Package 'NUETON'

January 20, 2025

Type Package

Title Nitrogen Use Efficiency Toolkit on Numerics

Version 0.1.0

Maintainer Shubham Love <shubhamlove2101@gmail.com>

Description Comprehensive R package designed to facilitate the calculation of Nitrogen Use Efficiency (NUE) indicators using experimentally derived data. The package incorporates 23 parameters categorized into six fertilizer-based, four plant-based, three soil-based, three isotopebased, two ecology-based, and four system-based indicators, providing a versatile platform for NUE assessment. As of the current version, 'NUETON' serves as a starting point for users to compute NUE indicators from their experimental data. Future updates are planned to enhance the package's capabilities, including robust data visualization tools and error margin consideration in calculations. Additionally, statistical methods will be integrated to ensure the accuracy and reliability of the calculated indicators. All formulae used in 'NUETON' are thoroughly referenced within the source code, and the package is released as open source software. Users are encouraged to provide feedback and contribute to the improvement of this package. It is important to note that the current version of 'NUE-TON' is not intended for rigorous research purposes, and users are responsible for validating their results. The package developers do not assume liability for any inaccuracies in calculations. This package includes content from Congreves KA, Otchere O, Ferland D, Farzadfar S, Williams S and Arcand MM (2021) 'Nitrogen Use Efficiency Definitions of Today and Tomorrow.' Front. Plant Sci. 12:637108. <doi:10.3389/fpls.2021.637108>. The article is available under the Creative Commons Attribution License (CC BY) C. 2021 Congreves, Otchere, Ferland, Farzadfar, Williams and Arcand.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Config/testthat/edition 3

NeedsCompilation no

Author Shubham Love [aut, cre]

Repository CRAN

Date/Publication 2023-11-13 17:53:24 UTC

Contents

AE	2
ecoNUE	3
IE	4
NBI	5
NdfF	6
NHI	6
NP	7
NRE	8
NRE15	9
NUEbal	10
NUEcrop	10
NUEFC	11
NUEsoil	12
NUEyield	13
NUpÉ	14
NUTE	15
РЕ	15
PFP	16
PNB	17
sNBI	18
sNUE	19
TNdfF	20
VNF	21
	22

Index

AE

Calculate Agronomic Efficiency

Description

The contribution of fertilizer N towards yield, compared to a non-fertilized control Calculate AE using the formula: AE = (YieldF-Yield0)/FertN

Usage

AE(YieldF = NULL, Yield0 = NULL, FertN = NULL, PE = NULL, RE = NULL)

Arguments

YieldF	A numeric vector for yield in fertilized Conditions.
Yield0	A numeric vector of non-fertilized control yield values.
FertN	The value of inorganic N contained in any form of N input (from synthetic or organic sources)
PE	Physiological Efficiency numeric value
RE	Recovery Efficiency numeric value

ecoNUE

Value

The calculated AE value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Dobermann, A. (2007). "Nutrient use efficiency-measurement and management," in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.

Examples

```
YieldF <- c(2.92, 3.78, 4.68, 4.21)
Yield0 <- c(1.98, 2.66, 4.26, 3.78)
FertN <- 15
AE(YieldF, Yield0, FertN)
PE<-10
RE<-5
AE(PE=PE, RE=RE)</pre>
```

ecoNUE

Calculate NUEecology

Description

The product of N productivity and the mean residency time (MRT) of plant N. Calculate NUEecology using the formula: ecoNUE = NP * MRT

Usage

ecoNUE(NP, MRT)

Arguments

NP	Nitrogen Productivity Value
MRT	Mean Residency Time value

Value

The calculated ecoNUE value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Lambers, H., and Oliveira, R. S. (eds). (2019). "Mineral Nutrition," in Plant Physiological Ecology. Cham: Springer International Publishing, 301–384. doi: 10.1007/978-3-030-29639-1_9

Examples

```
NP <- 33.63571
MRT <- 1.009715
ecoNUE(NP, MRT)
```

ΙE

Calculate Internal Efficiency (IE)

Description

The fraction of plant tissue N that is contained in the yield component. Calculate IE using the formula: IE = YieldNF / PlantNf

Usage

IE(YieldNF, PlantNf)

Arguments

YieldNF	A numeric vector for yield N in fertilized Conditions.
PlantNf	A numeric vector of non-fertilized control yield values

Value

The calculated IE value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Dobermann, A. (2007). "Nutrient use efficiency–measurement and management," in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.

NBI

Examples

YieldNF <- c(2.92, 3.78, 4.68, 4.21) PlantNf <- c(2.89, 3.66, 4.73, 4.16) IE(YieldNF, PlantNf)

NBI

Calculate N Balance Intensity (NBI)

Description

The difference between fertilizer N applied and the N removed as yield; commonly called N surplus. Calculate NBI using the formula: NBI = YieldN-FertN

Usage

NBI(YieldN, FertN)

Arguments

YieldN	A numeric vector of the N removed as yield values.
FertN	A numeric value for fertilizer N input.

Value

The calculated NBI value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: IPNI (2014). Nutrient Performance Indicators: The Importance of Farm Scale Assessments, Linked to Soil Fertility, Productivity, Environmental Impact and the Adoption of Grower Best Management Practices. Available online at: http://anz.ipni.net/ipniweb/region/anz.nsf/0/9312A2172A0B917CCA257E8

```
YieldN <- c(5.4, 6.3, 4.8, 7.2)
FertN <- 1.5
NBI(YieldN, FertN)</pre>
```

NdfF

Description

The percentage of plant or soil N that is derived from the fertilizer. Calculate NdfF using the formula: NdfF = Plant15N/Fert15N

Usage

NdfF(Plant15N, Fert15N)

Arguments

Plant15N	A vector of 15N atom percent excess in plant or soil values.
Fert15N	15N atom percent excess of fertilizer N.

Value

The calculated NdfF value expressed as a percentage.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: IAEA (1983). Guide on the Use of Nitrogen-15 and Radioisotopes in Studies of Plant Nutrition: Calculations and Interpretation of Data. Vienna: IAEA.

Examples

```
Plant15N <- c(2.92, 3.78, 4.68, 4.21)
Fert15N <- 15
NdfF(Plant15N, Fert15N)</pre>
```

```
NHI
```

Calculate N Harvest Index (NHI)

Description

The percent of plant tissue N that is contained in the yield component. Calculate NHI using the formula: NHI = YieldF / PlantNf

Usage

NHI(YieldF, PlantNf)

Arguments

YieldF	A numeric vector of final yield values.
PlantNf	A numeric value for plant tissue N.

Value

The calculated NHI value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Moll, R. H., Kamprath, E. J., and Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 74, 562–564. doi: 10.2134/agronj1982.00021962007400030 037x

Examples

```
YieldF<- c(2.89, 3.66, 4.73, 4.16)
PlantNf <- c(2.92, 3.78, 4.68, 4.21)
NHI(YieldF, PlantNf)
```

NP

Calculate Nitrogen Productivity (NP)

Description

The ratio of the relative growth rate to the concentration of N in plant tissues. Calculate Nitrogen Productivity using the formula: NP = GR/PlantN

Usage

NP(GR, PlantN)

Arguments

GR	Plant relative growth rate value
PlantN	A numeric vector of values for plant N concentration.

Value

The calculated NP value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Berendse, F., and Aerts, R. (1987). Nitrogen-use-efficiency: a biologically meaningful definition? Funct. Ecol. 1, 293–296.

Examples

```
GR <- 15
PlantN <- c(12.1, 8.99, 12.89, 13.11)
NP(GR, PlantN)
```

NRE

Calculate Fertilizer-N Recovery Efficiency

Description

The percentage of fertilizer N that is taken up by the plant, accounting for background soil N levels; also sometimes referred to as apparent recovery. Calculate NRE using the formula: NRE = ((PlantNf - PlantN0) / FertN) * 100

Usage

NRE(PlantNf, PlantN0, FertN)

Arguments

PlantNf	A numeric vector of values for plant N at the end of the experiment.
PlantN0	A numeric vector of values for plant N at the beginning of the experiment
FertN	A numeric value for fertilizer N input.

Value

The calculated NRE value as a percentage.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Dobermann, A. (2007). "Nutrient use efficiency–measurement and management," in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.

NRE15

Examples

PlantNf <- c(2.92, 3.78, 4.68, 4.21) PlantN0 <- c(1.22, 2.66, 3.99, 2.58) FertN <- 15 NRE(PlantNf, PlantN0, FertN)

NRE1	5
------	---

Calculate Isotope-Based Recovery Efficiency of N-Fertlizer (NRE15)

Description

The percent recovery, or utilization, of fertilizer-N in plant and/or soil components Calculate NRE15 using the formula: NRE15 = (TNdfF in Plant or Soil / FertN) * 100

Usage

NRE15(TNdfF, FertN)

Arguments

TNdfF	Total N derived from Fertilizer in plant or soil value.
FertN	A numeric value for fertilizer N input.

Value

The calculated NRE15 value as a percentage.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: IAEA (1983). Guide on the Use of Nitrogen-15 and Radioisotopes in Studies of Plant Nutrition: Calculations and Interpretation of Data. Vienna: IAEA.

```
TNdfF <- 3.058888
FertN <- 15
NRE15(TNdfF, FertN)
```

NUEbal

Description

The fraction of N inputs that are removed from the system (either as yield or N losses) Calculate NUEbalance using the formula: NUEbal = No/Ni

Usage

NUEbal(No, Ni)

Arguments

No	Sum total of N outputs (enter each value individually)
Ni	Sum total of N inputs (enter each value individually)

Value

The calculated NUEbalance value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Martinez-Feria, R. A., Castellano, M. J., Dietzel, R. N., Helmers, M. J., Liebman, M., Huber, I., et al. (2018). Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 256, 131–143. doi: 10.1016/j.agee.2018.01.002

Examples

```
No <- c(2.89, 3.66, 4.73, 4.16)
Ni <- c(2.92, 3.78, 4.68, 4.21)
NUEbal(No, Ni)
```

NUEcrop

Calculate NUEcrop

Description

The fraction of fertilizer N that is utilized and allocated to yield N. Calculate NUEcrop using the formula: NUEcrop = YieldN/FertN

NUEFC

Usage

NUEcrop(YieldN, FertN)

Arguments

YieldN	A numeric vector of the N removed as yield values.
FertN	A numeric value for fertilizer N input.

Value

The calculated NUEcrop value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Martinez-Feria, R. A., Castellano, M. J., Dietzel, R. N., Helmers, M. J., Liebman, M., Huber, I., et al. (2018). Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 256, 131–143. doi: 10.1016/j.agee.2018.01.002

Examples

YieldN <- c(2.88, 4.54, 3.62, 4.21) FertN <- 15 NUEcrop(YieldN, FertN)

NUEFC

Calculate NUE of a Food Chain (NUEFC)

Description

The N balance of the entire food chain system, in terms of N consumed as protein relative to N inputs. Calculate NUEFC using the formula: NUEFC = Ncon / Ni

Usage

NUEFC(Ncon, Ni)

Arguments

Ncon	The value of N available for consumption
Ni	Sum total of new N input

Value

The calculated NUEFC value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., and Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639. doi: 10.1038/ngeo325

Examples

```
Ncon <- 15.574
Ni <- c(2.92, 3.78, 4.68, 4.21)
NUEFC(Ncon, Ni)
```

NUEsoil

Calculate NUEsoil

Description

The biomass production per unit of available N. Calculate NUEsoil using the formula: NUEsoil = PlantBM / (FertN + SoilN)

Usage

NUEsoil(PlantBM, SoilN, FertN)

Arguments

PlantBM	A numeric vector of values for plant biomass.
SoilN	A numeric value for soil N content.
FertN	A numeric value for fertilizer N input.

Value

The calculated NUEsoil value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Moll, R. H., Kamprath, E. J., and Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 74, 562–564. doi: 10.2134/agronj1982.00021962007400030 037x

NUEyield

Examples

PlantBM <- c(12.1, 8.99, 12.89, 13.11) SoilN <- 20 FertN <- 15 NUEsoil(PlantBM, SoilN, FertN)

NUEyield

Calculate NUEyield

Description

The contribution of N supplied from the soil that is allocated to the yield N; also often referred to as simply NUE. Calculate NUEyield using the formula: NUEyield = NUPE * NUtE

Usage

NUEyield(NUpE, NUtE)

Arguments

NUpE	N Uptake Efficiency
NUtE	N Utilization Efficiency

Value

The calculated NUEyield value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Novoa, R., and Loomis, R. S. (1981). Nitrogen and plant production. Plant Soil 58, 177–204. doi: 10.1007/BF02180053

Examples

NUpE <- 33.63571 NUtE <- 1.009715 NUEyield(NUpE, NUtE) NUpE

Description

The percentage of available soil N that is utilized by the plant; also conceptualized as apparent recovery efficiency of the N supply. Calculate NUpE using the formula: NUpE = (PlantN / (FertN + SoilN)) * 100

Usage

NUpE(PlantN, SoilN, FertN)

Arguments

PlantN	A numeric vector of values for plant N content.
SoilN	A numeric value for soil N content.
FertN	A numeric value for fertilizer N input.

Value

The calculated NUpE value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Moll, R. H., Kamprath, E. J., and Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 74, 562–564. doi: 10.2134/agronj1982.00021962007400030 037x

```
PlantN <- c(12.1, 8.99, 12.89, 13.11)
SoilN <- 20
FertN <- 15
NUpE(PlantN, SoilN, FertN)</pre>
```

NUtE

Description

The contribution of fertilizer N from the plant tissues towards the yield component. Similar to PE, but does not account for background N. Calculate NUtE using the formula: NUtE = Yield / PlantN

Usage

NUtE(Yield, PlantN)

Arguments

Yield	A numeric vector of yield values.
PlantN	A numeric value for plant tissue N.

Value

The calculated NUtE value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Moll, R. H., Kamprath, E. J., and Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization 1. Agron. J. 74, 562–564. doi: 10.2134/agronj1982.00021962007400030 037x

Examples

```
Yield <- c(2.92, 3.78, 4.68, 4.21)
PlantN <- c(2.89, 3.66, 4.73, 4.16)
NUtE(Yield, PlantN)
```

ΡE

Calculate Physiological Efficiency

Description

The contribution of fertilizer N from the plant tissues towards the yield component. Calculate PE using the formula: PE = (YieldF-Yield0)/(PlantNf-PlantN0)

Usage

PE(YieldF, Yield0, PlantNf, PlantN0)

Arguments

YieldF	A numeric vector of final yield values.
Yield0	A numeric vector of non-fertilized control yield values.
PlantNf	A numeric vector of values for plant N at the end of the experiment.
PlantN0	A numeric vector of values for plant N at the beginning of the experiment.

Value

The calculated PE value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Dobermann, A. (2007). "Nutrient use efficiency-measurement and management," in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.

Examples

YieldF <- c(2.92, 3.78, 4.68, 4.21) Yield0 <- c(1.98, 2.66, 4.26, 3.78) PlantNf <- c(2.89, 3.66, 4.73, 4.16) PlantN0 <- c(1.22, 2.66, 3.99, 2.58) PE(YieldF, Yield0, PlantNf, PlantN0)

PFP

Calculate Partial-factor Productivity (PFP)

Description

The expression of yield per unit of fertilizer N applied.

Calculate PFP using the formula: PFP = YieldF / FertN

Usage

PFP(YieldF, FertN)

PNB

Arguments

YieldF	A numeric vector of final yield values.
FertN	A numeric value for fertilizer N input.

Value

The calculated PFP value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Dobermann, A. (2007). "Nutrient use efficiency-measurement and management," in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.

Examples

```
YieldF <- c(12.09, 11.99, 15.20, 10.33)
FertN <- 15
PFP(YieldF, FertN)</pre>
```

PNB

Calculate Partial N Balance

Description

The expression of plant N content per unit of fertilizer N applied Calculate PNB using the formula: PNB = PlantNf/FertN

Usage

PNB(PlantNf, FertN)

Arguments

PlantNf	Plant N content in fertilized conditons.
FertN	A numeric value for fertilizer N input.

Value

The calculated PNB value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Dobermann, A. (2007). "Nutrient use efficiency-measurement and management," in Proceedings of the International Fertilizer Industry Association (IFA) Workshop on Fertilizer Best Management Practices, 7–9 March 2007, Brussels, 1–28.

Examples

```
PlantNf <- c(2.92, 3.78, 4.68, 4.21)
FertN <- 15
PNB(PlantNf, FertN)</pre>
```

sNBI

Calculate N Balance Index of a System (sNBI)

Description

The accumulation or reduction of soil N over a set time. Calculate sNBI using the formula: sNBI = Ni - No - delSoilN

Usage

sNBI(Ni, No, delSoilN)

Arguments

Ni	Sum total of N inputs (enter each value individually)
No	Sum total of N outputs (enter each value individually)
delSoilN	Change in total soil N value

Value

The calculated ecoNUE value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Sainju, U. M. (2017). Determination of nitrogen balance in agroecosystems. MethodsX 4, 199–208. doi: 10.1016/j.mex.2017.06.001

sNUE

Examples

```
Ni <- c(2.92, 3.78, 4.68, 4.21)
No <- c(2.89, 3.66, 4.73, 4.16)
delSoilN <- 0.085
sNBI(Ni, No, delSoilN)
```

sNUE

Calculate NUE of a System (sNUE)

Description

The fraction of system N outputs that are captured as N yield rather than lost to the environment Calculate sNUE using the formula: sNUE = (YieldN / (YieldN + Nloss))

Usage

sNUE(YieldN, Nloss)

Arguments

YieldN	Observed crop yield vector that is attributed to the nitrogen inputs in the system
Nloss	The value of nitrogen that is lost from the system and not utilized by the crops.

Value

The calculated sNUE value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: Martinez-Feria, R. A., Castellano, M. J., Dietzel, R. N., Helmers, M. J., Liebman, M., Huber, I., et al. (2018). Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 256, 131–143. doi: 10.1016/j.agee.2018.01.002

Examples

YieldN <- c(5.4, 6.3, 4.8, 7.2) Nloss <- 3.574 sNUE(YieldN, Nloss) TNdfF

Description

The total quantity of plant or soil N that is derived from fertilizer Calculate TNdfF using the formula: TNdfF = (NdfF/100) * Plant N or Soil N

Usage

TNdfF(NdfF, PlantN = NULL, SoilN = NULL)

Arguments

NdfF	N derived from Fertilizer expressed as a percentage.
PlantN	A numeric vector of values for plant N content.
SoilN	A numeric value for soil N content.

Value

The calculated TNdfF value.

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108

Secondary: IAEA (1983). Guide on the Use of Nitrogen-15 and Radioisotopes in Studies of Plant Nutrition: Calculations and Interpretation of Data. Vienna: IAEA.

```
NdfF <- 25.98333
SoilN <- 20
PlantN <- c(12.1, 8.99, 12.89, 13.11)
TNdfF(NdfF, PlantN)
TNdfF(NdfF, SoilN)
```

VNF

Description

The portion of the N that is released to the environment during the food production process and is not contained in the food that is consumed Calculate NUEFC using the formula: VNF = Nrec / Ncon

Usage

VNF(Nrec, Ncon)

Arguments

Nrec	N used to produce food item that ends up recycled
Ncon	N in food item that is consumed

Value

The calculated VNF value

References

Primary: Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021, June 4). Nitrogen Use Efficiency Definitions of Today and Tomorrow. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.637108 Secondary: Galloway, J. N., Winiwarter, W., Leip, A., Leach, A. M., Bleeker, A., and Erisman, J. W. (2014). Nitrogen footprints: past, present and future. Environ. Res. Lett. 9:115003. doi: 10.1088/1748-9326/9/11/115003

Nrec <- 7.314 Ncon <- 15.574 VNF(Nrec, Ncon)

Index

AE, 2 ecoNUE, 3 IE, **4** NBI,5 NdfF,6 NHI,6 NP, 7 NRE, 8 NRE15, 9 NUEbal, 10 NUEcrop, 10NUEFC, 11 ${\sf NUEsoil}, 12$ NUEyield, 13NUpE, 14 NUtE, 15PE, 15 PFP, 16 PNB, 17 sNBI, 18sNUE, 19 TNdfF, 20 VNF, 21