Package ‘PoolBal’

January 20, 2025
Version 0.1-0
Encoding UTF-8
Title Balancing Central and Marginal Rejection of Pooled p-Values

Description When using pooled p-values to adjust for multiple testing, there is an inherent bal-
ance that must be struck between rejection based on weak evi-
dence spread among many tests and strong evidence in a few, explored in Salahub and Ol-
ford (2023) <arXiv:2310.16600>. This package provides functionality to com-
pute marginal and central rejection levels and the centrality quotient for p-value pooling func-
tions and provides implementations of the chi-squared quantile pooled p-value (de-
scribed in Salahub and Oldford (2023)) and a proposal from Heard and Rubin-
Delanchy (2018) <doi:10.1093/biomet/asx076> to control the quotient's value.

Author Chris Salahub [aut, cre]

Maintainer Chris Salahub <chris.salahub@uwaterloo.ca>
Depends R (>=4.3.0)

Imports methods

License GPL (>=3)

NeedsCompilation no

Repository CRAN

RoxygenNote 7.2.3

Date/Publication 2023-11-22 10:10:02 UTC

Contents

altFrequencyMat L e
betaDiv e e
chiKappa e
chiPc e
chiPool e

chiQ e
convertGeneticSigma L.l e e
estimatePc

https://arxiv.org/abs/2310.16600
https://doi.org/10.1093/biomet/asx076

altFrequencyMat

estimatePrb 11
estimateQ L. e e e e e e e e e 12
findA . . . e 13
hrPc . . o e 14
hrPool e 15
hrPr . . e 16
hrQ . . . e e e e 17
hrStat e 18
KIDiv . . o 19
marHistHeatMap 20
rBetaH4 e 21
satterApproxP L e 22
satterChiPool 23
Index 24
altFrequencyMat Identify a region of plausible alternative hypotheses in the proportion,

strength of non-null evidence space

Description

This function provides a convenient way to interact with simulations performed over a grid of
possible alternatives spanning the proportion (eta) and strength (KL divergence) of evidence against
the null hypothesis under beta alternatives.

Usage

altFrequencyMat (logKappaRange, logW = FALSE)

Arguments

logKappaRange pair of numeric values

logW logical, should the log scale simulation be used?

Details

The simulation this function summarized used a range of eta, w, and KL divergence values to
generate thousands of potential alternative distributions. The power of each chi-squared pooled
p-value for 161 kappa values ranging from exp(-8) to exp(8) selected uniformly on the log scale
was then computed for each alternative using 10,000 simulated examples. Every choice of kappa
was compared to the maximum power across all kappas for each setting using a binomial test of
differences. This same simulation was repeated twice: once for w values selected uniformly from
0 to 1 and another where selection was uniform on the log scale. The internal data summarizes
the results by reporting the count of instances in w (or logw) where a given kappa value was most
powerful for a given eta and KL divergence.

Though the simulation data is not exported to users and so cannot be accessed directly, this function
allows a user to query the data with a range of kappa values (corresponding to those where a given

betaDiv 3

sample seems most powerful) and returns the count of cases in w where a kappa in the corresponding
kappa range was most powerful given the eta, KL-divergence combination with beta alternatives.
The simulations only spanned kappa values from exp(-8) to exp(8), so providing values outside this
range will give very inaccurate results.

Value

An 81 by 81 matrix giving summarized counts of cases.

Author(s)
Chris Salahub

Examples

altFrequencyMat(c(-1, 1), logW = FALSE)
altFrequencyMat(c(-1, 1), logW = TRUE)

betaDiv Compute the Kullback-Leibler divergence between the beta and uni-
form distributions

Description
Computes the Kullback-Leibler divergence for the special case of the uniform density against the
beta density.

Usage
betaDiv(a, w = (1 - a)/(b -a), b=1/w+a* (1 - 1/w))

Arguments

a first shape parameter between 0 and infinity

w UMP parameter between 0 and 1

b second shape parameter between 0 and infinity
Details

This function accepts either the a/b parameterization (equivalent to shapel/shape2 in R), or the a/w
parameterization which links the divergence to the UMP test.

Value

A real value.

Author(s)
Chris Salahub

4 chiKappa

Examples
betaDiv(a = 0.5, w = 0.5)
betaDiv(a = 0.1, b = 1)
chiKappa Chi-squared kappa for a given centrality quotient
Description

Computes the kappa (degrees of freedom) required to obtain a given centrality quotient using the
chi-square pooled p-value.

Usage

chiKappa(
cq,
M,
alpha = 0.05,
interval = c(0, 100),
tol = .Machine$double.eps”@.5

)
Arguments

cq numeric between 0 and 1

M integer sample size greater than 0

alpha numeric between 0 and 1

interval numeric of length 2, where should roots be sought?

tol numeric, how close do values need to be for equality?
Details

This function is essentially a wrapper for uniroot which finds where chiCentQuot gives an output
equal to the given centrality quotient to provide an approximate kappa giving that quotient.
Value

A numeric within interval.

Author(s)
Chris Salahub

Examples

chiKappa(@.5, 10, 0.05)
chiKappa(@.5, 20, 0.05)
chiKappa(@.5, 100, 0.05, interval = c(@, 10))

chiPc 5

chiPc Chi-squared central rejection level

Description

Computes the central rejection level for the chi-squared pooled p-value.

Usage

chiPc(kappa, M, alpha = 0.05)

Arguments
kappa numeric between 0 and infinity
M integer sample size greater than 0
alpha numeric between 0 and 1

Details

The central rejection level is the maximum p-value shared among all tests which still results in
rejection of the null using a pooled p-value. For the chi-squared pooled p-value, this is an upper tail
probability of the chi-squared distribution. This function computes the upper tail probability for a
given sample size M, degrees of freedom kappa, and rejection level alpha.

Value

A numeric between 0 and 1.

Author(s)

Chris Salahub

Examples

chiPc(2, 10, 0.05)
chiPc(2, 20, 0.05) # increases in sample size

6 chiPool

chiPool Chi-squared p-value pooling

Description

This implements the chi-squared pooled p-value which can be used to control the centrality quotient
when pooling p-values.

Usage

chiPool(p, kappa)

Arguments
p numeric vector of p-values between 0 and 1
kappa numeric value between 0 and infinity
Details

The chi-squared pooled p-value is a quantile transformation pooled p-value based on the chi-squared
distribution with degrees of freedom kappa. By setting kappa between 0 and infinity, smooth in-
terpolation is achieved between Tippett’s minimum pooled p-value and Stouffer’s normal quan-
tile pooled p-value respectively. Choosing a kappa value of 2, Fisher’s pooling function is ob-
tained. Tippett’s pooled p-value is maximally non-central and Stouffer’s is maximally central, while
Fisher’s presents a balance between marginal and central rejection.

Value

A pooled p-value between O and 1.

Author(s)

Chris Salahub

Examples

p <- c(0.1, 0.5, 0.9)
chiPool(p, exp(-4))
chiPool(p, 2)
chiPool(p, exp(4))

chiPr 7

chiPr Chi-squared marginal rejection level

Description

Computes the marginal rejection level for the chi-squared pooled p-value.

Usage

chiPr(kappa, M, alpha = 0.05)

Arguments
kappa numeric between 0 and infinity
M integer sample size greater than 0
alpha numeric between 0 and 1

Details

The marginal rejection level is the maximum p-value in a single test which results in rejection when
all other tests produce p-values of one. For the chi-squared pooled p-value, this is an upper tail
probability of the chi-squared distribution. This function computes the upper tail probability for a
given sample size M, degrees of freedom kappa, and rejection level alpha.

Value

A numeric between 0 and 1.

Author(s)

Chris Salahub

Examples

chiPr(2, 10, 0.05)
chiPr(2, 20, 0.05)

8 chiQ

chiQ Chi-squared centrality quotient

Description

Computes the centrality quotient of the chi-square pooled p-value.

Usage

chiQ(kappa, M, alpha = 0.05)

Arguments
kappa numeric between 0 and infinity
M integer sample size greater than 0
alpha numeric between 0 and 1

Details

The centrality quotient of a pooled p-value measures the relative preference it gives to p-values all
sharing the same level of evidence over a single test with strong evidence relative to others. For the
chi-square pooled p-value, this is a conditional probability which this function computes.

Value

A numeric between 0 and 1.

Author(s)

Chris Salahub

Examples

chiQ(2, 10, ©.05)
chiQ(2, 20, ©.05)
chiQ(e.5, 20, 0.05)

convertGeneticSigma 9

convertGeneticSigma Convert p-value correlation to chi-squared covariance

Description

Convert a matrix of correlations between p-values to a matrix of covariances between their chi-
squared transforms.

Usage

convertGeneticSigma(sigma, kappa, models = chiCorMods)

Arguments
sigma M by M correlation matrix between markers
kappa numeric degrees of freedom
models model object with a predict method

Details

This function uses models fit to large simulated data sets to convert a matrix of correlations between
genetic markers the covariance matrix of chi-squared random variables gained from transforming
p-values on these markers. The simulations used to create data for these models assume the p-
values for each marker arise from tests of association with a common, normally distributed trait
independent of all markers. As a result, this conversion function should be used only in analogous
settings.

Models were fit for degrees of freedom at increments of 0.1 between -8 and 8 on the log scale, and
interpolation is applied if the degrees of freedom given to the function does not fall exactly on this
grid (with a warning provided to the user).

If a user wants to generalize this setting, the option to provide a custom list of models which predict
based on a named argument ‘zcor* is supported. Each model must have a name in the list that can
be converted to a numeric, and these are assumed to be on the natural log scale.

Value

M by M matrix of chi-squared covariances

Author(s)
Chirs Salahub

10

estimatePc

estimatePc

Compute the central rejection level

Description

Estimates the central rejection level for an arbitrary pooled p-value function.

Usage
estimatePc(
poolFun,
alpha = 0.05,
M= 2,
interval = c(0, 1),
poolArgs = list(),
)
Arguments
poolFun function accepting a vector of p-values
alpha numeric between 0 and 1
M integer, how many p-values are there?
interval two numerics giving the bounds of root-searching
poolArgs (optional) additional named arguments for poolFun
additional arguments to uniroot
Details

The central rejection level is the maximum p-value shared among all tests which still results in
rejection of the null using a pooled p-value.

This function is es

sentially a wrapper for uniroot, and accepts a pooling function which takes a

numeric vector as its first argument and potentially other arguments given in poolArgs and returns
a single value. Using this pooling function, a specified dimension M and a rejection level alpha,
uniroot searches for the root to poolFun - alpha along the line where all p-values are equal.

Value

The uniroot output.

Author(s)
Chris Salahub

estimatePrb

Examples

11

tippool <- function(p) 1 - (1 - min(p))*(length(p))

estimatePc(tippoo

1, 0.05, M = 10, interval = c(0@, 1))

estimatePrb

Compute the marginal rejection level

Description

Estimates the marginal rejection level for an arbitrary pooled p-value function.

Usage
estimatePrb(
poolFun,
alpha = 0.05,
b=1,
M=2,
interval = c(0, b),
poolArgs = list(),
)
Arguments
poolFun function accepting a vector of p-values
alpha numeric between 0 and 1
b numeric, the value of the M - 1 repeated p-values
M integer, how many p-values are there?
interval two numerics giving the bounds of root-searching
poolArgs (optional) additional named arguments for poolFun
additional arguments to uniroot
Details

The marginal rejection level is the maximum p-value in a single test less than b which still results
in rejection of the null when all other tests have a p-value of b.

This function is es

sentially a wrapper for uniroot, and accepts a pooling function which takes a

numeric vector as its first argument and potentially other arguments given in poolArgs and returns
a single value. Using this pooling function, a specified dimension M and a rejection level alpha,
uniroot searches for the root to poolFun - alpha along one margin when all other p-values are equal

to b.

Value

The uniroot output.

12 estimateQ

Author(s)
Chris Salahub

Examples

stopool <- function(p) pnorm(sum(gnorm(p, lower.tail = FALSE))/ sqrt(length(p)), lower.tail = FALSE)
estimatePrb(stopool, 0.05, M = 10, interval = c(.Machine$double.eps, 1))
estimatePrb(stopool, ©0.05, M = 10, b = 0.5, interval = c(.Machine$double.eps, 1))

estimateQ Compute the centrality quotient

Description

Estimates the centrality quotient for an arbitrary pooled p-value function.

Usage
estimateQ(
poolFun,
alpha = 0.05,
M= 2,
interval = c(o, 1),

poolArgs = list(),

)
Arguments
poolFun function accepting a vector of p-values
alpha numeric between 0 and 1
M integer, how many p-values are there?
interval two numerics giving the bounds of root-searching
poolArgs (optional) additional named arguments for poolFun
additional arguments to uniroot
Details

The centrality quotient communicates the tendency for a test to favour evidence shared among all
tests over strong evidence in a single test.

This function uses the individual estimation functions for central and marginal rejection levels to
compute the centrality quotient for an arbitrary pooled p-value function. The option to specify b for
marginal rejection is included in case the pooled p -value has strange behaviour when p-values are
equal to 1.

findA 13

Value

The uniroot output.

Author(s)
Chris Salahub

Examples

estimateQ(chiPool, alpha = 0.05, M = 10, poolArgs = list(kappa = 10))

findA Estimate parameter for a given beta KL divergence and UMP test

Description

Computes the first parameter value for a given KL divergence and UMP test.

Usage
findA(w, logd =0, ...)

Arguments
w UMP parameter between 0 and 1
logd numeric value, the log KL divergence
additional arguments to uniroot
Details

This function uses uniroot to invert the beta divergence for a given w and return the a value which
gives that beta divergence given the UMP parameter w. The search interval is specified internally,
so should not be passed in using additional argument.

Value

A real value.

Author(s)
Chris Salahub

Examples

findA(0.5, logd = @)

14 hrPc

hrPc Empirical UMP beta central rejection level

Description

Uses simulation to estimate the central rejection level for the UMP pooled p-value of a restricted
beta family

Usage

hrPc(w, alpha = 0.05, M = 2, nsim = 1e+05)

Arguments

w numeric between 0 and 1

alpha numeric between 0 and 1

M integer sample size greater than 0

nsim integer, the number of simulated null cases generated
Details

The central rejection level is the maximum p-value shared among all tests which still results in
rejection of the null using a pooled p-value.

To test the null hypotheses that all p-values are uniform against a restricted beta family 0 < a <=1
<= b, the most powerful pooled p-value linearly combines upper and lower tail probabilities of the
chi-squared distribution with two degrees of freedom with weights w and (1 - w) where w = (1 -
a)/(b - a).

This function estimates the central rejection level empirically by simulating a specified number of
null cases to give an empirical pooled p-value for the rejection level alpha.

Value

A numeric between 0 and 1.

Author(s)
Chris Salahub

Examples
hrPc(w = 0.5, alpha = 0.05, M = 10)
hrPc(w = 0.5, alpha = 0.05, M = 20)

hrPool 15

hrPool Empirical UMP beta pooled p-value

Description

Uses simulation under the null to approximate the UMP pooled p-value for a restricted beta family.

Usage

hrPool(w = 1, M = 10, nsim = T1e+@5)

Arguments

w numeric value between 0 and 1

M integer, the number of tests to pool

nsim integer, the number of simulated null cases generated
Details

To test the null hypotheses that all p-values are uniform against a restricted beta family 0 < a <=1
<= b, the most powerful pooled p-value linearly combines upper and lower tail probabilities of the
chi-squared distribution with two degrees of freedom with weights w and (1 - w) where w = (1 -
a)/(b - a).

This function computes the statistic given by this combination for a collection of p-values, and then
simulates a specified number of null cases to give an empirical pooled p-value. It produces a closure
so that the time-intensive simulation step doesn’t need to be repeated.

Value

A closure which accepts a vector of values between 0 and 1 and returns a single numeric between 0
and 1

Author(s)
Chris Salahub

Examples

p <- c(0.1, 0.5, 0.9)
hr2 <- hrPool(w = 0.2, M
hr2(p)

hr5 <- hrPool(w = 0.5, M = 3, nsim = 100)
hr5(p)

3)

16 hrPr

hrPr Empirical UMP beta marginal rejection level

Description

Uses simulation to estimate the marginal rejection level for the UMP pooled p-value of a restricted
beta family

Usage

hrPr(w, alpha = 0.05, M = 2, nsim = 1e+05)

Arguments

w numeric between 0 and 1

alpha numeric between 0 and 1

M integer sample size greater than 0

nsim integer, the number of simulated null cases generated
Details

The marginal rejection level is the maximum p-value in a single tests which still results in rejection
of the null when all other tests have a p-value of 1.

To test the null hypotheses that all p-values are uniform against a restricted beta family 0 < a <=1
<= b, the most powerful pooled p-value linearly combines upper and lower tail probabilities of the
chi-squared distribution with two degrees of freedom with weights w and (1 - w) where w = (1 -
a)/(b - a).

This function estimates the marginal rejection level empirically by simulating a specified number
of null cases to give an empirical pooled p-value for the rejection level alpha.

Value

A numeric between 0 and 1.

Author(s)
Chris Salahub
Examples
hrPr(w = 0.5, alpha = 0.05, M = 10)
hrPr(w = 0.5, alpha = 0.05, M = 10) # decreases in sample size

hrQ

17

hrQ Empirical UMP beta centrality quotient

Description

Estimates the centrality quotient for the UMP pooled p-value of a restricted beta family.

Usage

hrQ(w, alpha = 0.05, M = 2, nsim = 1e+05)

Arguments

w numeric between 0 and 1

alpha numeric between 0 and 1

M integer sample size greater than 0

nsim integer, the number of simulated null cases generated
Details

The centrality quotient communicates the tendency for a test to favour evidence shared among all

tests over strong evidence in a single test.

To test the null hypotheses that all p-values are uniform against a restricted beta family 0 < a <=1
<= b, the most powerful pooled p-value linearly combines upper and lower tail probabilities of the
chi-squared distribution with two degrees of freedom with weights w and (1 - w) where w = (1 -

a)/(b - a).

This function uses the individual estimation functions for central and marginal rejection levels to

compute the centrality quotient for the UMP pooled p-value.

Value

An empirical estimate of the centrality quotient.

Author(s)

Chris Salahub

Examples

hrQ(e.8, alpha = 0.05, M = 10)

18 hrStat

hrStat UMP beta p-value pooled statistic

Description

Computes the UMP p-value pooling statistic for a restricted beta family.

Usage

hrStat(p, w = 1)

Arguments
p numeric vector of p-values between 0 and 1
w numeric value between 0 and 1

Details

To test the null hypotheses that all p-values are uniform against a restricted beta family 0 < a <=1
<= b, the most powerful pooled p-value linearly combines upper and lower tail probabilities of the
chi-squared distribution with two degrees of freedom with weights w and (1 - w) where w = (1 -
a)/(b - a).

This function computes the statistic given by this combination for a collection of p-values, simula-
tion or approximation is required to convert this to a p-value.

Value

A numeric value giving the pooled statistic.

Author(s)

Chris Salahub

Examples

p <- c(0.1, 0.5, 0.9)
hrStat(p, 0.2)
hrStat(p, 0.5)
hrStat(p, 0.9)

kIDiv 19

k1lDiv Compute the Kullback-Leibler divergence

Description

Computes the Kullback-Leibler divergence for two arbitrary densities f1 and f2.

Usage

klDiv(f1, f2, lower = @, upper = 1)

Arguments
f1 density function of a real-valued random variable
f2 density function of a real-values random variable
lower real value, the lower bound of integration
upper real value, the upper bound of integration
Details

Given lower and upper bounds, this function integrates the expression for the Kullback-Leibler
divergence KL(f1If2).

Value

A real value.

Author(s)

Chris Salahub

Examples

klDiv(dunif, function(x) dbeta(x, 0.5, 1))

20 marHistHeatMap

marHistHeatMap Heatmap with marginal histograms

Description

Display a matrix using a heatmap with marginal histograms.

Usage
marHistHeatMap(
mat,
main = "",
ylab = expression(eta),
xlab = "1InD(a,w)"”,
pal = NULL,

histFill = adjustcolor("firebrick"”, 0.5),

)
Arguments

mat numeric matrix to be plotted

main title

ylab y axis label

xlab x axis label

pal palette for heatmap

histFill colour to fill histogram bars

additional arguments to image

Details

This function accepts a matrix of values and plots the matrix with saturation/hue determined by a
provided palette argument generated by colorRampPalette, for example. Marginal histograms sum-
marizing the relative frequencies along both dimensions are also plotted to give a complete sense of
the individual distributions alongside their joint distribution. This was designed to summarize the
alternative distribution space summarized by altFrequencyMat, and the defaults reflect this.

Value

Plot the data using a heatmap and marginal histograms and return nothing.

Author(s)
Chris Salahub

rBetaH4 21

Examples

marHistHeatMap(altFrequencyMat(c(@, 2)))

rBetaH4 Generate realizations of beta alternative distributions

Description

These functions can be used to generate samples of p-values all following a beta distribution (H4)
or following either uniform or beta distributions according to proportion eta (H3).

Usage
rBetaH4(a, b = 1/w+ax (1 - 1/w), w= (1 -a)/(b-a), M=2, N=10)
rBetaH3(

b=1/w+ax (- 1/w),
w=(-a)b-a,

eta = 0.5,
M=2,
N =10
)
Arguments
a first beta parameter, numeric between 0 and infinity
b second beta parameter, numeric between 0 and infinity
w UMP parameter between 0 and 1
M number of p-values per realization
N number of realizations
eta numeric between 0 and 1, proportion of non-null tests per sample
Details
Alternatives

These functions are provided as a convenience, and support a/b (shapel/shape2) or a/w specification
of beta parameters.

Value

An N by M matrix of simulated p-values.

22 satterApproxP

Functions

* rBetaH4(): iid Beta(a,w) p-values

* rBetaH3(): M*eta iid Beta(a,w) p-values, others uniform

Author(s)
Chris Salahub

Examples
rBetaH4(a = 0.5, b = 1.5, M = 10, N = 100)
rBetaH3(a = 0.5, b = 1.5, eta = 0.5, M = 10, N = 100)
satterApproxP Satterthwaite p-values
Description

p-value of the sum of dependent chi-squared using the Satterthwaite approximation for the degrees
of freedom.

Usage

satterApproxP(qgs, covmat, kappa)

Arguments
gs M numeric values (observed chi-squared values)
covmat M by M covariance matrix of gs
kappa degrees of freedom of gs

Details

Computes the p-value of an observed vector of chi-squared variables using the Satterthwaite approx-
imation. This approximates the sum of dependent chi-squared variables with a scaled chi-squared
distribution with degrees of freedom chosen to match the first two moments of the dependent sum.

Value

a numeric in [0,1], the p-value of the sum

Author(s)
Chris Salahub

satterChiPool 23

satterChiPool Pool p-values using the Satterthwaite approximation

Description
Compute the pooled p-value of dependent p-values based on the dependence present when they are
all converted to chi-squared random variables by the same chi-squared quantile function.

Usage

satterChiPool(ps, covmat, kappa)

Arguments
ps numeric vector of M p-values
covmat M by M covariance matrix of chi-squared random variables arising from quan-
tile transformations of ps
kappa numeric degrees of freedom
Details

Care must be taken in the arguments for this function, as the covmat argument accepts the co-
variance of the transformed variables rather than the covariance of the p-values, and so passes the
argument covmat directly to the function that computes the Satterthwaite approximation. For the
case of genetic markers, the ‘convertGeneticSigma‘ function provides the appropriate matrix given
a genetic correlation matrix.

Value

A pooled p-value between 0 and 1.

Author(s)
Chris Salahub

Index

altFrequencyMat, 2
betaDiv, 3

chiKappa, 4

chiPc, 5

chiPool, 6

chiPr, 7

chiQ, 8
convertGeneticSigma, 9

estimatePc, 10
estimatePrb, 11
estimateQ, 12

findA, 13

hrPc, 14
hrPool, 15
hrPr, 16
hrQ, 17
hrStat, 18

k1Div, 19
marHistHeatMap, 20

rBetaH3 (rBetaH4), 21
rBetaH4, 21

satterApproxP, 22
satterChiPool, 23

24

	altFrequencyMat
	betaDiv
	chiKappa
	chiPc
	chiPool
	chiPr
	chiQ
	convertGeneticSigma
	estimatePc
	estimatePrb
	estimateQ
	findA
	hrPc
	hrPool
	hrPr
	hrQ
	hrStat
	klDiv
	marHistHeatMap
	rBetaH4
	satterApproxP
	satterChiPool
	Index

