
Sequence Alignment and Cell Line Names

Kevin R. Coombes

April 8, 2025

Contents

1 Introduction 1

2 Getting Started 1

3 Aligning Two Character Strings 2

4 Cell Line Names 4

4.1 Matching One Cell Line Name 6
4.2 Matching All Cell Line Names . 6

5 Conclusions 8

1 Introduction

A problem that frequently plagues statistical analysts who are trying to combine
data from two or more sources is that sample identi�ers are entered inconsis-
tently in the two data sets. This problem appears to be particularly prevalent
in the world of cell line research, where no standard exists to de�ne the names.
Most cell line names can be broken down into three parts: an alphabetic pre�x,
a numeric identi�er, and an optional alphanumeric su�x. Common problems
include both the introduction of (apparently random) punctuation between the
parts and abbreviation of the pre�x (presumably under the belief that, within
the context of the experiment, everyone will know what the abbreviation stands
for). We recognized that the problem of matching cell line names from two
experiments was related to the problem of aligning biological sequence data. As
a result, we implemented a straightforward version of the Needleman-Wunsch
global alignment algorithm that can be applied to this problem. This vignette
explains how to use the NameNeedle package to match cell line names.

2 Getting Started

We start by loading the package into the current R session.

1

> library(NameNeedle)

3 Aligning Two Character Strings

The basic function is called needles and implements the Needleman-Wunsch
algorithm for aligning two text strings. The simplest use is to just supply the
text strings directly:

> needles("hcc-123", "hcc1243")

$score

[1] 4

$align1

[1] "hcc-12*3"

$align2

[1] "hcc*1243"

$sm

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 -1 -2 -3 -4 -5 -6 -7

[2,] -1 1 0 -1 -2 -3 -4 -5

[3,] -2 0 2 1 0 -1 -2 -3

[4,] -3 -1 1 3 2 1 0 -1

[5,] -4 -2 0 2 2 3 2 1

[6,] -5 -3 -1 1 1 2 4 3

[7,] -6 -4 -2 0 0 1 3 3

[8,] -7 -5 -3 -1 -1 0 2 4

$dm

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] "none" "left" "left" "left" "left" "left" "left"

[2,] "up" "diagonal" "left" "left" "left" "left" "left"

[3,] "up" "up" "diagonal" "diagonal" "left" "left" "left"

[4,] "up" "up" "diagonal" "diagonal" "left" "left" "left"

[5,] "up" "up" "up" "up" "diagonal" "diagonal" "left"

[6,] "up" "up" "up" "up" "diagonal" "up" "diagonal"

[7,] "up" "up" "up" "up" "diagonal" "up" "up"

[8,] "up" "up" "up" "up" "diagonal" "up" "up"

[,8]

[1,] "left"

[2,] "left"

[3,] "left"

[4,] "left"

[5,] "left"

2

[6,] "left"

[7,] "diagonal"

[8,] "diagonal"

The return value includes the optimal alignments of the two strings, a score, the
�score matrix� (sm) and the �backtrace matrix� (dm). All of these items depend
on a set of parameters, which can be supplied to the needles function as a list.
The default value is

> defaultNeedleParams

$MATCH

[1] 1

$MISMATCH

[1] -1

$GAP

[1] -1

$GAPCHAR

[1] "*"

Notice that the GAPCHAR component speci�es the character to use in the align-
ment strings to indicate that the best alignment involves leaving a gap in one
string rather than matching the characters directly in the other string. The
other three parameters determine the rewards (for an exact match) or penalties
(for mismatches or gaps) that contribute to the score.

A simple way to alter the parameters is to start with the default values and
modify the entries:

> myParams <- defaultNeedleParams

> myParams$MISMATCH <- -2

> myParams$MATCH <- 2

We can re-run the algorithm using our own parameter list.

> needles("hcc-123", "hcc1243", myParams)

$score

[1] 10

$align1

[1] "hcc-12*3"

$align2

[1] "hcc*1243"

3

$sm

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 -1 -2 -3 -4 -5 -6 -7

[2,] -1 2 1 0 -1 -2 -3 -4

[3,] -2 1 4 3 2 1 0 -1

[4,] -3 0 3 6 5 4 3 2

[5,] -4 -1 2 5 4 7 6 5

[6,] -5 -2 1 4 3 6 9 8

[7,] -6 -3 0 3 2 5 8 7

[8,] -7 -4 -1 2 1 4 7 10

$dm

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] "none" "left" "left" "left" "left" "left" "left"

[2,] "up" "diagonal" "left" "left" "left" "left" "left"

[3,] "up" "up" "diagonal" "diagonal" "left" "left" "left"

[4,] "up" "up" "diagonal" "diagonal" "left" "left" "left"

[5,] "up" "up" "up" "up" "diagonal" "diagonal" "left"

[6,] "up" "up" "up" "up" "diagonal" "up" "diagonal"

[7,] "up" "up" "up" "up" "diagonal" "up" "up"

[8,] "up" "up" "up" "up" "diagonal" "up" "up"

[,8]

[1,] "left"

[2,] "left"

[3,] "left"

[4,] "left"

[5,] "left"

[6,] "left"

[7,] "diagonal"

[8,] "diagonal"

Note that, in this case, the alignment does not change, but the score and the
score matrix both change to re�ect the altered parameters. In more complex
cases, the actual alignments can change depending on the set of parameters.
We �nd that the values in myParams work well for matching cell line names.

4 Cell Line Names

The NameNeedle library includes a sample data set consisting of the actual cell
line names, as they were presented to us, from three related experiments. We
use the data command to load these names into the current R session.

> data(cellLineNames)

> ls()

[1] "illuNames" "illuType" "myParams" "rppaNames" "sf2Names"

4

Now we review the cell line names.

> class(sf2Names)

[1] "character"

> length(sf2Names)

[1] 129

> sf2Names[1:10]

[1] "UMSCC17A" "UMSCC14A" "UMSCC47" "PCI-15A" "PCI-13" "UMSCC14B"

[7] "PCI-15B" "SN-2" "JHU-011" "MDA1386TU"

> class(rppaNames)

[1] "character"

> length(rppaNames)

[1] 260

> rppaNames[1:10]

[1] "344SQ" "383B" "393LN" "393P" "3KT" "584" "A431" "A549" "C39"

[10] "C42"

> class(illuNames)

[1] "character"

> length(illuNames)

[1] 105

> summary(illuType)

HNSCC Lung

33 72

> illuNames[1:10]

[1] "UMSCC 10B" "OSC19 LN2" "TU159" "TU686" "UMSCC 14B" "A431"

[7] "UMSCC 11A" "TMAR-B" "C39" "DM-14"

5

4.1 Matching One Cell Line Name

The needles function works on one character string at a time. (If you supply a
character vector of length greater than one, it silently ignores everything except
the �rst entry). In order to �nd the best match for one name in a list of
possibilities, we use the needleScores function. For example, suppose we want
to �nd the best match for the following name

> probeName <- sf2Names[6]

> probeName

[1] "UMSCC14B"

in the character vector illuNames. Then we simply write

> scores <- needleScores(probeName, illuNames, myParams)

> summary(scores)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-13.000 -9.000 -8.000 -6.352 -3.000 15.000

We see that the highest score is 11. We can use the usual R tools to �gure out
which character string gives the highest score (and thus the best match).

> w <- which(scores==max(scores))

> illuNames[w]

[1] "UMSCC 14B"

We note that the match di�ers from the probe name by the insertion of a space
character between the alphabetic pre�x and the numerical identi�er in the name.

4.2 Matching All Cell Line Names

More generally, we would like to match two complete lists of names. For ex-
ample, we might want to match the names in sf2names with the names in
rppaNames. There is no special function to perform this task. Instead, we can
simply run through a loop.

> go <- proc.time()

> matchscore <- matchcode <- rep(NA, length(sf2Names))

> for (j in 1:length(sf2Names)) {

+ scores <- needleScores(sf2Names[j], rppaNames, myParams)

+ matchcode[j] <- paste(which(scores==max(scores)), collapse=',')

+ matchscore[j] <- max(scores)

+ }

> used <- proc.time() - go

6

Note, however, that we must allow for the possibility that multiple names in
rppaNames will provide the best match (highest score) for any given name in
sf2Names. We have saved the indices of all the best matches in the matchcode
variable, as a comma-separated character string. The next loop expands those
indices to the actual names, which are stored as semicolon-separated character
strings.

> rppaMatch <- sapply(matchcode, function(x) {

+ y <- as.numeric(strsplit(x, ',')[[1]])

+ paste(rppaNames[y], collapse="; ")

+ })

For example, we have

> i <- 116

> sf2Names[i]

[1] "HCC-2998"

> rppaMatch[i]

84,91

"HCC2279; HCC2935"

In this case, sample �HCC-2998 � was used in the SF2 study but not in the
RPPA study, and there are two cell lines in the RPPA study that give equally
good (although incorrect) matches. If we want to check the actual alignments,
we can again use the basic needles function.

> x <- needles("HCC-2998", "HCC2279", myParams)

> x$align1

[1] "HCC-2998"

> x$align2

[1] "HCC2279*"

For completeness, we also match sf2names to illuNames.

> go <- proc.time()

> imatchscore <- imatchcode <- rep(NA, length(sf2Names))

> for (j in 1:length(sf2Names)) {

+ scores <- needleScores(sf2Names[j], illuNames, myParams)

+ imatchcode[j] <- paste(which(scores==max(scores)), collapse=',')

+ imatchscore[j] <- max(scores)

+ }

> illuMatch <- sapply(imatchcode, function(x) {

+ y <- as.numeric(strsplit(x, ',')[[1]])

+ paste(illuNames[y], collapse="; ")

+ })

> iused <- proc.time() - go

> used

7

user system elapsed

2.09 0.00 2.10

> iused

user system elapsed

0.78 0.01 0.81

> used + iused

user system elapsed

2.87 0.01 2.91

We can combine the results into a data frame.

> matcher <- data.frame(rppaMatch=rppaMatch, rppaScore=matchscore,

+ illuMatch=illuMatch, illuScore=imatchscore)#,combined)

> rownames(matcher) <- sf2Names

> matcher[1:10,]

rppaMatch rppaScore illuMatch illuScore

UMSCC17A UMSCC17A 16 UMSCC 11A 11

UMSCC14A UMSCC14A 16 UMSCC 14B; UMSCC 11A 11

UMSCC47 UMSCC47 14 UMSCC 14B 8

PCI-15A PCI15A 11 HCC15 0

PCI-13 PCI13 9 C39; HCC1359; HCC1833 -1

UMSCC14B UMSCC14B 16 UMSCC 14B 15

PCI-15B PCI15B 11 HCC15 0

SN-2 SN2 5 OSC19 LN2 -1

JHU-011 JHU011 11 HCC4011 2

MDA1386TU MDA1386 12 MDA 1386 11

5 Conclusions

A simple implementation of the Needleman-Wunsch global alignment algorithm
works reasonably well as a �rst approximation for matching cell line names from
di�erent datasets. We must note, however, that more sophisticated tools are
available for aligning biological sequences; many such tools are implemented in
the Biostrings package from Bioconductor.

8

	Introduction
	Getting Started
	Aligning Two Character Strings
	Cell Line Names
	Matching One Cell Line Name
	Matching All Cell Line Names

	Conclusions

