exist
linenum <- grep("this loop calculates St1", tmp)
tmp[linenum] <- "if (!exists(\"St1\", mode = \"numeric\")) {"
linenum <- grep("assign statement for St1", tmp)
tmp[linenum] <- "assign(\"St1\", St1, pos=\"PtProcess.tmp\")"
linenum <- grep("end loop St1", tmp)
tmp[linenum] <- "}"

# calc St2 if St2 does not exist
linenum <- grep("this loop calculates St2", tmp)
tmp[linenum] <- "if (!exists(\"St2\", mode = \"numeric\")) {"
linenum <- grep("assign statement for St2", tmp)
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tmp[linenum] <- "assign(\"St2\", St2, pos=\"PtProcess.tmp\")"
linenum <- grep("end loop St2", tmp)
tmp[linenum] <- "}"

linksrm1_gif <- eval(parse(text=tmp))

Warning: The function linksrm1_gif checks to see whether the matrices St1 and St2 exist. If
so, these existing matrices are used, and new ones are not calculated. Therefore when using
linksrm1_gif for parameter estimation, one must check for the existence of such matrices, and
delete upon starting to fit a new model:

if (exists("St1")) rm(St1)
if (exists("St2")) rm(St2)

or detach the database as detach(2). The objects St1 and St2 will exist for the duration of the
current R session, so should be deleted when no longer required.

References

Cited references are listed on the PtProcess manual page.

See Also

General details about the structure of ground intensity functions are given in the topic gif.

logLik Log Likelihood of a Point Process Model

Description

Calculates the log-likelihood of a point process. Provides methods for the generic function logLik.

Usage

## S3 method for class 'mpp'
logLik(object, SNOWcluster=NULL, ...)
## S3 method for class 'linksrm'
logLik(object, ...)

Arguments

object an object with class "mpp" or "linksrm".

SNOWcluster an object of class "cluster" created by the package parallel; default is NULL.
Enables parallel processing if not NULL. See “Parallel Processing” below for
further details.

... other arguments.
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Value

Value of the log-likelihood.

Parallel Processing

Parallel processing can be enabled to calculate the term
∑

i log λg(ti|Hti). Generally, the amount
of computational work involved in calculating λg(t|Ht) is much greater if there are more events
in the process history prior to t than in the case where there are fewer events. Given m nodes, the
required evaluation points are divided into m groups, taking into account the amount of “history”
prior to each event and the CPU speed of the node (see below).

We have assumed that communication between nodes is fairly slow, and hence it is best to allocate
the work in large chunks and minimise communication. If the dataset is small, then the time taken
to allocate the work to the various nodes may in fact take more time than simply using one processor
to perform all of the calculations.

The required steps in initiating parallel processing are as follows.

# load the "parallel" package
library(parallel)

# define the SNOW cluster object, e.g. a SOCK cluster
# where each node has the same R installation.
cl <- makeSOCKcluster(c("localhost", "horoeka.localdomain",

"horoeka.localdomain", "localhost"))

# A more general setup: Totara is Fedora, Rimu is Debian:
# Use 2 processors on Totara, 1 on Rimu:
totara <- list(host="localhost",

rscript="/usr/lib/R/bin/Rscript",
snowlib="/usr/lib/R/library")

rimu <- list(host="rimu.localdomain",
rscript="/usr/lib/R/bin/Rscript",
snowlib="/usr/local/lib/R/site-library")

cl <- makeCluster(list(totara, totara, rimu), type="SOCK")

# NOTE: THE STATEMENTS ABOVE WERE APPROPRIATE FOR THE snow PACKAGE.
# I HAVE NOT YET TESTED THEM USING THE parallel PACKAGE.

# Relative CPU speeds of the nodes can be added as an attribute
# Say rimu runs at half the speed of totara
# (default assumes all run at same speed)
attr(cl, "cpu.spd") <- c(1, 1, 0.5)

# then define the required model object, e.g. see topic "mpp"
# say the model object is called x

# then calculate the log-likelihood as
print(logLik(x, SNOWcluster=cl))
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# stop the R jobs on the slave machines
stopCluster(cl)

Note that the communication method does not need to be SOCKS; see the parallel package docu-
mentation, topic makeCluster, for other options. Further, if some nodes are on other machines, the
firewalls may need to be tweaked. The master machine initiates the R jobs on the slave machines
by communicating through port 22 (use of security keys are needed rather than passwords), and
subsequent communications use random ports. This port can be fixed, see makeCluster.

Examples

# SRM: magnitude iid exponential with bvalue=1

TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

# calculate log-likelihood excluding the mark density term
x1 <- mpp(data=NULL,

gif=srm_gif,
marks=list(NULL, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)

x1 <- simulate(x1, seed=5)
print(logLik(x1))

# calculate log-likelihood including the mark density term
x2 <- mpp(data=x1$data,

gif=srm_gif,
marks=list(dexp_mark, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)

print(logLik(x2))

# contribution from magnitude marks
print(sum(dexp(x1$data$magnitude, rate=bvalue*log(10), log=TRUE)))

makeSOCKcluster Parallel Processing: Transition Functions

Description

Package snow has become deprecated and replaced by parallel. Some functions in snow used by
package PtProcess do not appear in parallel under the same name. Below are transition functions
to map some functions in snow to the most comparable functions in parallel. These transition
functions will ultimately be deprecated.
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Usage

makeSOCKcluster(names, ...)

Arguments

names character vector of node names.

... cluster option specifications.

Details

makeSOCKcluster calls makePSOCKcluster.

marks Mark Distributions

Description

Contains densities and random number generators for some example mark distributions. The mark
distributions can be multi-dimensional. Users can write their own functions, and general rules are
given under “Details”.

Usage

dexp_mark(x, data, params)
rexp_mark(ti, data, params)

Arguments

ti scalar, time of an event.

x a data.frame of mark values at given times, often a subset of the history.

data a data.frame containing the history of the process, denoted below as Ht.

params numeric vector of parameters.

Details

The example functions listed under “Usage” calculate the logarithm of the (mark) density and sim-
ulate earthquake magnitudes assuming an exponential distribution that is independent of the history
of the process. This corresponds to the Gutenberg-Richter law. They assume that the history con-
tains a variable named "magnitude".

All mark densities and random number generators must have the three arguments as shown in the
examples above. Multi-parameter distributions have their parameters specified as a vector in the
params argument. Other ancillary data or information can be passed into the function non formally,
though one needs to be careful about possible conflict with names of other objects.
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Value

Mark density functions must return a vector with length being equal to the number of rows in x.
Each element contains the logarithm of the joint density of the marks corresponding to each time
(row) in x.

The random number generator simulates each mark for a single value of ti. It must return a list
of simulated marks corresponding to the specified time ti. Further, the list must have its elements
named the same as those in the history. Note that each component in the list will be of length one.
A list is used (rather than a vector) because it allows marks to be character as well as numeric.

Example 1

This is an example where the density of the magnitude distribution is dependent on the value of the
ground intensity function (assumed to be etas_gif), and in this case, the history of the process.
The history is assumed to contain a variable named "magnitude". In this mark distribution, it
is assumed that after large events, there is a deficit of smaller magnitude events with more larger
magnitude events. It has seven parameters with parameters p1, · · · , p5 relating to etas_gif. It
assumes that the magnitude distribution is gamma (GammaDist), with a shape parameter given by

shape = 1 +
√
λg(t|Ht) p7 ,

where p7 (p7 > 0) is a free estimable parameter, and parameter p6 is the scale parameter. Hence
when λg(t|Ht) is small, the magnitude distribution returns to an approximate exponential distribu-
tion with an approximate rate of p6 (i.e. Gutenberg Richter law).

dexample1_mark <- function(x, data, params){
lambda <- etas_gif(data, x[,"time"], params=params[1:5])
y <- dgamma(x[,"magnitude"], rate=params[6],

shape=1+sqrt(lambda)*params[7], log=TRUE)
return(y)

}

rexample1_mark <- function(ti, data, params){
# Gamma distribution
# exponential density when params[7]=0
lambda <- etas_gif(data, ti, params=params[1:5])
y <- rgamma(1, shape=1+sqrt(lambda)*params[7],

rate=params[6])
return(list(magnitude=y))

}

Example 2

This an example of a 3-D mark distribution. Each component is independent of each other and the
history, hence the arguments ti and data are not utilised in the functions. The history is assumed to
contain the three variables "magnitude", "longitude" and "latitude". The event magnitudes are
assumed to have an exponential distribution with rate params[1], and the longitudes and latitudes
to have normal distributions with means params[2] and params[3], respectively.
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dexample2_mark <- function(x, data, params)
return(dexp(x[,"magnitude"], rate=params[1], log=TRUE) +

dnorm(x[,"longitude"], mean=params[2], log=TRUE) +
dnorm(x[,"latitude"], mean=params[3], log=TRUE))

rexample2_mark <- function(ti, data, params)
return(list(magnitude=rexp(1, rate=params[1]),

longitude=rnorm(1, mean=params[2]),
latitude=rnorm(1, mean=params[3])))

mpp Marked Point Process Object

Description

Creates a marked point process model object with class "mpp".

Usage

mpp(data, gif, marks, params, gmap, mmap, TT)

Arguments

data a data.frame containing the history of the process, denoted below as Ht. It
should contain all variables that are required to evaluate the gif function and
the mark distribution, though can contain others too. No history is represented
as NULL.

gif ground intensity function. See topic gif for further details.

marks a list containing the mark distribution. The first component (i.e. marks[[1]])
is the mark density and the second (i.e. marks[[2]]) is the random number
generator. If either of these functions are not required, the particular component
can be set to NULL. See topic marks for further details.

params numeric vector of all model parameters.

gmap expression, maps the model parameters (params) into the parameter sub-space
of the ground intensity function; see “Details” below.

mmap expression, maps the model parameters (params) into the parameter sub-space
of the mark distribution; see “Details” below.

TT vector of length 2, being the time interval over which the integral of the ground
intensity function is to be evaluated.
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Details

Let λg(t|Ht) denote the ground intensity function and f(y|Ht) denote the joint mark densities,
where y ∈ Y . The log-likelihood of a marked point process is given by

logL =
∑
i

log λg(ti|Hti) +
∑
i

log f(yi|Hti)−
∫

λg(t|Ht)dt,

where the summation is taken over those events contained in the interval (TT[1], TT[2]), and the
integral is also taken over that interval. However, all events in the data frame data before t, even
those before TT[1], form the history of the process Ht. This allows an initial period for the process
to reach a “steady state” or “equilibrium”.

The parameter spaces of the ground intensity function and mark distribution are not necessarily
disjoint, and can have common parameters. Hence, when the model parameters are estimated, these
relationships must be known, and are specified by the arguments gmap and mmap. The mapping
expressions can also contain arithmetic expressions. The ith element in the params argument is
addressed in the expressions as params[i]. Here is an example of a five parameter model, where
the gif has 4 parameters, and the mark distribution has 2, with mappings specified as:

gmap = expression(c(params[1:3], exp(params[4]+params[5])))

mmap = expression(c(log(params[2]/3), params[5]))

Note the inclusion of the combine (c) function, because the expression must create a vector of
parameters. Care must be taken specifying these expressions as they are embedded directly into the
code of various functions.

Examples

data(Tangshan)

# increment magnitudes a fraction so none are zero
Tangshan[,"magnitude"] <- Tangshan[,"magnitude"] + 0.01

dmagn_mark <- function(x, data, params){
# Gamma distribution
# exponential density when params[7]=0
# See topic "marks" for further discussion
lambda <- etas_gif(data, x[,"time"], params=params[1:5])
y <- dgamma(x[,"magnitude"], shape=1+sqrt(lambda)*params[7],

rate=params[6], log=TRUE)
return(y)

}

TT <- c(0, 4018)
# params <- c(0.0067, 1.1025, 1.0794, 0.0169, 0.9506, 1.9159, 0.4704)
params <- c(0.007, 1.1, 1.08, 0.02, 0.95, 1.92, 0.47)

x <- mpp(data=Tangshan,
gif=etas_gif,
marks=list(dmagn_mark, NULL),
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params=params,
gmap=expression(params[1:5]),
mmap=expression(params[1:7]),
TT=TT)

allmap <- function(y, p){
# one to one mapping, all p positive
y$params <- exp(p)
return(y)

}

# Parameters must be positive. Transformed so that nlm
# can use entire real line (no boundary problems, see
# topic "neglogLik" for further explanation).
# Argument "iterlim" has been restricted to 2 to avoid
# excessive time in package checks, set much larger to
# ensure convergence.
z <- nlm(neglogLik, log(params), object=x, pmap=allmap,

print.level=2, iterlim=2, typsize=abs(params))

x1 <- allmap(x, z$estimate)

# print parameter estimates
print(x1$params)

print(logLik(x))
print(logLik(x1))
plot(x1, log=TRUE)

neglogLik Negative Log-Likelihood

Description

Calculates the log-likelihood multiplied by negative one. It is in a format that can be used with the
functions nlm and optim.

Usage

neglogLik(params, object, pmap = NULL, SNOWcluster=NULL)

Arguments

params a vector of revised parameter values.
object an object of class "mpp".
pmap a user provided function mapping the revised parameter values params into the

appropriate locations in object. If NULL (default), an untransformed one to one
mapping is used.

SNOWcluster an object of class "cluster" created by the package parallel; default is NULL.
Enables parallel processing if not NULL. See logLik for further details.
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Details

This function can be used with the two functions nlm and optim (see “Examples” below) to max-
imise the likelihood function of a model specified in object. Both nlm and optim are minimisers,
hence the “negative” log-likelihood. The topic distribution gives examples of their use in the
relatively easy situation of fitting standard probability distributions to data assuming independence.

The maximisation of the model likelihood function can be restricted to be over a subset of the model
parameters. Other parameters will then be fixed at the values stored in the model object. Let Θ0

denote the full model parameter space, and let Θ denote the parameter sub-space (Θ ⊆ Θ0) over
which the likelihood function is to be maximised. The argument params contains values in Θ, and
pmap is assigned a function that maps these values into the full model parameter space Θ0. See
“Examples” below.

The mapping function assigned to pmap can also be made to impose restrictions on the domain of
the parameter space Θ so that the minimiser cannot jump to values such that Θ ̸⊆ Θ0. For example,
if a particular parameter must be positive, one can work with a transformed parameter that can
take any value on the real line, with the model parameter being the exponential of this transformed
parameter. Similarly a modified logit like transform can be used to ensure that parameter values
remain within a fixed interval with finite boundaries. Examples of these situations can be found in
the topic distribution and the “Examples” below.

Value

Value of the log-likelihood times negative one.

See Also

nlm, optim

Examples

# SRM: magnitude is iid exponential with bvalue=1
# maximise exponential mark density too

TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

x <- mpp(data=NULL,
gif=srm_gif,
marks=list(dexp_mark, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)

x <- simulate(x, seed=5)

allmap <- function(y, p){
# map all parameters into model object
# transform exponential param so it is positive
y$params[1:3] <- p[1:3]
y$params[4] <- exp(p[4])
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return(y)
}

params <- c(-2.5, 0.01, 0.8, log(bvalue*log(10)))

z <- nlm(neglogLik, params, object=x, pmap=allmap,
print.level=2, iterlim=500, typsize=abs(params))

print(z$estimate)

# these should be the same:
print(exp(z$estimate[4]))
print(1/mean(x$data$magnitude))

NthChina Historical Earthquakes of North China

Description

Contains 65 large historical earthquakes in North China between 1480 and 1997, as given by Beb-
bington & Harte (2003). Events are divided into 4 regions using the regionalisations given by Zheng
& Vere-Jones (1991).

Usage

data(NthChina)

Format

A data frame with 65 rows, each representing an earthquake event, with the following variables:

time number of years since 1480 AD.

latitude number of degrees north.

longitude number of degrees east.

magnitude number of magnitude units above 6.

region 1, 2, 3, or 4; being the region of the event.

References

Cited references are listed on the PtProcess manual page.
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Ogata Ogata’s ETAS Test Data

Description

A data frame containing the test data from Utsu and Ogata’s (1997) software contained in the file
testetas.dat. The first column is named "time", and the second column is named "magnitude".

Usage

data(Ogata)

Format

A data frame with 100 rows (earthquake events) in the time interval (0, 800). It contains the follow-
ing variables:

time number of time units since time zero.

magnitude number of magnitude units above 3.5.

References

Cited references are listed on the PtProcess manual page.

Examples

data(Ogata)
plot(Ogata$time, Ogata$magnitude + 3.5, type="h")

Phuket Phuket Earthquake and Aftershock Sequence

Description

The Phuket earthquake occurred on 26 December 2004 at 00:58:53.45 GMT. The Phuket data frame
contains this event and its aftershock sequence.

Usage

data(Phuket)
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Format

This data frame contains the following columns:

latitude number of degrees north.

longitude number of degrees east.

depth depth of event in kilometres.

mb body wave magnitude (mb) rounded to one decimal place.

Ms surface wave magnitude (Ms) rounded to one decimal place.

magnitude event magnitude (max(mb,Ms)) rounded to one decimal place.

year year of event (numeric vector).

month month of event, 1 . . . 12 (numeric vector).

day day of event, 1 . . . 31 (numeric vector).

hour hour of event, 0 . . . 23 (numeric vector).

minute minute of event, 0 . . . 59 (numeric vector).

second second of event, 0 . . . 59 (numeric vector).

time number of days (and fractions) from midnight on 1 January 2004.

Details

The Phuket data frame contains those events (1248) from the PDE Catalogue, within the spatial
region 89◦E–105◦E and 5◦S–16◦N, with magnitude 5 or greater, occurring between midnight on 1
January 2004 and midnight on 1 January 2009 (1827 days later). The body wave magnitudes are
determined by the amplitude of the initial primary wave, and these magnitudes tend to saturate for
higher values. Consequently, the tabulated magnitude is taken as the maximum of the body wave
magnitude (mb) and surface wave magnitude (Ms).

Source

The data were extracted from the PDE (Preliminary Determination of Epicentres) catalogue pro-
vided by the US Geological Survey (https://earthquake.usgs.gov/data/comcat/catalog/
us/).

Examples

data(Phuket)
print(Phuket[1:10,])

https://earthquake.usgs.gov/data/comcat/catalog/us/
https://earthquake.usgs.gov/data/comcat/catalog/us/
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plot Plot Point Process Ground Intensity Function

Description

Provides methods for the generic function plot.

Usage

## S3 method for class 'mpp'
plot(x, log=FALSE, ...)
## S3 method for class 'linksrm'
plot(x, region, log=FALSE, ...)

Arguments

x an object with class "mpp" or "linksrm".

region scalar, specifies the required region.

log plot log λg(t|Ht), default is FALSE.

... other arguments.

Examples

data(Ogata)

p <- c(0.02, 70.77, 0.47, 0.002, 1.25)
TT <- c(0, 800)
bvalue <- 1

# Note that the plot function does not utilise the
# information about mark distributions, hence these
# arguments can be NULL

x <- mpp(data=Ogata,
gif=etas_gif,
marks=list(NULL, NULL),
params=p,
gmap=expression(params[1:5]),
mmap=NULL,
TT=TT)

plot(x, log=TRUE)
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residuals Residuals of a Point Process Model

Description

Provides methods for the generic function residuals.

Usage

## S3 method for class 'mpp'
residuals(object, ...)
## S3 method for class 'linksrm'
residuals(object, ...)

Arguments

object an object with class mpp or linksrm.

... other arguments.

Details

Let ti be the times of the observed events. Then the transformed times are defined as

τi =

∫ ti

0

λg(t|Ht)dt.

If the proposed point process model is correct, then the transformed time points will form a sta-
tionary Poisson process with rate parameter one. A plot of transformed time points versus the
cumulative number of events should then roughly follow the straight line y = x. Significant depar-
tures from this line indicate a weakness in the model. Further details can be found in Ogata (1988)
and Aalen & Hoem (1978).

See Baddeley et al (2005) and Zhuang (2006) for extensions of these methodologies.

Value

Returns a time series object with class "ts" in the case of mpp. In the case of linksrm a list
is returned with the number of components being equal to the number of regions, and with each
component being a time series object.

References

Cited references are listed on the PtProcess manual page.
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Examples

TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

x <- mpp(data=NULL,
gif=srm_gif,
marks=list(NULL, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)

x <- simulate(x, seed=5)

tau <- residuals(x)

plot(tau, ylab="Transformed Time", xlab="Event Number")
abline(a=0, b=1, lty=2, col="red")

# represent as a cusum
plot(tau - 1:length(tau), ylab="Cusum of Transformed Time", xlab="Event Number")
abline(h=0, lty=2, col="red")

simple_gif Non-Homogeneous Poisson Processes

Description

The functions listed here are intensity functions that are not conditional on the history of the
process. Each has exactly the same “Usage” and calling format (see section “Value”) as the
function simple_gif. They are: expfourier_gif, exppoly_gif, fourier_gif, poly_gif, and
simple_gif.

Usage

simple_gif(data, evalpts, params, TT=NA, tplus=FALSE)

Arguments

data NULL or a data frame. The contents of this object are not used by these functions,
though they retain this argument for consistency with other gif functions.

evalpts a vector, matrix or data.frame. If a vector, the elements will be assumed
to represent the required evaluation times. Other objects must include a col-
umn named "time" that can be referred to as evalpts[,"time"], at which the
intensity function will be evaluated.

params vector of parameter values as required by the particular intensity function, see
Details below.
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TT vector of length 2, being the time interval over which the integral of the intensity
function is to be evaluated.

tplus logical, λg(t|Ht) is evaluated as λg(t
+|Ht) if TRUE, else λg(t

−|Ht). Included
for compatibility with others conditional intensity functions.

Details

The models are parameterised as follows.

expfourier_gif The vector of parameters is

(p, a0, a1, a2, · · · , an, b1, b2, · · · , bn)

and the intensity function is

λg(t) = exp

a0 +
n∑

j=1

aj cos

(
2jπt

p

)
+

n∑
j=1

bj sin

(
2jπt

p

) .

The length of params is 2n + 2, and determines the order of the fitted Fourier series. The
numbers of specified sine and cosine coefficients must be the same. The integral is evaluated
using numerical integration, using the R function integrate.

exppoly_gif The vector of parameters is (b0, b1, b2, · · · , bn) and the intensity function is

λg(t) = exp

b0 +

n∑
j=1

bjt
j

 .

The length of params determines the order of the fitted polynomial. The integral is evaluated
using numerical integration, using the R function integrate.

fourier_gif The Fourier intensity function is the same as expfourier_gif, except the intensity
function omits the exponential, and the integration is performed explicitly.

poly_gif The polynomial intensity function is the same as exppoly_gif, except the intensity
function omits the exponential, and the integration is performed explicitly.

simple_gif The intensity function is λg(t) = a+ btg and the vector of parameters is (a, b, g).

Value

Two usages are as follows.

simple_gif(data, evalpts, params, tplus=FALSE)
simple_gif(data, evalpts=NULL, params, TT=NA)

The first usage returns a vector containing the values of λg(t) evaluated at the specified points. In
the second usage, it returns the value of the integral.

Function Attributes

rate is "bounded".
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See Also

General details about the structure of conditional intensity functions are given in the topic gif.

Examples

expfourier_gif(NULL, c(1.1,1.2,1.3), c(2,3,1,2,3,4), TT=NA)
# Evaluates: lambda_g(t) = exp(3 + 1*cos(2*pi*t/2) + 2*cos(4*pi*t/2) +
# 3*sin(2*pi*t/2) + 4*sin(4*pi*t/2))
# lambda_g(1.1) = 162.56331
# lambda_g(1.2) = 127.72599
# lambda_g(1.3) = 23.83979

expfourier_gif(NULL, NULL, c(2,3,1,2,3,4), TT=c(3,4))
# Let: lambda_g(t) = exp(3 + 1*cos(2*pi*t/2) + 2*cos(4*pi*t/2) +
# 3*sin(2*pi*t/2) + 4*sin(4*pi*t/2))
# Evaluates: integral_3^4 lambda_g(t) dt = 46.21920

#--------------------------------------------------------
# Plot intensity function: lambda(t) = 3 + 3*sin(t)
# on interval (0, 6*pi), no marks

params <- c(2*pi, 3, 0, 3)
TT <- c(0, 6*pi)
x <- seq(TT[1], TT[2], length.out=500)

plot(x, fourier_gif(NULL, x, params, TT=NA),
ylim=c(0, 6), type="l", axes=FALSE,
xlab="t",
ylab=expression(lambda(t) == 3 + 3*phantom(.)*plain(sin)*phantom(.)*t),
main="Sinusoidal Intensity Function", font.main=1)

abline(h=params[2], lty=2, col="red")
box()
axis(2)
axis(1, at=0, labels=0)
axis(1, at=2*pi, labels=expression(2*pi))
axis(1, at=4*pi, labels=expression(4*pi))
axis(1, at=6*pi, labels=expression(6*pi))

# Now define a model object
# note NULL "marks" argument, see manual page for "mpp"
z <- mpp(data=NULL,

gif=fourier_gif,
marks=list(NULL, NULL),
params=params,
gmap=expression(params),
mmap=NULL,
TT=TT)

# Simulate event times
z <- simulate(z, seed=3, max.rate=6)
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# Plot simulated times on sine curve
x <- z$data$time
points(x, fourier_gif(NULL, x, params, TT=NA), col="blue", lwd=5)

# Number of simulated events
print(nrow(z$data))

# Estimate parameters based on simulated data
parmap <- function(y, p){

# fix parameters 1 and 3
y$params <- c(2*pi, p[1], 0, p[2])
return(y)

}

initial <- c(3, 3)
y <- nlm(neglogLik, initial, object=z, pmap=parmap,

print.level=2, iterlim=20, stepmax=0.1)
print(y$estimate)

simulate Simulate a Point Process

Description

Provides methods for the generic function simulate.

Usage

## S3 method for class 'mpp'
simulate(object, nsim=1, seed=NULL, max.rate=NA,

stop.condition=NULL, ...)
## S3 method for class 'linksrm'
simulate(object, nsim=1, seed=NULL, max.rate=NA,

stop.condition=NULL, ...)

Arguments

object an object with class "mpp" or "linksrm".
nsim has no effect, and is only included for compatibility with the generic function

simulate. See section “Length of Simulated Series” below for control informa-
tion.

seed seed for the random number generator.
max.rate maximum rate, only used if the attribute of object$gif is "bounded". It is the

maximum value of object$gif on the simulation interval object$TT.
stop.condition a function returning a logical value. It is called after the addition of each simu-

lated event. The simulation continues until either object$TT[2] is exceeded or
stopping.condition returns TRUE. See section “Length of Simulated Series”
below for further information.

... other arguments.
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Details

The thinning method (Ogata, 1981; Lewis & Shedler, 1979) is used to simulate a point process
with specified ground intensity function. The method involves calculating an upper bound for the
intensity function, simulating a value for the time to the next possible event using a rate equal to
this upper bound, and then calculating the intensity at this simulated point; hence these “events” are
simulated too frequently. The ratio of this rate with the upper bound is compared with a uniform
random number to randomly determine whether the simulated time is retained or not (i.e. thinned).

The functions need to calculate an upper bound for the intensity function. The ground intensity
functions will usually be discontinuous at event times, but may be monotonically increasing or
decreasing at other times. The ground intensity functions have an attribute called rate with values
of "bounded", "increasing" or "decreasing". This information is used to determine the required
upper bounded.

The function simulate.linksrm is currently only used in conjunction with linksrm_gif, or a vari-
ation of that function. It expects the gif function to have an attribute called regions, which may be
an expression, being the number of regions. The method used by the function simulate.linksrm
also assumes that the function is “increasing” (i.e. rate, summed over all regions, apart from dis-
continuous jumps), hence a positive tectonic input over the whole system.

Value

The returned value is an object of the same class as object. It will contain all events prior to
object$TT[1] in object$data and all subsequently simulated events. Variables (columns) in
object$data will be restricted to "time" and those for which a mark is simulated.

Length of Simulated Series

The interval of time over which events are simulated is determined by object$TT. Simulation starts
at object$TT[1] and stops at object$TT[2]. The “current” dataset will consist of all events prior
to object$TT[1] in object, plus subsequently simulated events. A more complicated stopping
condition can be formulated by using the argument stop.condition.

The argument stop.condition can be assigned a function that returns a logical value. The assigned
function is a function of the “current” dataset. It is executed near the bottom of simulate.mpp
(check by printing the function). Simulation will then continue until either the stopping condition
has been met or the current time exceeds object$TT[2].

For example, we may want to simulate until the first earthquake with a magnitude of 8. Assume that
the current dataset contains a variable with name "magnitude" (untransformed). We would then
assign Inf to object$TT[2], and write this condition as a function:

stop.cond <- function(data){
n <- nrow(data)
# most recent event is the nth
return(data$magnitude[n] >= 8)

}

References

Cited references are listed on the PtProcess manual page.
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Examples

TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

x <- mpp(data=NULL,
gif=srm_gif,
marks=list(NULL, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)

x <- simulate(x, seed=5)

y <- hist(x$data$magnitude, xlab="Magnitude", main="")

# overlay with an exponential density
magn <- seq(0, 3, length.out=100)
points(magn, nrow(x$data)*(y$breaks[2]-y$breaks[1])*

dexp(magn, rate=1/mean(x$data$magnitude)),
col="red", type="l")

srm_gif Conditional Intensity for Stress Release Model

Description

This function calculates the value of the conditional intensity of a Stress Release Model (SRM).
Spatial coordinates of the events are not taken into account.

Usage

srm_gif(data, evalpts, params, TT=NA, tplus=FALSE)

Arguments

data a data frame containing the event history, where each row represents one event.
There must be columns named “time”, usually the number of days from some
origin; and “magnitude” which is the event magnitude less the magnitude thresh-
old, i.e. Mi −M0.

evalpts a vector, matrix or data.frame. If a vector, the elements will be assumed
to represent the required evaluation times. Other objects must include a col-
umn named "time" that can be referred to as evalpts[,"time"], at which the
intensity function will be evaluated.

params vector of parameters for the proposed SRM model in the order (a, b, c).

TT vector of length 2, being the time interval over which the integral of the condi-
tional intensity function is to be evaluated.

tplus logical, λg(t|Ht) is evaluated as λg(t
+|Ht) if TRUE, else λg(t

−|Ht).
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Details

Vere-Jones (1978) proposed the stress release model, being a stochastic version of elastic rebound
theory (Reid, 1910). The SRM assumes a deterministic increase in stress over time, and a stochastic
release through earthquake events. The conditional intensity function is

λg(t) = exp{a+ b[t− cS(t)]},

where
S(t) =

∑
i

100.75(Mi−M0)

and the summation is taken over those i such that ti < t, where ti denotes the event times.

Value

Two usages are as follows.

srm_gif(data, evalpts, params, tplus=FALSE)
srm_gif(data, evalpts=NULL, params, TT)

The first usage returns a vector containing the values of λg(t) evaluated at the specified points. In
the second usage, it returns the value of the integral.

Function Attributes

rate is "increasing".

Problems and Inconsistencies

Runs much slower than linksrm_gif. Should set up matrices St1 and St2 as in linksrm_gif.

References

Cited references are listed on the PtProcess manual page.

See Also

General details about the structure of conditional intensity functions are given in the topic gif.

Examples

# Treating North China as one region

data(NthChina)
p <- c(-2.46, 0.0113, 0.851)
times <- seq(0, 517, 0.5)

par.default <- par(mfrow=c(2,1), mar=c(4.1, 4.1, 0.5, 1))
plot(times+1480, srm_gif(NthChina, times, params=p), type="l",

ylab=expression(lambda[g](t)),
xlab="", xlim=c(1480, 2000))

plot(NthChina$time+1480, NthChina$magnitude+6, type="h",
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xlim=c(1480, 2000), ylim=c(5.8, 8.6),
xlab="Year", ylab="Magnitude")

par(par.default)

summary Summary of a Point Process Model

Description

Provides methods for the generic function summary.

Usage

## S3 method for class 'mpp'
summary(object, ...)
## S3 method for class 'linksrm'
summary(object, ...)

Arguments

object an object with class "mpp" or "linksrm".

... other arguments.

Value

A list object with a reduced number of components, mainly the parameter values.

Examples

TT <- c(0, 1000)
bvalue <- 1
params <- c(-2.5, 0.01, 0.8, bvalue*log(10))

x <- mpp(data=NULL,
gif=srm_gif,
marks=list(NULL, rexp_mark),
params=params,
gmap=expression(params[1:3]),
mmap=expression(params[4]),
TT=TT)

x <- simulate(x, seed=5)

print(summary(x))
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Tangshan Tangshan Earthquake and Aftershock Sequence

Description

The Tangshan earthquake occurred on 28 July 1976 at 03:42:53, with a magnitude of 7.9. The
Tangshan data frame contains those events (455) from the Beijing Catalogue, within 100 km of the
epicentre and with magnitude 4 or greater, from the beginning of 1974 to the end of 1984.

Usage

data(Tangshan)

Format

This data frame contains the following columns:

latitude number of degrees north.

longitude number of degrees east.

magnitude number of magnitude units above 4.

year year of event (numeric vector).

month month of event, 1 . . . 12 (numeric vector).

day day of event, 1 . . . 31 (numeric vector).

hour hour of event, 0 . . . 23 (numeric vector).

minute minute of event, 0 . . . 59 (numeric vector).

second second of event, 0 . . . 59 (numeric vector).

time number of days (and fractions) from the beginning of 1974.

Source

These data originate from the Beijing Catalogue which is administered by the China Seismological
Bureau, Beijing.

Examples

data(Tangshan)
print(Tangshan[1:10,])



Index

∗ classes
linksrm, 22
mpp, 33

∗ datagen
simulate, 45

∗ datasets
NthChina, 37
Ogata, 38
Phuket, 38
Tangshan, 50

∗ distribution
dpareto, 13
marks, 31

∗ documentation
Change Log, 5
distribution, 9
gif, 20
PtProcess-package, 2

∗ iteration
makeSOCKcluster, 30

∗ methods
logLik, 28
plot, 40
residuals, 41
simulate, 45
summary, 49

∗ models
etas_gif, 18
linksrm_convert, 24
linksrm_gif, 25
simple_gif, 42
srm_gif, 47

∗ optimize
neglogLik, 35

∗ programming
makeSOCKcluster, 30

c, 34
Change Log, 5
Changes, 2

Changes (Change Log), 5

data.frame, 18, 22, 26, 31, 33, 42, 47
deparse, 27
dexp, 17
dexp_mark (marks), 31
dgamma, 17
distribution, 9, 17, 36
dpareto, 6, 13
dtappareto, 6
dtappareto (dpareto), 13
dump, 3
dweibull, 17

etas_gif, 6, 18, 20, 21
expfourier_gif, 21
expfourier_gif (simple_gif), 42
exppoly_gif, 21
exppoly_gif (simple_gif), 42
expression, 22, 33, 34

fourier_gif, 7, 21
fourier_gif (simple_gif), 42

GammaDist, 32
gif, 6, 19, 20, 28, 33, 42, 44, 48

inherits, 6
integrate, 43

linksrm, 2, 6, 22, 28, 40, 41, 45, 49
linksrm_convert, 7, 24
linksrm_gif, 6, 7, 20–22, 25, 25, 46, 48
list, 32, 33
logLik, 3, 5, 6, 28, 28, 35
logLik.mpp, 3, 6, 7
ltappareto, 6
ltappareto (dpareto), 13

makeCluster, 30
makePSOCKcluster, 7, 31

51



52 INDEX

makeSOCKcluster, 7, 30, 31
marks, 5, 6, 22, 31, 33
matrix, 18, 26, 42, 47
mpp, 2, 3, 5–7, 22, 28, 33, 35, 40, 41, 45, 49

neglogLik, 3, 5–7, 35
nlm, 9, 10, 35, 36
NthChina, 37
NULL, 33

Ogata, 38
optim, 9, 10, 35, 36

parse, 27
Phuket, 6, 7, 38
plot, 3, 6, 40, 40
plot.mpp, 7
poly_gif, 21
poly_gif (simple_gif), 42
ppareto (dpareto), 13
ptappareto (dpareto), 13
PtProcess, 7, 8, 19, 28, 37, 38, 41, 46, 48
PtProcess (PtProcess-package), 2
PtProcess-package, 2

qpareto (dpareto), 13
qtappareto (dpareto), 13

residuals, 3, 6, 41, 41
residuals.mpp, 21
rexp_mark (marks), 31
rpareto (dpareto), 13
rtappareto (dpareto), 13

simple_gif, 21, 42
simulate, 3, 5, 45, 45
simulate.linksrm, 6
simulate.mpp, 6, 7, 21
source, 3
srm_gif, 7, 20, 21, 47
summary, 3, 49, 49
summary.mpp, 6

Tangshan, 50
ts, 41

vector, 18, 42, 47


	PtProcess-package
	Change Log
	distribution
	dpareto
	etas_gif
	gif
	linksrm
	linksrm_convert
	linksrm_gif
	logLik
	makeSOCKcluster
	marks
	mpp
	neglogLik
	NthChina
	Ogata
	Phuket
	plot
	residuals
	simple_gif
	simulate
	srm_gif
	summary
	Tangshan
	Index

