
Package ‘IndTestPP’
January 20, 2025

Type Package

Title Tests of Independence and Analysis of Dependence Between Point
Processes in Time

Version 3.0

Date 2020-08-28

Author Ana C. Cebrian

Maintainer Ana C. Cebrian <acebrian@unizar.es>

Imports parallel

Description It provides a general framework to analyse dependence between point pro-
cesses in time. It includes parametric and non-parametric tests to study independence, and func-
tions for generating and analysing different types of dependence.

License GPL

NeedsCompilation no

Depends R (>= 2.10)

Repository CRAN

Date/Publication 2020-08-28 19:00:03 UTC

Contents
IndTestPP-package . 2
BinPer . 3
ComplPos . 4
CondTest . 5
CountingCor . 7
CPSPpoints . 8
CPSPPOTevents . 9
depchi . 12
DepCPSPNHK . 13
DepNHCPSP . 15
DepNHNeyScot . 17
DepNHPPMarked . 19
DepNHPPqueue . 20

1

2 IndTestPP-package

DepqueueNHK . 23
DistObs . 25
DistShift . 26
DistSim . 28
DutilleulPlot . 30
IndNHNeyScot . 32
IndNHPP . 34
IntMPP . 35
nearestdist . 36
NHD . 37
NHF . 39
NHJ . 41
NHK . 45
PlotICPSP . 48
PlotMargP . 49
PlotMCPSP . 50
simHPc . 51
simNHPc . 52
SpecGap . 54
TestIndLS . 55
TestIndNH . 56
TranM . 59
TxBHZ . 60
uniongentri . 61

Index 63

IndTestPP-package Tests of Independence and Analysis of Dependence between Point Pro-
cesses in Time

Description

It provides a general framework to analyse dependence between point processes in time. The pack-
age includes several parametric and non-parametric tests to check the independence between two
or more homogeneous and nonhomogeneous point processes and some tools to characterize the de-
pendence between them, if it exists. In addition, it includes functions for generating and analysing
dependent point processes in time with different types of dependence.

Details

Package: IndTestPP
Type: Package
Version: 3.0
Date: 2020-08-28
License: GPL (>=2)

BinPer 3

Author(s)

Ana C. Cebrian Maintainer: Ana C. Cebrian <acebrian@unizar.es>

BinPer Percentage of concordant intervals

Description

It calculates the proportion of the number of intervals with at least one point in both processes, and
the sum of the number of intervals with at least one point in one process, nx,y/(nx,y+nx,0+n0,y).

Usage

BinPer(posx, posy, ll, T)

Arguments

posx Numeric vector. Occurrence points in the first process, Nx.

posy Numeric vector. Occurrence points in the second process, Ny .

ll Numeric value. Lenght of the intervals where the number of points are counted.

T Numeric value. Length of the observed period of the point processes.

Details

In order to be useful, an adequate length of interval ll, depending on the expected dependence, has
to be selected.

Value

binper Percentage of concordant intervals.

See Also

depchi, CountingCor

Examples

#generation of two HPP
aux1<-simNHPc(lambda=rep(0.08,200),fixed.seed=123)
aux2<-simNHPc(lambda=rep(0.12,200),fixed.seed=125)
BinPer(aux1$posNH, aux2$posNH,ll=5, T=200)

4 ComplPos

ComplPos Changes format of the vector of occurrence times in a point process

Description

It changes the format of the vector of occurrence points in a point process. It builds a vector of
length T, the length of the observation period, which takes value 0 at the non occurrence times and
the position value (type="Pos"), or 1 (type="Bin"), at the occurence times.

Usage

ComplPos(pos, T, type='Pos')

Arguments

pos Numeric vector. Occurrence times.

T Integer. Length of the observed period.

type Character string, ’Pos’ or ’Bin’. Type of the new format.

Details

This function changes the format of the occurrence points in a point process. The new format is
useful when several point processes, in the same observed period, must be specfied; for example, in
function NHJ or NHD, where the occurrence times of different point processes must be introduced as a
matrix. Since the number of occurrences in each process can be different, in the new format, occur-
rences in each process are specified as a vector of length T, which takes value 0 at non occurrence
times and the time position (if type=’Pos’) or 1 (if type=’Bin’) at the occurrence times.

Value

Npos Numeric vector of lenght T containing the occurrence times in the new format.

See Also

NHD, NHF, NHK, NHJ

Examples

pos<-c(4,15,18,34,36,67,98)
Npos<-ComplPos(pos, T=100)

CondTest 5

CondTest Conditional test of independence between two Poisson process

Description

It calculates a test of independence between two Poisson process, based on the analysis of the
occurrences in the second process, given that there is an occurrence in the first one. Two different
approaches to calculate the p-value are implemented.

It calls the auxiliary function calcNmu, not intended for the users.

Usage

CondTest(posx, posy, lambday, r, changer = TRUE, type = "All",
plotRes = FALSE, ...)

Arguments

posx Numeric vector. Occurrence points in the first process, Nx.

posy Numeric vector. Occurrence points in the second process, Ny .

lambday Numeric vector. Intensity at each time in Ny .

r Numeric value. The radius of the intervals centered on the occurrence times in
Nx.

changer Optional. Logical flag. If it is TRUE, when the defined intervals overlap, their
lengths are changed to obtain disjoint intervals. The two overlapping intervals
are shortened by half of the overlapped period. In general, the resulting intervals
are not centered.

type Optional. Label "Poisson", "Normal" or "All". Approach to be used to calculate
test p-values.

plotRes Logical flag. If it is TRUE, the residual differences (yi−µi)/µ
(1/2)
i are plotted.

... Further arguments to be passed to the function plot.

Details

The underlying idea of the tests is to analyze the behaviour of the second process Ny , given that a
point has occured in the first one, Nx. Under independence between Nx and Ny , Ny should be a
Poisson process with intensity lambday.

Intervals of length 2r centered on each point in Nx are defined. To analyze the behaviour of Ny ,
two approaces are implemented, both based on the idea that the number of points in each interval
should be a Poisson of mean µi equal to the integral of lambday in the interval.

"Poisson" option: under the null, and if the intervals are independent (that is if they do not overlap)
the number of points in all them should be a Poisson of mean µ, equal to the sum of all the µi. The
p-values is calculated as 2 ∗min((P (Y < yo) + P (Y = yo)/2), (P (X > yo) + P (Y = yo)/2)),
where Y is a r.v. with distibution Poisson(µ) and yo is the sum of the observed number of points in

6 CondTest

all the intervals. Since the p-values are based on a discrete distribution, they are valid but not exact
p-values.

"Normal" option: under the null, the variables (Ni − µi)/(µ
1/2
i) must be zero mean and variance

one variables but they are not identically distributed. Under general conditions, the mean of the
variables (Ni − µi)/(µ

1/2
i) can be approximated by a Normal distribution using the Central limit

theorem under the Lindeberg condition for r.v which are independent but not identically distributed.
The conditions to have a valid Normal aprroximation are quite weak, even with a complex intensity,
mean values of µi around 0.6 are valid with nx = 50, and around 0.3 with nx = 100.

Value

A list with elements

pvP P-value obtained with the ’Poisson’ approach.

PvN P-value obtained with the ’Normal’ approach.

Ni Number of occurrences in each interval.

mui Theoretical mean of the number of occurrences in each interval under the inde-
pendence assumption.

Res Vector of th residual differences.

linf Lower bound of each interval.

lsup Upper bound of each interval.

mmu Mean of the mui vector. It is used to check the conditions of the approximation
of the Normal test.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

See Also

TestIndNH, NHK, NHJ, DutilleulPlot

Examples

#Two dependent Poisson processes from a NHCPSP
set.seed(30)
lambdao1<-runif(3000)/20
set.seed(31)
lambdao2<-runif(3000)/10
set.seed(32)
lambda12<-runif(3000)/20
lambdaiM<-cbind(lambdao1,lambdao2,lambda12)
aux<-DepNHCPSP(lambdaiM=lambdaiM, d=2,fixed.seed=123, dplot=FALSE)

zz<-CondTest(posx=aux$posNH[[1]],posy=aux$posNH[[2]],lambday=aux$lambdaM[,2], r=2)
zz$pvP
zz$pvN

CountingCor 7

Two independent non homogeneous Poisson processes
lambdao1<-runif(6000)/20
set.seed(124)
lambdao2<-runif(6000)/10
aux1<-simNHPc(lambda=lambdao1, fixed.seed=123)
aux2<-simNHPc(lambda=lambdao2, fixed.seed=124)

zz<-CondTest(posx=aux1$posNH, posy=aux2$posNH, lambday= aux2$lambda, r=3)
zz$pvP
zz$pvN

CountingCor Correlation between the counting variables in two point processes

Description

This function calculates the correlation coefficient between the number of points in intervals of
length ll, in two point processes.

Usage

CountingCor(posx, posy, ll, T, method='spearman', lambdax=NULL,
lambday=NULL)

Arguments

posx Numeric vector. Occurrence times of the points in the first point process.

posy Numeric vector. Occurrence times of the points in the second point process.

ll Numeric value. Lenght of the intervals where the number of points are counted.

T Numeric value. Length of the observed period of the point processes.

method Character string. Correlation coefficient to be calculated. One of "pearson",
"kendall", or "spearman"; see cor.test for definitions.

lambdax Numeric vector. Intensity vector of the first point process.

lambday Numeric vector. Intensity vector of the second point process.

Details

This function calculates ρxy,Il = Cor(XIl , YIl), where XIl and YIl are the number of points in an
interval Il in processes Nx and Ny , respectively.

In order to calculate the number of points in each interval in a process, the function CountP is used.

Value

ccor Estimated correlation.

8 CPSPpoints

See Also

depchi,BinPer

Examples

#generation of two HPP
aux1<-simNHPc(lambda=rep(0.08,200),fixed.seed=123)
aux2<-simNHPc(lambda=rep(0.12,200),fixed.seed=125)

CountingCor(aux1$posNH, aux2$posNH,ll=20, method="kendall",T=200)

CPSPpoints Identifying the occurrence points of the indicator processes in a CPSP

Description

It calculates the occurrence points in the three indicator processes of a bivariate Common Poisson
Shock Process (CPSP), using as input the two marginal processes N1 and N2.

Usage

CPSPpoints(N1,N2,date=NULL, dplot=T, pmfrow=c(2,1), axispoints=NULL,...)

Arguments

N1 Binary vector of the first CPSP marginal process; occurrence points must be
marked with 1 and the other with 0.

N2 Binary vector of the second CPSP marginal process; occurrence points must be
marked with 1 and the other with 0.

date Optional. A vector or matrix indicating the date of each observation.

dplot Optional. A logical flag. If it is TRUE, the marginal and indicator processes are
plotted.

pmfrow Optional. A vector of the form (nr, nc) to be supplied as value of the argument
mfrow in par.

axispoints Optional. Numeric vector with the points in the time index where axis ticks and
labels (from the first column in date) have to be drawn.

... Further arguments to be passed to the function plot.

Details

A bivariate CPSP N is usually specified by its two marginal, and possibly dependent, processes N1

and N2, which are the observed processes. However, N can be decomposed into three independent
indicator processes: N(1), N(2) and N(12), which are the processes of the points occurring only in
the first marginal process, only in the second and in both of them (simultaneous points). The union
of N(1) and N(12), and N(2) and N(12) gives respectively the two marginal processes.

CPSPPOTevents 9

The points in the marginal N1, N2 and indicator N(1), N(2) and N(12) processes can be optionally
plotted. If date is NULL, default axis are used. Otherwise, the values in axispoints are used as
the points in the time index where axis ticks and labels, from the first column in date, have to be
drawn. If axispoints is NULL, a default grid of points is built using the function marca.

Value

A list with components

Px1 Vector of the occurrence points in N(1).

Px2 Vector of the occurrence points in N(2).

Px12 Vector of the occurrence points in N(12).

N1 Input argument.

N2 Input argument.

date Input argument.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

See Also

CPSPPOTevents, PlotMCPSP, PlotICPSP

Examples

set.seed(123)
X<-as.numeric(runif(100)<0.10)
set.seed(124)
Y<-as.numeric(runif(100)<0.15)

aux<-CPSPpoints(N1=X,N2=Y)

CPSPPOTevents Identifying the occurrence points of the indicator processes in the
CPSP from a POT approach

Description

This function calculates the occurrence times and other characteristics (length, maximum and mean
intensity) of the extreme events of the three indicator processes of a bivariate Common Poisson
Shock Process (CPSP) obtained from a Peak Over Threshold (POT) approach.

10 CPSPPOTevents

Usage

CPSPPOTevents(N1,N2,thres1,thres2, date=NULL, dplot=T, pmfrow=c(2,1),
axispoints=NULL,...)

Arguments

N1 Numeric vector. Series (xi) whose threshold exceedances define the first CPSP
marginal process.

N2 Numeric vector. Series (yi) whose threshold exceedances define the second
CPSP marginal process.

thres1 Numeric value. Threshold used to define the extreme events in (xi).

thres2 Numeric value. Threshold used to define the extreme events in (yi).

date Optional. A vector or matrix indicating the date of each observation.

dplot Optional. A logical flag. If it is TRUE, the marginal and indicator processes are
plotted.

pmfrow Optional. A vector of the form (nr, nc) to be supplied as value of the argument
mfrow in par.

axispoints Optional. Numeric vector with the points in the time index where axis ticks and
labels (from the first column in date) have to be drawn.

... Further arguments to be passed to the function plot.

Details

A CPSP N can be decomposed into three independent indicator processes: N(1), N(2) and N(12),
the processes of the points occurring only in the first marginal process, only in the second and in
both of them (simultaneous points). In the CPSP resulting from applying a POT approach, the
events in N(1) are a run of consecutive observations where xi exceeds its extreme threshold but
yi does not exceed its extreme threshold. An extreme event in N(2) is defined analogously. A
simultaneous event, or event in N(12), is a run where both series exceed their thresholds.

For the events defined in each indicator process, three magnitudes (length, maximum intensity and
mean intensity) are calculated together with the initial point and the point of maximum excess
of each event. In N(12), the maximum and the mean intensity in both series (xi) and (yi) are
calculated.

The occurrence point of each event is the time in the run where the maximum of the sum of the
excesses of (xi) and (yi) over their threholds occurs; if an observation does not exceed its corre-
sponding threshold, that excess is 0. According to this definition, the occurrence point in N(1) is
the point with maximum intensity in (xi) within the run.

The vectors inddat1, inddat2 and inddat12, elements of the output list, mark the observations
that should be used in the estimation of each indicator process. The observations in an extreme event
which are not the occurrence point are marked with 0 and treated as non observed in the estimation
process. The rest are marked with 1 and must be included in the likelihood function. See function
fitPP.fun in package NHPoisson for more details on the use of these indexes in the estiamtion of
a point process.

The points in the marginal N1, N2 and indicator N(1), N(2) and N(12) processes can be optionally
plotted. If date is NULL, default axis are used. Otherwise, the values in axispoints are used as

CPSPPOTevents 11

the points in the time index where axis ticks and labels, from the first column in date, have to be
drawn. If axispoints is NULL, a default grid of points is built using the function marca.

Value

A list with components

Im1 Vector of mean excesses (over the threshold) of the extreme events in N(1).

Ix1 Vector of maximum excesses (over the threshold) of the extreme events in N(1).

L1 Vector of lengths of the extreme events in N(1).

Px1 Vector of points of maximum excess of the extreme events in N(1).

Pi1 Vector of initial points of the extreme events in N(1).

inddat1 Index of the observations to be used in the estimation process of N(1).

Im2 Vector of mean excesses (over the threshold) of the extreme events in N(2).

IxY Vector of maximum excesses (over the threshold) of the extreme events in N(2).

L2 Vector of lengths of the extreme events in N(2).

Px2 Vector of points of maximum excess of the extreme events in N(2).

Pi2 Vector of initial points of the extreme events in N(2).

inddat2 Index of the observations to be used in the estimation process of N(2).

Im121 Vector of mean excesses of the series (xi) in N(12).

Ix121 Vector of maximum excesses the series (xi) in N(12).

Im122 Vector of mean excesses of the series (yi) in N(12).

Ix122 Vector of maximum excesses the series (yi) in N(12).

L12 Vector of lengths of the extreme events in N(12).

Px12 Vector of points of maximum excess of the extreme events in N(12).

Pi12 Vector of initial points of the extreme events in N(12).

inddat12 Index of the observations to be used in the estimation process of N(12).

N1 Input argument.

N2 Input argument.

thres1 Input argument.

thres1 Input argument.

date Input argument.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

See Also

CPSPpoints, PlotMCPSP, PlotICPSP

12 depchi

Examples

data(TxBHZ)
dateT<-cbind(TxBHZ$year,TxBHZ$month,TxBHZ$day) #year, month and day of the month
marca<- c(1:length(TxBHZ$TxH))[c(1,diff(dateT[,1]))==1] # points at first day of the year
BivEv<-CPSPPOTevents(N1=TxBHZ$TxH,N2=TxBHZ$TxZ,thres1=378,thres2=364, date=dateT,

axispoints=marca)

depchi Estimating extremal dependence coefficientes

Description

This function estimates and plots the extremal dependence functions χ(u) and χ̄(u) against a grid
of values in [0,1] to analyse the extremal dependence of two variables.

Usage

depchi(X, Y, thresval = c(0:99)/100, tit = "", indgraph = TRUE, bothest = TRUE,
xlegend = "topleft",mfrow=c(1,2),...)

Arguments

X Numeric vector. Values of the first variable.

Y Numeric vector. Values of the second variable.

thresval Numeric vector. Grid values where the functions χ(u) and χ̄(u) are evaluated.

tit Character string. A title for the plots.

indgraph Logical flag. If it is TRUE, plots are shown in separate windows. If it is FALSE,
the layout in mfrow is used.

bothest Logical flag. If it is TRUE, two estimated coefficientes (for X given Y and for
Y given X) are displayed in the same plot. Otherwise, only the coefficient for Y
given X is plotted.

xlegend Optional. Label "topleft","bottomright", etc. Position where the legend on the
graph will be located.

mfrow Optional. A vector of the form c(2, 1) or c(1,2). It gives the layout to draw the
two figures in the function.

... Further arguments to be passed to the function plot.

Details

The extremal dependence between two variables X and Y is the tendency for one variable to be
large, given that the other one is large. The extremal dependence coefficients χ and χ̄ are defined
as χ = limu→1 χ(u) where χ(u) = P (U > u|V > u) and (U,V) are the transformed uniform
marginals of the variables X and Y.

χ̄ = limu→1 χ̄(u) where χ̄(u) = 2logP (U > u)/logP (U > u, V > u)− 1.

DepCPSPNHK 13

The function plots χ(u) and χ̄(u). These graphs can be used to estimate χ̂ and ̂̄χ, the limits of the
functions. In the χ(u) plot, the expected behaviour under independence of X and Y is also plotted.

χ is on the scale [0, 1], with the set (0, 1] corresponding to asymptotic dependence, and the measure
χ̄ falls within the range [-1, 1], with the set [-1, 1) corresponding to asymptotic independence. See
Coles et al. (1999) for more details on the definition and interpretation of these indexes.

Value

A list with elements

chiX Estimated χ(u) function for Y given X evaluated at the threshold grid.

chiY Estimated χ(u) function for X given Y evaluated at the threshold grid.

chiBX Estimated χ̄(u) function for Y given X evaluated at the threshold grid.

chiBY Estimated χ̄(u) function for X given Y evaluated at the threshold grid.

PX Estimation of the probabilities P (U < thresval).

PY Estimation of the probabilities P (V < thresval).

PXY Estimation of the probabilities P [(U < thresval)&(V < thresval)].

thresval Input argument.

References

Coles, S., Heffernan, J. and Tawn, J. (1999) Dependence measures for extreme value analysis.
Extremes, 2, 339-365.

See Also

CountingCor, BinPer

Examples

data(TxBHZ)

aux<-depchi(X=TxBHZ$TxZ,Y=TxBHZ$TxH, thresval = c(0:99)/100,
tit = "Tx Zaragoza and Tx Huesca", xlegend = "bottom",indgraph="FALSE")

DepCPSPNHK Estimating cross K-function and envelopes for marginal processes of
a CPSP

Description

This function estimates the cross K-function between two (homogenous or nonhomogeneous) point
processes in time, Nx and Ny . It is evaluated in a grid of distances r and plotted. An envelope
built by simulation under the hypothesis that the processes are the marginal processes of a bivariate
CPSP is also plotted.

It calls the auxiliary function DepCPSPKenv, not intended for users.

14 DepCPSPNHK

Usage

DepCPSPNHK(posx, posy, lambdaix, lambdaiy, lambdaixy, r=NULL, typeEst=1,
nsim=1000, conf=0.95,tit=NULL, cores=1,fixed.seed=NULL,...)

Arguments

posx Numeric vector. Occurrence times of the points in the first point process Nx .

posy Numeric vector. Occurrence times of the points in the second point process Ny

.

lambdaix Numeric vector. Intensity values of N(x).

lambdaiy Numeric vector. Intensity values of N(y).

lambdaixy Numeric vector. Intensity values of N(xy).

r Optional. Numeric vector. Grid values where the K-function must be evaluated.
If it is NULL, a default vector is used; see Details.

typeEst Optional. Two possible values: 1 or 2. They determines which one of the two
available estimators of the function Kij has to be used; see Details.

nsim Optional. Numeric value. Number of simulations to obtain the envelope.

conf Optional. Numeric value in (0,1). Confidence level of the envelope for the K-
function.

tit Optional. Title to be used in the plot of the K-function.

cores Optional. Number of cores of the computer to be used in the calculations.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. If it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

Details

This function estimates the cross K function between two (homogenous or nonhomogeneous) point
processes in time, Nx and Ny . Two different estimators are available, see NHK for more details.

An envelope for the cross K function is built under the hypothesis that the processes are the marginal
processes of a bivariate CPSP with intensities of the indicator processes lambdaxi, lambdayi and
lambdaxyi. The envelope is based on the simulation of CPSPs, gnerated by function DepNHCPSP.

If argument r is NULL, the following r-grid is used to evaluate the function:

r1<-max(20, floor(T/20))

r<-seq(1,r1,by=2)

if (length(r)>200) r<-seq(1,r1,length.out=200)

where T is the length of the observed period.

DepNHCPSP 15

Value

A list with elements:

r Vector of values r where the cross K-function is estimated.

NHKr Estimated values of Kij(r).

KenvL Lower bounds of the envelope of Kij(r).

KenvU Upper bounds of the envelope of Kij(r).

T Length of the observed period of the processes.

See Also

NHK, DepNHCPSP

Examples

set.seed(123)
lambdai1<-runif(500,0.005,0.01)
set.seed(124)
lambdai2<-runif(500,0.005,0.01)
set.seed(125)
lambdai12<-runif(500,0.005,0.02)

#Observed process: independent Poisson processes
posx<-simNHPc(lambda = (lambdai1+lambdai12), fixed.seed = 13)$posNH
posy<-simNHPc(lambda = (lambdai2+lambdai12), fixed.seed = 14)$posNH
aux<-DepCPSPNHK(posx=posx, posy=posy, lambdaix=lambdai1, lambdaiy=lambdai2,

lambdaixy=lambdai12, fixed.seed=123, r=c(1:10), nsim=500)

#Observed processes: dependent marginal processes of a CPSP
#pos<-DepNHCPSP(lambdaiM=cbind(lambdai1, lambdai2, lambdai12), d=2,
fixed.seed=123, dplot=F)$posNH
#aux<-DepCPSPNHK(posx=pos$N1, posy=pos$N2, lambdaix=lambdai1,
lambdaiy=lambdai2, lambdaixy=lambdai12, fixed.seed=125, r=c(1:10))

DepNHCPSP Generating a Common Poisson Shock Process

Description

This function generates the d marginal processes of a Common Poisson Shock Process, which
are d dependent Poisson processes. Both homogeneous and nonhomogeneous processes can be
generated. In the case d = 2, the processes can be optionally plotted.

Usage

DepNHCPSP(lambdaiM, d,dplot=TRUE, pmfrow=c(2,1), fixed.seed = NULL, ...)

16 DepNHCPSP

Arguments

lambdaiM Matrix. Each column contains the intensity values of a indicator process .

d Numeric value. Dimension (number of marginal processes) of the CPSP.

dplot Optional. A logical flag. If it is TRUE and d=2, the marginal and indicator
processes are plotted.

pmfrow Optional. A vector of the form (nr, nc) to be supplied as argument mfrow in par.

fixed.seed Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

Details

A CPSP N is usually specified by its marginal, and possibly dependent, processes N1, N2..., Nd,
which are the observed processes. However, N can be decomposed into m independent indicator
processes: N(1), N(2), ..., N(12), ..., N(1...d), which are the processes of the points occurring only in
the first marginal process, only in the second,..., simultaneously in the two first marginal processes,
... and in all the marginal processes simultaneously. The number of indicator processes is m, the
sum of n choose i for i = 1, ..., d. The value m must also be the number of columns of the matrix in
argument lambdaiM. The marginal process Ni is obtained as the union of all the indicator processes
where the index i appears, N.i.. The intensity of Ni is the sum of the intensities of all the indicator
processes N.i..

The decomposition into indicator processes can be readily applied for the generation of a CPSP:
it reduces to the generation of m independet PPs, see Cebrian et al. (2020) for details. Points are
generated in continuous time.

In order to generate d independent Poisson processes, the function IndNHPP has be used.

In the bivariate case d = 2, the points in the marginal N1, N2 and indicator N(1), N(2) and N(12)

processes can be optionally plotted.

Value

A list with elements

posNH A list of d vectors containing the occurrence points of the d marginal processes.
The name of the elements of the list are N1, N2...,Nd.

posNHG A list of m vectors containing the occurrence points of the m indicator processes.

lambdaM Matrix. Each column is the intensity vector of a marginal process.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). Modeling and projecting the occurrence of bivariate
extreme heat events using a nonhomogeneous common Poisson shock process. Stochastic and
Environmental Research and risk assessment, 29(1), 309-322.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

DepNHNeyScot 17

See Also

DepNHNeyScot, DepNHPPqueue, DepNHPPMarked, IndNHPP

Examples

set.seed(123)
lambdai1<-runif(200,0,0.1)
set.seed(124)
lambdai2<-runif(200,0,0.07)
set.seed(125)
lambdai12<-runif(200,0,0.05)
set.seed(126)
lambdai123<-runif(200,0,0.01)
lambdaiM<-cbind(lambdai1, lambdai2,lambdai1, lambdai12, lambdai12, lambdai12, lambdai123)
aux<-DepNHCPSP(lambdaiM=lambdaiM, d=3, fixed.seed=123)

#lambdaiM<-cbind(lambdai1, lambdai2, lambdai12)
#aux<-DepNHCPSP(lambdaiM=lambdaiM, d=2,fixed.seed=123, dplot=TRUE)

DepNHNeyScot Generating a multivariate Neyman-Scott cluster process

Description

This function generates a multivariate Neyman-Scott cluster process, that is a vector of d dependent
(homogeneous or nonhomogeneous) point processes which are Neyman-Scott processes with the
same trajectory of cluster centers.

It calls the auxiliary function GenSons (not intended for the users), see Details.

Usage

DepNHNeyScot(lambdaParent, d, lambdaNumP = 1, dist = "normal", sigmaC = 1,
minC = -1, maxC = 1, dplot=TRUE, fixed.seed=NULL,...)

Arguments

lambdaParent Numeric vector. Intensity values of the Poisson process used to generate the
centers of the clusters of the Neyman-Scott process.

d Integer. Number of dependent processes to be generated.

lambdaNumP Optional. Numeric vector. Mean values of the number of sons of each dependent
process. If its length is equal to 1, the same value is used to generate all the
dependent processes.

dist Optional. Label "normal" or "uniform". Distribution used to generate the points
of each cluster.

sigmaC Optional. Numeric vector. Only used if dist="normal". Standard deviation of
the normal distribution. If its length is equal to 1, the same value is used in the
d processes.

18 DepNHNeyScot

minC Optional. Numeric vector. Only used if dist="uniform". Lower bounds of the
Uniform distribution. If its length is equal to 1, the same value is used in the d
processes.

maxC Optional. Numeric vector. Only used if dist="uniform". Upper bounds of the
Uniform distribution. If its length is equal to 1, the same value is used in the d
processes.

dplot Optional. A logical flag. If it is TRUE, the generated marginal processes are
plotted.

fixed.seed Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

Details

A Neyman-Scott process is a Poisson cluster process where the points in each cluster are randomly
distributed around the cluster center, see Neyman and Scott (1958) and Entekhabi et al. (1989).

Homogeneous or NH Neyman-Scott processes in continuous time and with the same trajectory
of cluster centers are generated, so that d dependent processe are obtained. First, the Poisson
process of the cluster centers is generated. Then, the number of points in each cluster is generated
using a Poisson distribution with means which can be different in each process. The distances of
each point in the cluster to its centre can be generated using two distributions a N(0, sigmaC) or a
Uniform(minC, maxC).

It is noteworthy that high values of sigmaC or the range maxC-minC lead to a high variability around
the centre and to a low dependence between the processes.

The marginal processes of the generated vector can be optionally plotted.

Value

A list with elements:

posNH A list of d vectors, containing the occurrence points of the d dependent pro-
cesses. The name of the elements of the list are N1, N2,..., Nd.

sizeCL A list of d vectors. Each vector contains the size (number of points) of each
cluster in a processes. The name of the elements of the list are size1, size2,...,
sized.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

Neyman, J., & Scott, E. L. (1958). Statistical approach to problems of cosmology. Journal of the
Royal Statistical Society. Series B (Methodological), 1-43.

Entekhabi, D., Rodriguez-Iturbe, I., & Eagleson, P. S. (1989). Probabilistic representation of the
temporal rainfall process by a modified Neyman-Scott Rectangular Pulses Model: Parameter esti-
mation and validation. Water Resources Research, 25(2), 295-302.

DepNHPPMarked 19

See Also

IndNHNeyScot, DepNHPPqueue, DepNHPPMarked, DepNHCPSP

Examples

Generation of three dependent Neyman-Scott processes with normal distances
set.seed(123)
lambdaParent<-runif(100,0,0.1)

DepNHNeyScot(lambdaParent=lambdaParent, d=3, lambdaNumP = c(2,3,2),
dist = "normal", sigmaC = c(3,2,2),fixed.seed=123)

DepNHPPMarked Generating dependent point processes from a marked Poison Process

Description

This function generates d dependent (homogeneous or nonhomogeneous) point processes using a
marked Poisson process, where the marks are generated by a Markov chain process defined by a
transition matrix.

Usage

DepNHPPMarked(lambdaTot, MarkovM, inival = 1, dplot=TRUE, fixed.seed=NULL,...)

Arguments

lambdaTot Numeric vector. Intensity values of the Poisson process used to generate the
dependent processes.

MarkovM Matrix. Trasition probabilities of the d-state Markov chain used to generate the
marks of the process.

inival Optional. Initial mark value used to generate the series of marks.

dplot Optional. A logical flag. If it is TRUE, the marginal processes are plotted.

fixed.seed Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

Details

Points of the marked Poisson process are generated in continuous time, using the following proce-
dure: First, a trajectory of the underlying Poisson process is generated. Then, the mark series is
generated using a d-state Markov chain. The mark series takes values in 1,2,...,d and determines in
which of the d processes the points occur.

The marginal processes defined by the marks are not Poisson unless the generated marks are inde-
pendent observations, see Isham (1980).

20 DepNHPPqueue

A transition matrix P = (pij) with equal rows leads to d independent point processes, and the
more similar the rows of P, the less dependent the resulting processes. The spectral gap (SpecGap)
measures the dependence between the generated processes, see Abaurrea et al. (2014).

Tha marginal processes of the marked process can be optionally plotted using dplot=TRUE.

Value

A list with elements

posNH A list of d vectors, containing the occurrence points in each marginal point pro-
cess. The name of the elements of the list are N1, N2,..., Nd.

posNHG Numeric vector of the occurrences times of the generated Poisson process.

mark Vector of the generated marks.

lambdaTot Input argument.

MarkovM Input argument.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

Isham, V. (1980). Dependent thinning of point processes. J. Appl. Probab., 17(4), 987-95.

See Also

DepNHPPqueue, DepNHNeyScot, DepNHCPSP, IndNHPP, SpecGap

Examples

Generation of three dependent point processes using a marked PP
set.seed(123)
lambdaTot<-runif(1000)/10
aux<-DepNHPPMarked(lambdaTot=lambdaTot,
MarkovM=cbind(c(0.3,0.1,0.6), c(0.1, 0.6, 0.3), c(0.6, 0.3,0.1)),fixed.seed=123)
print(cbind(aux$posNH, aux$mark))
print(aux$posNHs)

DepNHPPqueue Generating dependent point processes by a tandem queueing network

Description

It generates d dependent (homogeneous or nonhomogeneous) Poisson processes using d−1 queues
in tandem.

DepNHPPqueue 21

Usage

DepNHPPqueue(lambda, d, T=NULL, nEv=NULL, nserv="infty", Clambda=TRUE,
ddist='exp',argd=1,dplot=TRUE, fixed.seed=NULL, ...)

Arguments

lambda Numeric value or vector. Intensity of the first Poisson process. If its length is 1,
homogeneous processes are generated.

d Integer. Number of dependent processes to be generated.

T Optional. Positive integer. Length of the period where the point are going to be
generated. Only used in homogeneous processes (if lambda is a constant).

nEv Optional. Positive integer. Number of points to be generated in the processs.
Only used in homogeneous processes.

Clambda Optional logical flag. Only used in nonhomogeneous processes. If it is TRUE,
the intensity vectors of the generated point processes is calculated.

nserv Optional. Number of servers in the queue system; only two values are possible:
1 or "infty" if the number of servers is infinity.

ddist Character string. Identification of the probability distribution of the serving
time. It must be one of the names of the probability distributions available in
the stats package, see Distributions; for example "gamma", "geom", etc.

.

argd Optional. A value, vector or a matrix (with d-1 rows) containing the arguments
to be used in the probability distribution in ddist; see Details.

dplot Optional. A logical flag. If it is TRUE, the marginal processes are plotted.

fixed.seed Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

Details

The generation algorithm is described in Cebrian et al. (2020). The generation of dependent homo-
geneous Poisson processes can be based on a M\ M\ 1 or a M\ M \ ∞ queue, and the intensity of
each output process is equal to the intensity of the input process, see Burke(1956). The generation
of dependent nonhomogeneous Poisson processes is based on a M(t)\ G \ ∞ queue and the intensity
of each output process is equal to the convolution λout(t) = λinp(t) ∗ f(t), where λinp(t) is the
input intensity and f(t) the density function of the service time, see Keilson and Servi (1994).

In the homogeneous processes, the argument λ can be an integer or a vector with equal values.
In the first case, the argument nEv or T must be specified; in the second, the length of the vector
determines the length of period where the points are generated (as in the nonhomogeneous case).

The serving times in all the queues must have a probability distribution in the same family (ddist)
but the parameters of that distribution can be different in each queue. If the parameters are the same
in all the queues, argument argd is a numeric value (if there is only one parameter) or a vector; if
the parameters are different in each queue, argd must be a matrix with (d-1) rows, even if there is
only one parameter it must be a (d-1) × 1 matrix.

22 DepNHPPqueue

The occurrence times in each output process are sorted, so that the output time in row i does not
always correspond to the input time in the same row. The number of points in the output process
may be lower than in the input (if some outputs have not been observed).

Value

A list with elements

posNH A list of d vectors, containing the occurrence points in each point process. The
name of the elements in the list are N1, N2,..., Nd.

lambdaM A d-column matrix containing the intensity vectors of the d dependent pro-
cesses, in nonhomogeneous processes and if Clambda=TRUE. Otherwise, the in-
put argument lambda.

References

Burke, P. J. (1956). The Output of a Queuing System. Operations Research. 4(6), 699-704.

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics

Keilson, J. Servi, L.D. (1994). Networks of nonhomogeneous M G ∞. J. Appl. Probab., 31,
157-68.

See Also

IndNHPP, DepNHNeyScot, DepNHPPMarked, DepNHCPSP

Examples

#Generation of 3 dependent HPPs, with one server and exponential service time equal to 10
aux<-DepNHPPqueue(lambda=0.05, d=3, nEv=25,fixed.seed=123,nserv=1, argd=0.1)
aux$posNH

#Generation of 4 dependent NHPPs, with infinity servers and different mean service times
#at each queue
lambda<-runif(200,0,0.1)
aux<-DepNHPPqueue(lambda=lambda, d=4, fixed.seed=123, argd=cbind(c(0.1, 0.3, 0.1)))
aux$posNH

#Generation of 3 dependent NHPPs, with infinity servers and Gamma service times
#with different parameters at each queue
lambda<-runif(200,0,0.1)
aux<-DepNHPPqueue(lambda=lambda, d=3, ddist='gamma',fixed.seed=123,

argd=cbind(c(0.1, 0.3), c(1,2)))
aux$posNH

DepqueueNHK 23

DepqueueNHK Estimating cross K-function and envelopes for the marginal processes
of a queue

Description

This function estimates the cross K-function between two (homogenous or nonhomogeneous) point
processes in time, Nx and Ny . It is evaluated in a grid of distances r and plotted. An envelope built
by simulation under the hypothesis that the processes are the marginal processes (the input and the
output) of a queue is also plotted.

It calls the auxiliary functions NHKaux, NHKaux2, NHKaux3 and DepqueueKenv, not intended
for users.

Usage

DepqueueNHK(posx, posy, lambda, T=NULL, nserv='infty', ddist='exp',argd=1,r=NULL,
typeEst=1, nsim=1000, conf=0.95,tit=NULL, cores=1,fixed.seed=NULL,...)

Arguments

posx Numeric vector. Occurrence times of the points in the first point processes Nx.

posy Numeric vector. Occurrence times of the points in the second point processes
Ny .

lambda Numeric vector. Intensity values of the input process Nx.

T Optional. Positive integer. Length of the period where the point are going to be
generated. Only used in homogeneous processes (if lambda is a constant).

nserv Optional. Number of servers in the queue system; only two values are possible:
1 or "infty" if the number of servers is infinity.

ddist Character string. Identification of the probability distribution of the serving
time. It must be one of the names of the probability distributions available in
the stats package, see Distributions; for example "gamma", "geom", etc.

.

argd Optional. Numeric value or vector containing the arguments to be used in the
probability distribution in ddist.

r Optional. Numeric vector. Grid values where the K-function must be evaluated.
If it is NULL, a default vector is used; see Details.

typeEst Optional. Two possible values: 1 or 2. They determine which one of the two
available estimators of the function Kij has to be used; see Details.

nsim Optional. Numeric value. Number of simulations to obtain the envelope.

conf Optional. Numeric value in (0,1). Confidence level of the envelope for the K-
function.

tit Optional. Title to be used in the plot of the K-function.

24 DepqueueNHK

cores Optional. Number of cores of the computer to be used in the calculations.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

Details

This function estimates the cross K function between two (homogenous or nonhomogeneous) point
processes in time, Nx and Ny . Two different estimators are available, see NHK for details.

An envelope for the cross K function is built under the hypothesis that the processes are the input and
the output processes of a queue. The envelope is based on simulations, where processes generated
by DepNHPPqueue are used. The distribution of the serving time is specified in arguments ddist
and argd. The queue can have one or infinity servers.

If argument r is NULL, the following r-grid is used to evaluate the function

r1<-max(20, floor(T/20))

r<-seq(1,r1,by=2)

if (length(r)>200) r<-seq(1,r1,length.out=200)

where T is the length of the observed period.

Value

A list with elements:

r Vector of values r where the cross K-function is estimated.

NHKr Estimated values of Kij(r).

KenvL Lower bounds of the envelope ofKij(r).

KenvU Upper bounds of the envelope of Kij(r).

T Length of the observed period of the processes.

See Also

NHK, DepNHPPqueue

Examples

#Observed process: independent Poisson processes
set.seed(123)
T<-1000
lambda1<-runif(T,0,0.05)
dendist<- dexp(c(1:T), 1)
lambda2<-convolve(lambda1,rev(dendist),type='o')[1:T]
posx<-simNHPc(lambda = lambda1, fixed.seed = 134)$posNH
posy<-simNHPc(lambda = lambda2, fixed.seed = 135)$posNH

DepqueueNHK(posx=posx, posy=posy, lambda=lambda1, ddist='exp',argd=1,
r=seq(1,40, by=5), fixed.seed=123,nsim=500)

DistObs 25

#Observed process: input and output processes of a queue
#aux<-DepNHPPqueue(lambda=lambda1, d=2, fixed.seed=123, argd=1, dplot=FALSE)$posNH
#DepqueueNHK(posx=aux[[1]], posy=aux[[2]], lambda=lambda1, ddist='exp',argd=1,
r=seq(1,40, by=5), fixed.seed=123)

DistObs Calculates the set of close points and the mean distance in a vector of
processes, for each point in the first process

Description

Given a set of two or three processes, this function calculates the set of close points and the mean
distance for each point in the first process.

It calls the functions calcdist, not intended for the users, and uniongentri.

Usage

DistObs(posx, posy, posz=NULL, info = FALSE, PA = FALSE, procName=c('X','Y','Z'),...)

Arguments

posx Numeric vector. Position of the occurrence points in the first process.

posy Numeric vector. Position of the occurrence points in the second process.

posz Optional. Numeric vector. Position of the occurrence points in the third process.

info Optional logical flag. If it is TRUE, information about the generated points is
showed on the screen and dotcharts and bivariate charts of the occurrence points
of the processes are displayed.

PA Optional logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.

procName Vector of character strings. Labels for the first, second and third processes.

... Further arguments to be passed to the function plot, if argument info="TRUE".

Details

Given a set of two or three point proccesses, for each point txi in the first process of the set, this
function calcultes its set of close points and the mean distance to its close points. The definition of
set of close points can be found in Abaurrea et al. (2015), and the distances are defined as |tyj

− txi
|

if there are two processes, and as |tyj
− txi

|+ |tzk − txi
| if there are three.

Value

DistTri The vector of the mean distances of points txi
.

26 DistShift

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

See Also

TestIndNH, DistSim, uniongentri

Examples

data(TxBHZ)
dateT<-cbind(TxBHZ$year,TxBHZ$month,TxBHZ$day) #year, month and day of the month
BivEv<-CPSPPOTevents(N1=TxBHZ$TxH,N2=TxBHZ$TxZ,thres1=36.4, thres2=37.8, date=dateT)
aux<-DistObs(BivEv$Px1, BivEv$Px2, BivEv$Px12,info = TRUE)

DistShift Generates by translation a vector of independent processes, and cal-
culates the set of close points and the mean distance for each point in
the first process

Description

This function generates a vector of two (or three) independent processes, conditionally on the first
one, by shifting the second (and the third) process.

It also calculates the set of close points and the mean distance in the generated vector, for each point
txi

in the first process.

Usage

DistShift(posx,posy,posz=NULL, T, shii1, shii2=NULL, PA = FALSE, info=FALSE,...)

Arguments

posx Numeric vector. Position of the occurrence points in the first process.

posy Numeric vector. Position of the occurrence points in the second process.

posz Optional. Numeric vector. Position of the occurrence points in the third process.

T Numeric value. Length of the observed period of the processes.

shii1 Numeric value. Distance used to shift the points in the second process. It must
be a positive value lower than T.

shii2 Optional. Numeric value. Distance used to shift the points in the third process.
It must be NULL, if there are two processes, and a positive value lower than T,
if there are three.

PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.

DistShift 27

info Optional. Logical flag. If it is TRUE, information about the generated points is
shown on the screen and dotcharts and bivariate charts of the occurrence points
of the three processes are displayed.

... Further arguments to be passed to the functions plot and dotchart if the argu-
ment info=T

Details

This function is mainly used in the application of the Lotwicck- Silverman approach, see Lotwick
and Silverman (1982), to generate a pair of independent processes with the same marginal distri-
butions than the observed ones. These processes are used for example to build a test to assess
independence between two or three processes, see TestIndLS.

The key idea is to wrap the processes onto a circumference by identifying the opposite sides of the
time interval where they are observed. The first process is fixed, while the others are shifted over
the circumference a given amount. The idea of this translation is to keep the marginal distribution
of the processes but to break any dependence between them, without the need of parametric models
to describe the marginal patterns.

The function also calculates the set of close points and the mean distance for each point txi in the
first process, in the new shifted vector of processes.

Value

DistTri The vector of the mean distances of points txi
in the shifted processes.

References

Lotwick, H.W. and Silverman, B.W. (1982). Methods for analysing Spatial processes of several
types of points. J.R. Statist. Soc. B, 44(3), pp. 406-13

See Also

TestIndLS, DistSim

Examples

set.seed(123)
lambdax<-runif(200, 0.01,0.17)
set.seed(124)
lambday<-runif(200, 0.015,0.15)
set.seed(125)
lambdaz<-runif(200, 0.005,0.1)
posx<-simNHPc(lambda=lambdax, fixed.seed=123)$posNH
posy<-simNHPc(lambda=lambday, fixed.seed=123)$posNH
posz<-simNHPc(lambda=lambdaz, fixed.seed=123)$posNH

aux<-DistShift(posx=posx, posy=posy, posz=posz, T=200, shii1=59, shii2=125)

28 DistSim

DistSim Generates a vector of independent processes, and calculates the set of
close points and the mean distance for each point in the first process

Description

This function generates a vector of two (or three) independent homogeneous or nonhomogeneous
processes conditionally on the first one, by simulating the second (and the third) process using a
parametric model (Poisson processes or Neyman-Scott cluster processes).

It also calculates the set of close points and the mean distance in the generated vector, for each point
txi

in the first process.

DistSimfix allows to fix a seed in the generation process.

Usage

DistSim(posx, NumProcess=2, type = "Poisson", lambdaMarg = NULL,
lambdaParent = NULL, lambdaNumP=NULL, dist = "normal", sigmaC = 1,
minC = -1, maxC = 1, PA = FALSE,info=FALSE,...)

DistSimfix(posx, NumProcess=2, type = "Poisson", lambdaMarg = NULL,
lambdaParent = NULL,lambdaNumP=NULL, dist = "normal", sigmaC = 1,
minC = -1, maxC = 1, PA = FALSE,info=FALSE,fixed.seed=1,...)

Arguments

posx Numeric vector. Position of the occurrence points in the first process.

NumProcess Optional. Integer equal to 2 or 3, the number of processes in the vector.

type Optional. Label "Poisson" or "PoissonCluster". Type of point processes to be
generated. Up to now, only two types are available: Poisson processes ("Pois-
son") and Neyman-Scott cluster processes ("PoissonCluster").

lambdaMarg Two-column matrix. Only used when type="Poisson". Each column is the in-
tensity λ(t) used to generate the processes.

lambdaParent Numeric vector. Only used when type="PoissonCluster". Intensity values of the
Poisson process used to generate the centres of the clusters of the Neyman-Scott
process.

lambdaNumP Numeric vector (length ≤ 2). Only used when type="PoissonCluster". Mean
values of the number of sons in each process. If its length is 1 and NumProcess=2,
the same value is used for both processes.

dist Optional. Label "normal" or "uniform". Only used when type="PoissonCluster".
Distribution used to generate the point distances in each cluster.

sigmaC Optional. Numeric vector. Only used when type="PoissonCluster" and dist="normal".
Standard deviation of the normal distribution. If its length is 1 and NumProcess=2,
the same value is used for both processes.

DistSim 29

minC Optional. Numeric vector. Only used when type="PoissonCluster" and dist="uniform".
Lower bounds of the Uniform distribution. If its length is 1 and NumProcess=2,
the same value is used for both processes.

maxC Optional. Numeric vector. Only used when type="PoissonCluster" and dist="uniform".
Upper bounds of the Uniform distribution. If its length is 1 and NumProcess=2,
the same value is used for both processes.

PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.

info Optional. Logical flag. If it is TRUE, information about the generated points is
shown on the screen and dotcharts and bivariate charts of the occurrence points
of the three processes are displayed.

fixed.seed Optional. Only available in DistSimfix. Integer value used to set the seed in
random generation procedures.

... Further arguments to be passes to the functions plot and dotchart if argument
info=T.

Details

This function is mainly used in the application of a parametric bootstrap approach to generate a pair
of independent processes with the same marginal distributions than the observed ones. To that aim,
the first process is fixed and the others are generated using a parametric model. These processes
are used for example to build a test to assess the independecne between two or three processes, see
TestIndNH.

Two types of processes (Poisson, "Poisson", and Neyman-Scott cluster processes,"PoissonCluster")
can be generated. Generation of nonhomogeneous Poisson processes is done using the inversion
algorithm, see simNHPc. For generation of Neyman-Scott processes, see IndNHNeyScot.

The function also calculates the set of close points and the mean distance for each point txi
in the

first process, in the new generated vector of processes.

The lenght of the period where the processes are generated is determined by the length of the argu-
ment lambdaParent or the number of rows of lambdaMarg. Homogenous processes are generated
if the intensity vectors in lambdaParent or in lambdaMarg are constant (that is if all the values in
the vector are equal).

If a seed must be fixed in the generation process, function DistSimfix has to be used. The functions
DistSim and DistSimfix are similar, the difference is that the first one uses a random seed to
generate the processes, while the second one uses a seed set by the argument fixed.seed.

Value

DistTri Vector of the mean distances of each point txi
calculated in the generated pro-

cesses.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics, 22(1), 127-144.

30 DutilleulPlot

See Also

TestIndNH, DistObs, IndNHNeyScot, simNHPc

Examples

#Calculation of the distances in a vector of three independent Poisson processes
#conditionally to the first one

set.seed(123)
lambdax<-runif(200, 0.01,0.15)
posaux<-simNHPc(lambda=lambdax, fixed.seed=123)$posNH

set.seed(124)
lambday<-runif(200, 0.005,0.1)
set.seed(125)
lambdaz<-runif(200, 0.005,0.2)

DistSimfix(posx=posaux, type = "Poisson", lambdaMarg = cbind(lambday,lambdaz),
fixed.seed=123, info=TRUE)
#DistSim(posx=posaux, type = "Poisson", lambdaMarg = cbind(lambday,lambdaz))

DutilleulPlot A graphical test to assess independence between two point processes

Description

This function applies the Diggle’s randomization testing procedure extended by Dutilleul(2011),
and performs a plot which graphically assesses the independence between two point proceses. It is
implemented for homogenous and non homogenous Poisson processes.

Usage

DutilleulPlot(posx, posy, lambday, nsim = 1000, lenve = c(0.025, 0.975), ...)

Arguments

posx Numeric vector. Occurrence times of the points in the first point process.
posy Numeric vector. Occurrence times of the points in the second point process.
lambday Numeric vector. Intensity vector of the second point process. If the process is

homogeneous, a vector of length T , with equal values must be provided; see
Details.

nsim Optional. Positive integer. Number of simulations to calculate the confidence
band.

lenve Optional. Numeric vector. The order of the lower and the upper percentiles to
build the confidence band.

... Further arguments to be passed to the function plot.

DutilleulPlot 31

Details

This graphical approach is based on the comparison of the cumulative relative frequency of the near-
est neighbour distances between the points in the two observed processes, with their counterpart in
two independent processes with the same marginal distributions, which are obtained by simulation.

The function plots the cumulative relative frequency of the observed processes and a confidence
band calculated from nsim simulated independent processes.

The length of the observed period T is determined by the length of the argument lambday.

Value

A list with the elements:

quantobs Vector of the observed percentiles of the nearest neighbour distances.

enve1 Vector of the lower bounds of the confidence band.

enve2 Vector of the upper bounds of the confidence band.

References

Dutilleul, P. (2011), Spatio-temporal heterogeneity: Concepts and analyses, Cambridge University
Press.

See Also

TestIndNH, CondTest,nearestdist

Examples

#Two independent NHPPs
set.seed(123)
lambdax<-runif(200, 0.01,0.1)
set.seed(124)
lambday<-runif(200, 0.015,0.15)
posx<-simNHPc(lambdax,fixed.seed=123)$posNH
posy<-simNHPc(lambday, fixed.seed=123)$posNH

aux<-DutilleulPlot(posx, posy, lambday, nsim = 100)

#Two dependent Neyman Scott processes
#set.seed(123)
#lambdaParent<-runif(200)/10
#DepPro<-DepNHNeyScot(lambdaParent=lambdaParent, d=2, lambdaNumP = 3,
dist = "normal", sigmaC = 3,fixed.seed=123)
#posx<-DepPro$PP1
#posy<-DepPro$PP2
#aux<-DutilleulPlot(posx, posy, lambday, nsim = 100)

32 IndNHNeyScot

IndNHNeyScot Generating a vector of independent Neyman-Scott cluster processes

Description

This function generates a vector of d independent (homogeneous or nonhomogeneous) Neyman-
Scott cluster processes with independent trajectories of cluster centers with the same intensity.

It calls the auxiliary function GenSons (not intended for the users), see Details.

Usage

IndNHNeyScot(lambdaParent, d, lambdaNumP = 1, dist = "normal",
sigmaC = 1, minC = -1, maxC = 1, dplot=TRUE,fixed.seed=NULL,...)

Arguments

lambdaParent Numeric vector. Intensity of the Poisson process used to generate the indepen-
dent trajectories of the cluster centres of the Neyman-Scott process.

d Integer. Number of independent processes to be generated.

lambdaNumP Optional. Numeric vector. Mean values of the number of sons of each marginal
process. If its length is equal to 1, the same value is used to generate all the
processes.

dist Optional. Label "normal" or "uniform". Distribution used to generate the point
locations of each cluster.

sigmaC Optional. Numeric vector. Standard deviation of the normal distribution. Only
used if dist="normal". If its length is equal to 1, the same value is used in the d
processes.

minC Optional. Numeric vector. Lower bounds of the Uniform distribution. Only
used if dist="uniform". If its length is equal to 1, the same value is used in the d
processes.

maxC Optional. Numeric vector. Upper bounds of the Uniform distribution. Only
used if dist="uniform". If its length is equal to 1, the same value is used in the d
processes.

dplot Optional. A logical flag. If it is TRUE, the generated marginal processes are
plotted.

fixed.seed Optional. An integer or NULL. Value used to set the seed in random generation
processes; if it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

IndNHNeyScot 33

Details

A Neyman-Scott process is a Poisson cluster process where the points in each cluster are randomly
distributed around the cluster center, see Neyman and Scott (1958) and Entekhabi et al. (1989).

To generate each process in the vector, an independent trajectory of the Poisson process of the
cluster centres is generated first. Then, the number of points in each cluster is generated using
a Poisson distribution with mean value µPi (i=1,...d). Finally, the distances to the centre of each
point in the cluster is be generated using one of the two distributions available, N(0, sigmaC) or
Uniform(minC, maxC).

The lenght of the period where the processes are generated is determined by the length of the
argument lambdaParent.

Homogenous processes are generated if the intensity vector lambdaParent is constant (that is if all
the values are equal).

The marginal processes of the generated vector can be optionally plotted.

Value

A list with elements:

posNH A list of d vectors, each one containing the time occurrences of one of the
marginal processes. The name of the elements of the list are N1, N2,...,Nd.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

Neyman, J., & Scott, E. L. (1958). Statistical approach to problems of cosmology. Journal of the
Royal Statistical Society. Series B (Methodological), 1-43.

Entekhabi, D., Rodriguez-Iturbe, I., & Eagleson, P. S. (1989). Probabilistic representation of the
temporal rainfall process by a modified Neyman-Scott Rectangular Pulses Model: Parameter esti-
mation and validation. Water Resources Research, 25(2), 295-302.

See Also

DepNHNeyScot, IndNHPP

Examples

set.seed(123)
lambda<-runif(1000)/10

IndNHNeyScot(lambdaParent=lambda, d=3, lambdaNumP = c(2,3,2), dist = "normal",
sigmaC = 2, fixed.seed=123)

34 IndNHPP

IndNHPP Generates trajectories of independent Poisson processes

Description

This function generates independent Poisson processes, which can be homogeneous or nonhomo-
geneous depending on the value of the intensity vectors.

Usage

IndNHPP(lambdas,dplot=TRUE, fixed.seed=NULL,...)

Arguments

lambdas Matrix where each column contains the intensity vector to generate a Poisson
process.

dplot Optional. A logical flag. If it is TRUE, the marginal processes are plotted.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

Details

The number of generated processes is determined by the number of columns of the argument
lambdas. The lenght of the period where the processes are generated is determined by the number
of rows of lambdas.

Homogenous processes are generated if the corresponding intensity vector is constant (that is if all
the rows of the corresponding column are equal).

For the generation algorithm of each Poisson process, see simNHPc.

Value

posNHs A list of d vectors, each one containing the time occurrences of the independent
NHPPs. The name of the elements of the list are N1, N2,..., Nd.

See Also

IndNHNeyScot, simNHPc

Examples

set.seed(123)
lambdas<-cbind(runif(500)/10, rep(0.05,500))

IndNHPP(lambdas=lambdas, fixed.seed=123)

IntMPP 35

IntMPP Simulated intervals in a vector of point processes

Description

This function calculates a point estimation and a confidence interval for a given parameter related to
a vector of point processes using a Monte Carlo (or parametric bootstrap) approach. The estimator
of the parameter must be a function of the occurrence points of the (possibly dependent) marginal
processes of the vector of processes.

It calls the auxiliary function funMPPGen (not intended for the users), see Details.

Usage

IntMPP(funMPP.name, funMPP.args, fun.name, fun.args = NULL, nsim=1000, clevel = 0.95,
cores = 1, fixed.seed = NULL)

Arguments

funMPP.name Name of the function defining the distribution of the vector of point processes.
funMPP.args Additional arguments for the function funMPP.name.
fun.name Name of the function to calculate the estimation of the parameters. The first

argument of this function must be a list called posNH.
fun.args A list whose elements are the additional arguments for the function fun.name.
nsim Number of simulations to be carried out.
clevel Confidence level of the interval. A value in (0,1).
cores Optional. Number of cores of the computer to be used in the calculations. De-

fault: one core is used.
fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in

random generation processes. It it is NULL, a random seed is used.

Details

This function calculates a point estimation and a confidence interval of a parameter related to a
vector of point processes. It calls the auxiliary function funMPPGen, which generates a sample of
vectors of processes using a parametric model. The parameter of interest is estimated using each
process in that sample, so that a sample of values of the estimator is obtained. The mean of that
sample is the point estimator, and the adequate sample percentiles give the lower and upper bounds
of the confidence interval.

The parametric model is specified by the arguments funMPP.name and funMPP.args. Functions
DepNHCPSP, DepNHNeyScot, DepNHPPqueue and DepNHPPMarked can be used as input of the argu-
ment funMPP.name to generate the corresponding vector of processes.

The considered estimator must be a function of the occurrence points of the vector of processes
and any additional arguments, provided by argument fun.args, which must be a list. The first
argument of the function fun.name must be a list called posNH whose elements are numeric vectors
containing the occurrence points of each point process in the vector. For example, the first element
of the output list of DepNHCPSP can be used as first argument of fun.name.

36 nearestdist

Value

A list with elements:

valmed Point estimation (mean value) of the parameter.

valinf Lower bound of the generated interval.

valsup Upper bound of the generated interval.

nsim Input argument.

fixed.seed Input argument.

Examples

Calculation of the point estimation and 95% intervals based on 1000 simulations
#of the number of accurrences in each marginal process of a bivariate Neyman-Scot process
in the time interval [100,200]
#NumI calculates the number of occurrences in interval I in each element of the list posNH

set.seed(123)
lambdai<-runif(1000,0.01,0.02)

aux<-IntMPP(funMPP.name="DepNHNeyScot", funMPP.args=list(lambdaParent=lambdai,d=2,
lambdaNumP=c(2,1), dplot=FALSE), fun.name="NumI", fun.args = list(I=c(100,200)),
fixed.seed = 125)

Calculation of the point estimation and a 95% interval based on 1000 simulations
#of the first occurrence time in a multivariate CPSP with d=3
#firstt calculates the minimim occurrence time of all the elements in the list posNH

#set.seed(124)
#lambdaij<-runif(1000,0.005,0.02)
#set.seed(125)
#lambdaijk<-runif(1000,0.001,0.02)
#lambdaiM<-cbind(lambdai,lambdai, lambdai, lambdaij, lambdaij, lambdaij, lambdaijk)
#aux<-IntMPP(funMPP.name="DepNHCPSP",funMPP.args=list(lambdaiM=lambdaiM,d=3,dplot=FALSE),
fun.name="firstt", fixed.seed = 125)

nearestdist Distance to the nearest point

Description

Given the occurrence points in two point processes, this function calculates for each point in the
first process, the distance to the nearest occurrence point in the second process.

Usage

nearestdist(posx, posy)

NHD 37

Arguments

posx Numeric vector. Occurrence times of the points in the first point process.

posy Numeric vector. Occurrence times of the points in the second point process.

Details

The distance between two points xi and yi in a point process in time, is the absolute value of their
difference: |xi − yi|.

To obtain the vector of nearest points, this function applies to each point in posx, the function
pdist, which calculates the distance to its nearest point in posy.

Value

Vector of the distances to the nearest point in the second process for each point in the first process.

See Also

DutilleulPlot

Examples

posx<-c(3,8,23,54,57,82)
posy<-c(2,8,14,16,29,32,45,55,65)
nearestdist(posx, posy)

NHD Estimating the D-function

Description

This function estimates the cross nearest neighbour distance distribution function, D, between two
sets, C and D, of (homogenous or nonhomogeneous) point processes. The D-function is evaluated
in a grid of values r, and it can be optionally plotted.

It calls the auxiliary functions NHDaux and other functions, not intended for users.

Usage

NHD(lambdaC, lambdaD, T=NULL,Ptype='inhom', posC, typeC=1, posD, typeD=1,
r = NULL, dplot = TRUE, tit = "D(r)",...)

38 NHD

Arguments

lambdaC A matrix of positive values. Each column is the intensity vector of one of the
point processes in C. If there is only one process in C, it can be a vector or even
a numeric value if the process is homogeneous.

lambdaD A matrix of positive values. Each column is the intensity vector of one of the
point process in D. If there is only one process in D, it can be a vector or even
a numeric value if the process is homogeneous.

T Numeric value. Length of the observed period. It only must be specified if the
number of rows in lambdaC and lambdaD is 1.

Ptype Optional. Label: "hom" or "inhom". The first one indicates that all the point
processes in sets C and D are homogeneous.

posC Numeric vector. Occurrence times of the points in all the point processes in C.

typeC Numeric vector with the same length as posC. Code of the point process in C
where points in posC have occurred. See Details.

posD Numeric vector. Occurrence times of the points in all the point processes in D.

typeD Numeric vector with the same length as posD. Code of the point process in D
where points in posD have occurred.

r Numeric vector. Values where the D-function must be evaluated. If it is NULL,
a default vector is used, see Details.

dplot Optional. A logical flag. If it is TRUE, the D-function is plotted.

tit Optional. The title to be used in the plot of the D-function.

... Further arguments to be passed to the function plot.

Details

The information about the processes is provided by arguments posC, the vector of all the occurrence
times in the processes in C, and typeC, the vector of the code of the point process in set C where
each point in posC has occurred; the second set D is characterized analogously by typeD and posD.

This function estimates the D-function between two sets, C and D, of (homogenous or nonhomoge-
neous) point processes, see Cebrian et al (2020) for details of the estimation. The D-function is the
distribution function of the distances from a point in a process in C to the nearest point in a process
D. In homogeneous proceesses, it estimates the probability that at least one point in a process in
set D occurs at a distance lower than r of a given point in a process in set C. If the processes are
nonhomogenous, the inhomogenous version of the function, adjusted for time varying intensities,
is used. It is calculated using the Hanisch estimator, see Van Lieshout (2006) Small values of the
D-function suggest few points in processes in D in the r-neighbourhood of points of processes in
C. Large values indicate that points in processes in D are attracted by those of processes in C.

For inference about independence of the processes, K and J-functions should be used.

If argument r is NULL, the following grid is used to evaluate the function

r1<-max(20, floor(T/20))

r<-seq(1,r1,by=2)

if (length(r)>200) r<-seq(1,r1,length.out=200)

NHF 39

Value

A list with elements:

r Vector of values r where the D-function is estimated.

NHDr Estimated values of DCD(r).

T Length of the observed period.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

Van Lieshout, M.N.M. (2006) A J-function for marked point patterns. AISM, 58, 235-259. DOI
10.1007/s10463-005-0015-7

See Also

NHK, NHJ, NHF

Examples

#Sets C and D with independent NHPPs
set.seed(123)
lambda1<-runif(500, 0.05, 0.1)
set.seed(124)
lambda2<-runif(500, 0.01, 0.2)
pos1<-simNHPc(lambda=lambda1, fixed.seed=123)$posNH
pos2<-simNHPc(lambda=lambda2, fixed.seed=123)$posNH
aux<-NHD(lambdaC=lambda1, lambdaD=lambda2, posC=pos1, typeC=1, posD=pos2, typeD=1)
aux$NHDr

#Example with independent NHPPs
#pos3<-simNHPc(lambda=lambda1, fixed.seed=321)$posNH
#pos4<-simNHPc(lambda=lambda2, fixed.seed=321)$posNH
#aux<-NHD(lambdaC=cbind(lambda1,lambda2),lambdaD=cbind(lambda1,lambda2),posC=c(pos1,pos2),
typeC=c(rep(1, length(pos1)), rep(2, length(pos2))), posD=c(pos3, pos4),
typeD=c(rep(1, length(pos3)), rep(2, length(pos4))))
#aux$NHDr

NHF Estimating the F-function

Description

This function estimates the F-function in a set of homogenous or nonhomogeneous point processes,
D. The F-function is evaluated in a grid of values r, and it can be optionally plotted.

It calls the auxiliary functions NHFaux and other functions not intended for users.

40 NHF

Usage

NHF(lambdaD, T=NULL, Ptype='inhom', posD, typeD=1, r=NULL,L=NULL, dplot=TRUE,
tit='F(r)',...)

Arguments

lambdaD A matrix of positive values. Each column is the intensity vector of one of the
point process in D. If there is only one process in D, it can be a vector or even
a numeric value if the process is homogeneous.

T Numeric value. Length of the observed period. It only must be specified if the
number of rows in lambdaC and lambdaD is 1.

Ptype Optional. Label: "hom" or "inhom". The first one indicates that all the point
processes in sets C and D are homogeneous.

posD Numeric vector. Occurrence times of the points in all the point processes in D.

typeD Numeric vector with the same length as posD. Code of the point process in D
where the point in the same row in posD has occurred. The code must be the
column number where the intensity of that process is in matrix lambdaD.

r Numeric vector. Values where the F-function must be evaluated. If it is NULL,
a default vector is used, see Details

L Optional. Numeric vector. Values in the observed period used to calculate the
F-function. If it is NULL, a default vector is used, see Details.

dplot Optional. Logical flag. If it is true, the F-function is plotted.

tit Optional. The title to be used in the plot of the F-function.

... Further arguments to be passed to the function plot.

Details

The information about the processes is provided by arguments posD, the vector of all the occurrence
times in the processes in C, and typeD, the vector of the code of the point process in set D where
each point in posD has occurred.

This function estimates the F-function in a set D of homogenous or nonhomogeneous time point
processes, see Cebrian et al (2020) for details of the estimation. The F-function, also known as
empty space function, is the distribution function of the distances from an arbitray point in the
space to the nearest point in a process in D. In homogeneous processes, it estimates the probability
that at least one point in processes in D occurs at a distance lower than r of an arbitray point in the
space. If the processes are nonhomogenous, the inhomogenous version of the function, adjusted for
time varying intensities, is used.

If argument r is NULL, the following grid is used to evaluate the function

r1<-max(20, floor(T/20))

r<-seq(1,r1,by=2)

if (length(r)>200) r<-seq(1,r1,length.out=200)

If argument L is NULL, the following grid is used

L <- seq(1, T, by = 2) if (length(L) > 5000) L <- seq(1, T, by = round((T - 1)/199))

NHJ 41

Value

A list with elements:

r Vector of values r where the F-function is estimated.

NHFr Estimated values of FD(r).

T Length of the observed period of the process.

L Grid of L values to calculate the F-funtion.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

See Also

NHK, NHJ, NHD

Examples

set.seed(123)
lambda1<-runif(500, 0.05, 0.1)
pos1<-simNHPc(lambda=lambda1, fixed.seed=123)$posNH

aux<-NHF(lambdaD=lambda1, posD=pos1, typeD=1)
aux$NHFr

#Set D with two processes ***
#lambda2<-runif(1000, 0.01, 0.2)
#pos2<-simNHPc(lambda=lambda2, fixed.seed=123)$posNH
#aux<-NHF(lambdaD=cbind(lambda1,lambda2), posD=c(pos1,pos2),
typeD=c(rep(1, length(pos1)), rep(2, length(pos2))))
#aux$NHFr

NHJ Estimating the cross J-function and testing independence

Description

This function estimates the cross J-function between two sets, C and D, of (homogenous or nonho-
mogeneous) point processes in time. It is evaluated in a grid of distances r, and it can be optionally
plotted. A test to assess the independence between the sets of processes, based on the cross J-
function, is also implemented.

It calls the auxiliary functions NHJaux and Jenv, not intended for users.

42 NHJ

Usage

NHJ(lambdaC, lambdaD,T=NULL, Ptype="inhom", posC, typeC=1, posD, typeD=1, r=NULL,
L=NULL,test=FALSE,nTrans=100, rTest=NULL, conf=0.95, dplot=NULL,
tit=c("J-function","D-function","F-function"),mfrow=NULL,cores=1,fixed.seed=NULL,...)

Arguments

lambdaC A matrix of positive values. Each column is the intensity vector of one of the
point processes in C. If there is only one process in C, it can be a vector or even
a numeric value if the process is homogeneous.

lambdaD A matrix of positive values. Each column is the intensity vector of one of the
point process in D. If there is only one process in D, it can be a vector or even
a numeric value if the process is homogeneous.

T Numeric value. Length of the observed period. It only must be specified if the
number of rows in lambdaC and lambdaD is 1.

Ptype Optional. Label: "hom" or "inhom". The first one indicates that all the point
processes in sets C and D are homogeneous.

posC Numeric vector. Occurrence times of the points in all the point processes in C.
typeC Numeric vector with the same length as posC. Code of the point process in C

where the points in posC have occurred. See Details.
posD Numeric vector. Occurrence times of the points in all the point processes in D.
typeD Numeric vector with the same length as posD. Code of the point process in D

where the points in posD have occurred.
r Optional. Numeric vector. Values where J-function must be evaluated. If it is

NULL, a default vector is used, see Details.
L Optional. Numeric vector. Values in the observed period used to calculate the

J-function. If it is NULL, a default vector is used, see Details.
test Optional. Logical flag. If it is TRUE, a test of independence and a 95% envelope

for the J-function are calculated.
nTrans Optional. Numeric value. Only used if test=TRUE. Number of translations to

be performed in the test and envelope calculation.
rTest Optional. Numeric value. Maximum value of r used to calculate the indepen-

dence test statistc, see Details.
conf Optional. Numeric value in (0,1). Confidence level of the envelope for the J-

function.
dplot Optional. Label "JDF" or "J". If it is "JDF", plots of J, D and F-functions are

displayed. If it is "J", only J-function is plotted.
tit Optional. A vector with one or three titles to be used in the plots of J, D and

F-functions.
mfrow Optional. Argument to be passed to par for the plot of the J-function.
cores Optional. Number of cores of the computer to be used in the calculations.
fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in

random generation processes. It it is NULL, a random seed is used.
... Further arguments to be passed to the function plot.

NHJ 43

Details

The information about the processes is provided by arguments posC, the vector of all the occurrence
times in the processes in C, and typeC, the vector of the code of the point process in set C where
each point in posC has occurred; the second set D is characterized analogously by typeD and posD.

This function estimates the cross J-function between two sets, C and D, of (homogenous or non-
homogeneous) time point processes, see Cebrian et al (2020) for details of the estimation. The
J-function measures the interpoint dependence between points in any of the processes in D, and
points in any of the processes in C, adjusted for time varying intensity in the case of nonhomoge-
nous processes. The cross J-function is defined as JCD(r) = (1 − DCD(r))/(1 − FD(r)), if
FD(r) < 1 and it is not calculated otherwise. It compares DCD(r), the distribution function of the
distances from a point in any of the processes in set C to the nearest point in any of the processes
in set D, to FD(r), the distribution function of the distances from a fixed point in the space to the
nearest point in any of the processes in set D.

If argument r is NULL, the following grid is used to evaluate the function

r1<-max(20, floor(T/20))

r<-seq(1,r1,by=2)

if (length(r)>200) r<-seq(1,r1,length.out=200)

If argument L is NULL, the following grid is used

L <- seq(1, T, by = 2) if (length(L) > 5000) L <- seq(1, T, by = round((T - 1)/199))

Testing independence:

If the processes in C are independent of the processes in D given the marginal structure of the
processes, the J-funtion is equal to 1, since D(r)=F(r). Hence, deviations of J(r) estimations from 1,
suggest dependence betweent the two sets of processes. The test statistic is based on the mean of
values |J(r)− 1| evaluated in a given grid of r values.

A test based on a Lotwick-Silverman approach, see Lotwick and Silverman (1982), is implemented.
This test provides a nonparametric way to test independence given the marginal intensities of the
processes. Using the Lotwick-Silverman approach, not only the p-value of the test but also an
envelope for the J(r) values is calculated.

In point processes, dependence often appears between close observations, and with high r values
it is more difficult that the J-function is able to discriminate between dependent and independent
processes. By this reason, the argument rTest allows us to fix a maximum value of r so that only
J(r) estimations for r < rTest will be used to calculate the test statistic. The value rTest is drawn
in the plot of the J-function as a vertical grey line.

Value

A list with elements:

r Vector of values r where the J-function is estimated.

NHJr Estimated values of JCD(r).

NHDr Estimated values of DCD(r).

NHFr Estimated values of FD(r).

JenvL Lower bounds of the envelope of JCD(r).

44 NHJ

JenvU Upper bounds of the envelope for JCD(r).

JStatOb Observed value of the statistic.

JStatTr Sample of the values of the test statistic obtained by random translations.

pv P-value of the independence test.

T Length of the observed period of the process.

L Grid of L values to calculate the F-funtion.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

Cronie, O. and van Lieshout, M.N.M. (2015). Summary statistics for inhomogeneous marked point
processes. Ann Inst Stat Math.

Lotwick, H.W. and Silverman, B.W. (1982). Methods for analysing Spatial processes of several
types of points. J.R. Statist. Soc. B, 44(3), pp. 406-13

See Also

NHK, NHD, NHF

Examples

set.seed(120)
lambda1<-runif(100, 0.05, 0.1)
set.seed(121)
lambda2<-runif(100, 0.01, 0.2)
pos1<-simNHPc(lambda=lambda1,fixed.seed=123)$posNH
pos2<-simNHPc(lambda=lambda2,fixed.seed=123)$posNH

aux<-NHJ(lambdaC=lambda1, lambdaD=lambda2, posC=pos1,nTrans=50,
posD=pos2, rTest=7, dplot='J', cores=1,test=TRUE)

aux$pv

#Sets with two processes
#pos3<-simNHPc(lambda=lambda1,fixed.seed=300)$posNH
#pos4<-simNHPc(lambda=lambda2,fixed.seed=30)$posNH
#aux<-NHJ(lambdaC=cbind(lambda1,lambda2), lambdaD=cbind(lambda1,lambda2),
posC=c(pos1,pos2), typeC=c(rep(1, length(pos1)), rep(2, length(pos2))),
posD=c(pos3, pos4), typeD=c(rep(1, length(pos3)), rep(2, length(pos4))),
dplot='J', test=TRUE)
#aux$pv

NHK 45

NHK Estimating cross K-function and testing independence

Description

This function estimates the cross K-function between two sets, C and D, of (homogenous or nonho-
mogeneous) point processes in time. It is evaluated in a grid of distances r, and it can be optionally
plotted. A test to assess the independence between the sets of processes, based on the cross K-
function, is also implemented.

It calls the auxiliary functions NHKaux, NHKaux2, NHKaux3 and Kenv, not intended for users.

Usage

NHK(lambdaC, lambdaD, T=NULL, posC, typeC=1, posD, typeD=1, r=NULL, test=TRUE,
typeEst=2, nTrans=1000, conf=0.95, rTest=NULL, typePlot=" ",tit=NULL,
cores=1,fixed.seed=NULL,...)

Arguments

lambdaC A matrix of positive values. Each column is the intensity vector of one of the
point processes in C. If there is only one process in C, it can be a vector or even
a numeric value if the process is homogeneous.

lambdaD A matrix of positive values. Each column is the intensity vector of one of the
point process in D. If there is only one process in D, it can be a vector or even
a numeric value if the process is homogeneous.

T Numeric value. Length of the observed period. It only must be specified if all
the processes are homogeneous, that is if the number of rows in lambdaC and
lambdaD is 1.

posC Numeric vector. Occurrence times of the points in all the point processes in C.

typeC Numeric vector with the same length as posC. Code of the point process in C
where the points in posC have occurred; see Details.

posD Numeric vector. Occurrence times of the points in all the point processes in D.

typeD Numeric vector with the same length as posD. Code of the point process in D
where the points in posD have occurred.

r Optional. Numeric vector. Grid values where the K-function must be evaluated.
If it is NULL, a default vector is used; see Details.

test Optional. Logical flag. If it is TRUE, a test of independence and a 95% envelope
for the K-function are calculated.

typeEst Optional. Two possible values: 1 or 2, which determines which one of the two
available estimators of the function Kij has to be used; see Details.

nTrans Optional. Numeric value. Only used if test=TRUE. Number of translations to
be performed in the test and envelope calculation.

conf Optional. Numeric value in (0,1). Confidence level of the envelope for the K-
function.

46 NHK

rTest Optional. Numeric value. Maximum value of r used to calculate the test statistc,
see Details.

typePlot Optional. Character string. If it is "Kfun" or "Kest" a plot of the values K̂xy(r)

or K̂xy(r)/2r is shown. With any other value, no plot is carried out.

tit Optional. Title to be used in the plot of the K-function.

cores Optional. Number of cores of the computer to be used in the calculations.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

... Further arguments to be passed to the function plot.

Details

The information about the processes is provided by arguments posC, the vector of all the occurrence
times in the processes in C, and typeC, the vector of the code of the point process in set C where
each point in posC has occurred; the second set D is characterized analogously by typeD and posD.

This function estimates the cross K function between two sets, C and D, of (homogenous or non-
homogeneous) point processes. Two different estimators are available, see Cebrian et al (2020) for
details. The cross K-function measures the dependence between two point processes (or two sets
of point processes) and counts the expected number of points in any of the processes in D, within
a given distance of a point in any of the processes in C, adjusted for time varying intensity in the
case of nonhomogenous processes. The cross K-function of independent Poisson processes is the
length of the considered intervals, KCD(r) = 2r. Then, values KCD(r)/2r > 1 indicate attraction
between the processes, while values lower than 1 indicate repulsion.

If argument r is NULL, the following r-grid is used to evaluate the function

r1<-max(20, floor(T/20))

r<-seq(1,r1,by=2)

if (length(r)>200) r<-seq(1,r1,length.out=200)

Testing independence:

In order to test the independence hypothesis using this function, a test based on a Lotwick-Silverman
approach, see Lotwick and Silverman (1982), is implemented. This test provides a nonparamet-
ric way to test independence given the marginal intensities of the processes. Using the Lotwick-
Silverman approach, not only the p-value of the test but also an envelope for the K(r) values is
calculated. The test statistic is based on the mean of values K(r)/(2r) evaluated in a given grid of
r values.

In point processes, dependence often appears between close observations, and with high r values
it is more difficult that the K-function is able to discriminate between dependent and independent
processes. By this reason, the argument rTest allows us to fix a maximum value of r so that only
K(r) estimations for r < rTest will be used to calculate the test statistic. The value rTest is drawn
in the plot of the K-function as a vertical grey line.

Value

A list with elements:

r Vector of values r where the cross K-function is estimated.

NHK 47

NHKr Estimated values of Kij(r).

KenvL Lower bounds of the envelope ofKij(r).

KenvU Upper bounds of the envelope of Kij(r).

KStatOb Observed value of the test statistic.

KStatTr Sample of the values of the test statistic obtained by random translations.

pv P-value of the test.

T Length of the observed period of the processes.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

Lotwick, H.W. and Silverman, B.W. (1982). Methods for analysing Spatial processes of several
types of points. J.R. Statist. Soc. B, 44(3), pp. 406-13

See Also

NHD, NHJ, NHF

Examples

set.seed(122)
lambda1<-runif(100, 0.05, 0.1)
set.seed(121)
lambda2<-runif(100, 0.01, 0.2)
pos1<-simNHPc(lambda=lambda1, fixed.seed=123)$posNH
pos2<-simNHPc(lambda=lambda2, fixed.seed=123)$posNH

aux<-NHK(lambdaC=lambda1, lambdaD=lambda2, posC=pos1, posD=pos2, typePlot='Kest',
nTrans=200, cores=1, typeEst=2, fixed.seed=120)
aux$pv

#Sets with two processes
#pos3<-simNHPc(lambda=lambda1, fixed.seed=321)$posNH
#pos4<-simNHPc(lambda=lambda2, fixed.seed=321)$posNH
#aux<-NHK(lambdaC=cbind(lambda1,lambda2), lambdaD=cbind(lambda1,lambda2), posC=c(pos1,pos2),
typeC=c(rep(1, length(pos1)), rep(2, length(pos2))), posD=c(pos3, pos4),
typeD=c(rep(1, length(pos3)), rep(2, length(pos4))), typeplot='Kest', fixed.seed=120)
#aux$pv

48 PlotICPSP

PlotICPSP Plotting the occurrence points of the indicator processes in a CPSP

Description

This function plots the points in the three indicator processes N(1), N(2) and N(12) of a bivariate
Common Poisson shock process (CPSP).

Usage

PlotICPSP(posi1,posi2, posi12, T, date=NULL,axispoints=NULL, ...)

Arguments

posi1 Numeric vector of the points in N(1)

posi2 Numeric vector of the points in N(2)

posi12 Numeric vector of the points in N(12)

T Numeric value. The length of the observed period of the CPSP.

date Optional. A vector indicating the date of each observation to be used in the axis
of the plot.

axispoints Optional. Numeric vector with the points in the time index in which axis ticks
and labels (from date) will be drawn.

... Further arguments to be passed to the function plot.

Details

A CPSP N can be decomposed into three independent indicator processes: N(1), N(2) and N(12),
the processes of the points occurring only in the first marginal process, only in the second and in
both of them (simultaneous points).

The points in the three indicator processes are plotted versus the time index. If one of the arguments
date and axispoints is NULL, default axis are used. Otherwise, the values in axispoints are
used as the points in the time index in which axis ticks and labels from date are drawn.

Value

A plot.

See Also

CPSPpoints, PlotMCPSP, PlotMargP

PlotMargP 49

Examples

data(TxBHZ)
T<-length(TxBHZ$TxH)
dateT<-cbind(TxBHZ$year,TxBHZ$month,TxBHZ$day) #year, month and day of the month
marca<- c(1:length(TxBHZ$TxH))[c(1,diff(dateT[,1]))==1] #points at first day of the year
BivEv<-CPSPPOTevents(N1=TxBHZ$TxH,N2=TxBHZ$TxZ,thres1=37.8, thres2=36.4, date=dateT,

axispoints=marca)
PlotICPSP(posi1=BivEv$Px1,posi2=BivEv$Px2, posi12=BivEv$Px12, T=T)
PlotICPSP(posi1=BivEv$Px1,posi2=BivEv$Px2, posi12=BivEv$Px12, T=T, date=dateT[,1],

axispoints=marca)

PlotMargP Plotting the occurrence points of a vector of point processes

Description

This function plots the points in the marginal processes N1, N2,..., Nd of a vector of point processes.

Usage

PlotMargP(listpos, T, date=NULL,axispoints=NULL, tcex=1.2, ...)

Arguments

listpos A list of vectors. Each element of the list is the vector of the occurrences in a
marginal process.

T Numeric value. The length of the observed period of the processes.

date Optional. A vector indicating the date of each observation to be used in the axis
of the plot.

axispoints Optional. Numeric vector with the points in the time index in which axis ticks
and labels (from date) will be drawn.

tcex Optional. cex argument, see par, for the text labels in the plot.

... Further arguments to be passed to the function plot.

Details

The points in the d marginal processes N1, N2 ,..., Nd of a vector of point processes are plotted
versus the time index.

If one of the arguments date and axispoints is NULL, default axis are used. Otherwise, the values
in axispoints are used as the points in the time index in which axis ticks and labels, from date,
are drawn.

Value

A plot.

50 PlotMCPSP

See Also

PlotMCPSP

Examples

set.seed(123)
N1<-runif(50,0,5000)
set.seed(124)
N2<-runif(42,0,5000)

PlotMargP(list(N1=N1, N2=N2),T=5000)

PlotMCPSP Plotting the occurrence points of the marginal processes in a CPSP

Description

This function plots the points in the two marginal processes N1, N2 of a bivariate Common Poisson
shock process (CPSP).

Usage

PlotMCPSP(pos1,pos2, T, date=NULL, axispoints=NULL, ...)

Arguments

pos1 Numeric vector of the points in N1

pos2 Numeric vector of the points in N2

T Numeric value. The length of the observed period of the CPSP.

date Optional. A vector indicating the date of each observation to be used in the axis
of the plot.

axispoints Optional. Numeric vector with the points in the time index in which axis ticks
and labels (from date) will be drawn.

... Further arguments to be passed to the function plot.

Details

The points in the two marginal processes N1, N2 of a bivariate CPSP are plotted versus the time
index. The simultaneous points (points of the indicator process N(12)) are drawn in red.

If one of the arguments date and axispoints is NULL, default axis are used. Otherwise, the values
in axispoints are used as the points in the time index in which axis ticks and labels, from date,
are drawn.

Value

A plot.

simHPc 51

See Also

CPSPpoints, PlotICPSP

Examples

data(TxBHZ)
T<-length(TxBHZ$TxH)
dateT<-cbind(TxBHZ$year,TxBHZ$month,TxBHZ$day) #year, month and day of the month
marca<- c(1:T)[c(1,diff(dateT[,1]))==1] # points at first day of the year
BivEv<-CPSPPOTevents(N1=TxBHZ$TxH,N2=TxBHZ$TxZ,thres1=37.8, thres2=36.4, date=dateT,

axispoints=marca)
PlotMCPSP(pos1=union(BivEv$Px1, BivEv$Px12),pos2=union(BivEv$Px2,BivEv$Px12), T=T)

marca<- c(1:T)[c(1,diff(dateT[,1]))==1]
PlotMCPSP(pos1=union(BivEv$Px1, BivEv$Px12),pos2=union(BivEv$Px2,BivEv$Px12), T=T,
date=dateT[,1], axispoints=marca)

simHPc Generating points in a homogenous Poisson process

Description

This function generates a given number of occurrence points in a homogenous Poisson process
(HPP) in continuous time.

Usage

simHPc(lambda, nEv, fixed.seed=NULL)

Arguments

lambda Numeric positive value. Intensity λ used to generate the HPP.

nEv Optional. Positive integer. Number of points to be generated in the HPPs.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

Details

The points in a HPP are generated using independent exponentials with mean λ.

Points in a HPP can also be generated using simNHPc. The main difference is that in simHPc the
number of points to be generated is given, while simNHPc generates points in a period of a given
length T.

52 simNHPc

Value

A list with elements:

posN Numeric vector. Occurrence points of the HPP.

T Length of the period where the given number of points are generated.

fixed.seed Input argument.

References

Ross, S.M. (2006). Simulation. Academic Press.

See Also

simNHPc, IndNHPP

Examples

aux<-simHPc(lambda=0.01, nEv=50,fixed.seed=123)
aux$posH

simNHPc Generating points in a Poisson process

Description

This function generates the occurrence points in a homogenous or nonhomogeneous Poisson pro-
cess (NHPP) with a given intensity λ(t), in a continuous period of time (0, T).

It calls the auxiliary function buscar (not intended for the users), see Details.

Usage

simNHPc(lambda, fixed.seed=NULL, algor="Thinning")

Arguments

lambda Numeric vector. Intensity λ(t) used to generate the Poisson process. Its length
determines the length of the observed period.

fixed.seed An integer or NULL. If it is an integer, that is the value used to set the seed in
random generation processes. It it is NULL, a random seed is used.

algor Optional. Character string. The algorithm used to generate the process, it can
be "Inversion" or "Thinning"; see Details.

simNHPc 53

Details

Two algorithms to generate the NHPP points are implemented. "Inversion" is based on the inversion
algortihm, see Ross(2006), and it consists in two steps. First, the points of a homogeneous Poisson
process of intensity one are generated using independent exponentials. Then, the homogeneous
occurrence times are transformed into the points of a nonhomogeneous process with intensity λ(t).
This transformation is performed by the auxiliary function buscar (not intended for the user).

The algorithm "Thinning", see Banerjee et al. (2014), generates the occurrences times in a homoge-
neous Poisson process with intensity λmax = maxt λ(t) and the resulting points are retained with
probability λ(ti)/λmax.

The "Inversion" algorithm requires positive values of the argument lambda and it is slower, but the
"Thinning" algorithm may yield excesive rejection according to Ross (2006).

The lenght of the period where the processes are generated is determined by the length of the
argument lambda.

Homogenous processes are generated if the intensity vector lambda is constant (that is if all the
values are equal).

Value

A list with elements:

posNH Numeric vector. Occurrence points of the Poisson process.

lambda Input argument.

fixed.seed Input argument.

References

Banerjee, S., Carlin, B.P. and Gelfand, A. E. (2014) Hierarchical modeling and analysis for spatial
data.CRC Press.

Ross, S.M. (2006). Simulation. Academic Press.

See Also

simHPc, IndNHPP

Examples

#Generation of a Homogeneous Poisson process
aux<-simNHPc(lambda=rep(0.1,200),fixed.seed=123, algor='Inversion')
aux$posNH

#Generation of a NHPP
set.seed(123)
lambdat<-runif(500, 0.01,0.1)
aux<-simNHPc(lambda=lambdat,fixed.seed=123, algor='Thinning')
aux$posNH

54 SpecGap

SpecGap Stationary distribution of a matrix and its spectral gap

Description

This function calculates the stationary distribution of the transition matrix of a Markov chain process
and its spectral gap.

Usage

SpecGap(P)

Arguments

P Matrix. It must be a markovian matrix.

Details

The spectral gap of a matrix P measures the convergence speed of P to a matrix PI with all the
rows equal to (π1, π2, ...πk), the stationary distribution of P . It takes values in [0,1].

The spectral gap of a transition matrix can be used as a dependence measure between the marginal
processes defined by a marked Poisson procces with discrete marks generated by a Markov chain
with that transition matrix, see Cebrian et al (2020) for details.

Value

A list with elements

SG Spectral gap value of the matrix.

pi Vector of the stationary distribution of the matrix.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

See Also

DepNHPPMarked

Examples

P<-cbind(c(0.7, 0.1, 0.2), c(0.2, 0.7, 0.1), c(0.1, 0.2, 0.7))
SpecGap(P)

TestIndLS 55

TestIndLS Lotwick-Silverman test of independence between point processes

Description

This function calculates a test based on the Lotwick-Silverman (LoS) approach to study the inde-
pendence between two or three homogeneous point processes in time. The statistic is based on the
close point sets of the points in the first process.

Usage

TestIndLS(posx, posy, posz=NULL, T, alpha = 0.05, nTrans = 100, PA = FALSE,
cores=1,fixed.seed=NULL)

Arguments

posx Numeric vector. Position of the occurrence points in the first process.

posy Numeric vector. Position of the occurrence points in the second process.

posz Numeric vector. Position of the occurrence points in the third process. Only
used if there are 3 processes.

T Numeric value. Length of the observed period of the processes.

alpha Optional. Significance level used to obtain a decision (reject-no reject) based on
the test p-value.

nTrans Optional. Positive integer. Number of translations to calculate the test.

PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.

cores Optional. Number of cores of the computer to be used in the calculations.

fixed.seed Optional. An integer or NULL. If it is an integer, that is the value used to set the
seed in random generation processes. It it is NULL, a random seed is used.

Details

The underlying idea of the test is to compare, for each point in the first process, the behavior of its
set of close points in the vector of observed processes (Nx, Ny, Nz), and in new vectors of inde-
pendent processes with the same marginal distribution. The new independent vectors are obtained
using a LoS approach, see Lotwick and Silverman (1982): the process Nx is fixed and second and
third processes are obtained by shifting the original ones a random amount. This translation keeps
the distribution of the homogeneous processes, but breaks any dependence between them. If the
observed behavior is significantly different, independence is rejected. More details can be foun in
Cebrian et al. (2020).

The test statistic is the one used in TestIndNH, but the p-value is obtained using a LoS approach,
so that it does not require any assumption about the marginal distribution of the processes, not even
the marginal intensities. The test TestIndNH, can be applied to study nonhomogeneous processes,
but it requires a parametric model for the second process.

56 TestIndNH

Value

A list with elements:

pv P-value of the independence test.
reject Binary variable indicating if the test is rejected (1) or not (0) at an alpha signifi-

cance level.
est Sample of the KS statistics. The first value corresponds to the observed pro-

cesses and the others to the generated processes.

References

Cebrian, A.C., Abaurrea, J. and Asin, J. (2020). Testing independence between two point processes
in time. Journal of Simulation and Computational Statistics.

Lotwick, H.W. and Silverman, B.W. (1982). Methods for analysing Spatial processes of several
types of points. J.R. Statist. Soc. B, 44(3), pp. 406-13

See Also

TestIndNH, CondTest, DutilleulPlot, DistShift

Examples

#Test applied to three independent HPP

posx<-simNHPc(lambda=rep(0.1,200),fixed.seed=123)$posNH
posz<-simNHPc(lambda=rep(0.15,200),fixed.seed=124)$posNH
posy<-simNHPc(lambda=rep(0.1,200),fixed.seed=125)$posNH

aux<-TestIndLS(posx, posy, posz,T=200,
cores=1,fixed.seed=321)
aux$pv

TestIndNH Parametric bootstrap test of independence between point processes

Description

This function calculates a parametric bootstrap test (PaB) to study the independence between two
or three homogeneous or nonhomogeneous point processes in time. The statistic is based on the
close point sets of the points in the first process. Currently, it is implemented for Poisson processes
and for Neyman-Scott cluster processes.

Usage

TestIndNH(posx, posy, posz=NULL, alpha = 0.05, nsim = 100, PA = FALSE, cores = 1,
type = "Poisson", lambdaMarg = NULL, lambdaParent = NULL, lambdaNumP = NULL,
dist = "normal", sigmaC = 1, minC = -1, maxC = 1,fixed.seed=NULL)

TestIndNH 57

Arguments

posx Numeric vector. Position of the occurrence points in the first process.

posy Numeric vector. Position of the occurrence points in the second process.

posz Numeric vector. Position of the occurrence points in the third process. By de-
fault is null, and only two processes are tested.

alpha Optional. Significance level used to obtain a decision (reject-no reject) based on
the test p-value.

nsim Optional. Positive integer. Number of simulations to calculate the test.

PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.

cores Optional. Number of cores of the computer to be used in the calculations.

type Optional. Label "Poisson" or "PoissonCluster". Type of point processes to be
generated in the parametric bootstrap. Up to now, only two types are available:
Poisson processes ("Poisson") and Neyman-Scott cluster processes ("Poisson-
Cluster").

lambdaMarg Matrix of positive values and dimension T ×NP with NP =1 or 2. Only used if
type="Poisson". Each column is the intensity vector to generate the processes
Ny and Nz .

lambdaParent Numeric vector. Only used if type="PoissonCluster". Intensity vector of the
process used to generate the centers of the clusters of the Neyman-Scott process.

lambdaNumP Numeric vector with 1 or 2 values. Only used if type="PoissonCluster". Mean
values of the number of sons of the processes to be generated. If its length is
equal to 1 and there are three processes, the same value is used to generate Ny

and Nz .

dist Optional. Label "normal" or "uniform". Only used if type="PoissonCluster".
Distribution used to generate the point distances to the centre in each cluster.

sigmaC Optional. Numeric vector with 1 or 2 values. Only used if type="PoissonCluster"
and dist=’normal’. Standard deviation of the normal distribution. If its length is
equal to 1, the same value is used in both processes.

minC Optional. Numeric vector with 1 or 2 values. Only used if type="PoissonCluster"
and dist=’uniform’. Lower bounds of the Uniform distribution. If its length is
equal to 1 and there are three processes, the same value is used to generate Ny

and Nz .

maxC Optional. Numeric vector with 1 or 2 values. Only used if type="PoissonCluster"
and dist=’uniform’. Upper bounds of the Uniform distribution. If its length is
equal to 1 and there are three processes, the same value is used to generate Ny

and Nz .

fixed.seed Optional. An integer or NULL. If it is an integer, that is the value used to set the
seed in random generation processes. It it is NULL, a random seed is used.

Details

The underlying idea of the test is to compare, for each point in the first process, the behavior of
its set of close points in the vector of observed processes (Nx, Ny, Nz), and in new vectors of

58 TestIndNH

independent processes with the observed marginal distribution. The new independent vectors are
obtained using a parametric bootstrap approach, see Abaurrea et al. (2015): the process Nx is fixed
and second and third processes are generated using a parametric model with intensities λy and λz .
Currently, it is implemented for Poisson processes and for Neyman-Scott cluster processes. If the
observed behavior is significantly different, independence is rejected.

The test statistic is the one used in TestIndLS, but the p-value is obtained using a Monte Carlo
approach if the intensities λy(t) and λz(t) are known, or a parametric bootstrap if they have been
estimated. The test TestIndLS can only be applied to homogeneous processes, but it does not
require any assumption about the distribution of the marginal processes.

It is noteworthy that when the test is applied, it is being assumed that the processes follow a paramet-
ric model with the given intensities. If necessary, validation of that assumption should be previously
carried out.

The lenght of the observed period is determined by the length of the intensity vector λ, that is
lambdaParent (if type="PoissonCluster") or the first element of the dimension of lambdaMarg (if
type="PoissonC". It can be applied to homogeneous processes, using an intensity vector (lambda)
with equal values.

Value

A list with elements:

pv P-value of the independence test.

reject Binary variable indicating if the test is rejected (1) or not (0) at an alpha signifi-
cance level.

est Sample of the KS statistics. The first value corresponds to the observed pro-
cesses and the others to the generated processes.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics.

See Also

TestIndLS,CondTest, DutilleulPlot, DistSim, DistObs, uniongentri

Examples

#Test applied to 3 independent NHPP
set.seed(123)
lambdax<-runif(150, 0.01,0.1)
set.seed(124)
lambday<-runif(150, 0.02,0.1)
set.seed(125)
lambdaz<-runif(150, 0.015,0.1)
posx<-simNHPc(lambdax, fixed.seed=123)$posNH
posy<-simNHPc(lambday, fixed.seed=124)$posNH
posz<-simNHPc(lambdaz, fixed.seed=125)$posNH

TranM 59

aux<-TestIndNH(posx, posy, posz, nsim=50, type='Poisson',
lambdaMarg=cbind(lambday,lambdaz), fixed.seed=321)
aux$pv

#Test applied to 3 dependent NS cluster processes with 2 cores
#set.seed(123)
#lambdaParent<-runif(500,0,0.1)
#DepPro<-DepNHNeyScot(lambdaParent=lambdaParent, d=3, lambdaNumP = 3,
dist = "normal", sigmaC = 1, fixed.seed=123,cores=2)
#posx<-DepPro$PP1
#posy<-DepPro$PP2
#posz<-DepPro$PP3
#aux<-TestIndNH(posx, posy, posz, cores=1, type='PoissonCluster',
lambdaParent = lambdaParent, lambdaNumP = 3,
dist = "normal", sigmaC = 1, fixed.seed=123, nsim=200)
#aux$pv

TranM Estimation of the transition matrix of a Markov chain

Description

It estimates the transition matrix of a Makov chain to model the dependence between the discrete
marks of a marked point process. The estimator is the MLE based on count data.

Usage

TranM(marcas = NULL, d = NULL, vecpro = NULL)

Arguments

marcas Integer vector. It contains the discrete marks of the marked point process. The
order of the marks in the vector must correspond to the points in the process
sorted over time.

d Integer. Number of states of the Markov chain, that is the number of different
marks of the marked point process.

vecpro A list with d elements. Element "i" of the list must be a vector including the
occurrence times of the points in the marked point process with marks equal to
"i".

Details

The input of this function must be a marked point process. It can be defined by the sequence of
marks of all the points in the process (arguments marcas and d), or alternatively by a vector of d
point processes (argument vecpro). If marcas or d are NULL, vecpro must be provided. If they
are not NULL, they are used to define the marked Poisson process.

60 TxBHZ

Value

prob The estimated transition matrix of probabilities.

See Also

DepNHPPMarked

Examples

TranM(marcas = c(1,3,3,2,1,2,1,1), d = 3)

TranM(vecpro=list(n1=c(2,7,9,23), n2=c(4,5,21), n3=c(2,8,9,12,16)))

TxBHZ Daily maximum temperature at Barcelona, Huesca and Zaragoza

Description

Daily maximum temperature series during the summer months (May, June, July, August and Septem-
ber) from 1951 to 2016 at three Spanish locations: Barcelona, Huesca and Zaragoza.

Usage

data(TxBHZ)

Details

Variables

year: Year, from 1951 to 2016.

month: Month, from 5 (May) to 9 (September).

day: Postion of the day in the month, from 1 up to 31.

dayyear: Postion of the day in the year, from 121 (1st of May) to 253 (30th of September).

TxB: Daily maximum temperature at Barcelona in Celsius degrees.

TxH: Daily maximum temperature at Huesca in Celsius degrees.

TxZ: Daily maximum temperature at Zaragoza in Celsius degrees.

Txm31B: Local maximum temperature signal in Celsius degrees. Moving average of TxB with a
window of the last past 31 days.

Txm31H: Local maximum temperature signal in Celsius degrees. Moving average of TxH with a
window of the last past 31 days.

Txm31Z: Local maximum temperature signal in Celsius degrees. Moving average of TxZ with a
window of the last past 31 days.

lambdaOZ: estimated intensities of the first indicator processes of a CPSP fitted to model the oc-
currence times of the extreme events in the series of Zaragoza and Huesca, TxZ and TxH. The first
indicator process includes the extreme events occurring only at TxZ.

uniongentri 61

lambdaOH: estimated intensities of the second indicator processes of a CPSP fitted to model the
occurrence times of the extreme events in the series of Zaragoza and Huesca, TxZ and TxH. The
second indicator process includes the extreme events occurring only at TxH.

lambdaZH: estimated intensities of the third indicator processes of a CPSP fitted to model the
occurrence times of the extreme events in the series of Zaragoza and Huesca, TxZ and TxH. The
third indicator process includes the simultaneous extreme events occurring both at TxZ and TxH.

Examples

data(TxBHZ)

uniongentri Calculating the set of close points

Description

This function calculates the set of close points of each occurence point in the first process of a vector
of two or three processes.

Usage

uniongentri(posx, posy, posz=NULL, info = FALSE, PA = FALSE,
procName=c('X','Y','Z'),...)

Arguments

posx Numeric vector. Position of the occurrence points in the first process.

posy Numeric vector. Position of the occurrence points in the second process.

posz Optional. Numeric vector. Position of the occurrence points in the third process.
Only used when three processes are involved.

info Optional. Logical flag. If it is TRUE, information about the generated points is
shown on the screen and dotcharts and bivariate charts of the occurrence points
in the processes are displayed.

procName Vector of character strings. Names of the processes.

PA Optional. Logical flag. If it is TRUE, the close point relation is broadened by
including the previous and the following points to the overlapping intervals.

... Further arguments to be passed to the function plot if info=T.

Details

A point in a process is close to a point in another process, if their time intervals overlap; the time
interval of a point is the interval between itself and the previous point in the same process. If there
are three processes, the set of close points of txk

,Sxi;xyz , is defined as the set of the pairs of points
(tyj , tzk) such that txi is close to tyj and tyj is close to tzk . If there are two processes, Sxi;xy is the
set of points tyj

such that txi
is close to tyj

. This definition can be broadened, see argument PA, by
adding to the set two more points, the previous and the following ones.

62 uniongentri

The algortihm to calculate the sets of close points (in the case of three processes) is the following,
see Abaurrea et al. (2015) for details: First, given two processes, the pairs of close points in
those processes are calculated. If the last point occurs in the first process, there is a censored time
interval in the second process (the point overlaps a time interval whose occurrence point has not
been observed) and that pair is not considered). This step is performed for all the combinations of
pairs of processes. The basic close point relation is commutative, and only three different pairs (XY,
YZ, XZ) must be considered. This is not the case of the broadened definition, where the six pairs
(XY, YX, YZ, ZY, XZ, ZX) must be calculated.

Once all the pairs of close points are obtained, the set of close points for each point txi
is obtained

by concatenating the adequate pairs of points from all the possible orders of the three processes:
XYZ, XZY and YXZ for the basic definition, and the six possible permutations for the broadened
definition. The final set of close points of txi is the union of the different pairs from all the possible
permutations.

Value

A list with elements:

X First elements of the 3-tuples of points (txi , tyi , tzi) in the sets of close points.

iX Position i (=1,2,3....) of the point txi in the first process.

Y Second elements of the 3-tuples of points (txi
, tyi

, tzi) in the sets of close points.

iY Position i (=1,2,3....) of the point tyi
in the second process.

Z Third elements of the 3-tuples of points (txi , tyi , tzi) in the sets of close points.
It is NULL if posz=NULL.

iZ Position i (=1,2,3....) of the point tzi in the third process. It is NULL if posz=NULL.

References

Abaurrea, J. Asin, J. and Cebrian, A.C. (2015). A Bootstrap Test of Independence Between Three
Temporal Nonhomogeneous Poisson Processes and its Application to Heat Wave Modeling. Envi-
ronmental and Ecological Statistics.

See Also

TestIndNH, DistSim, DistObs

Examples

set.seed(123)
posx<-sort(runif(20,0,1000))
posy<-sort(runif(25,0,1000))
posz<-sort(runif(40,0,1000))
aux<-uniongentri(posx, posy, posz, info=TRUE)

Index

∗ Vectors of Point Processes in Time
IndTestPP-package, 2

BinPer, 3, 8, 13
buscar (simNHPc), 52

calcdist, 25
calcdist (DistObs), 25
calcNmu (CondTest), 5
ComplPos, 4
CondTest, 5, 31, 56, 58
cor.test, 7
CountingCor, 3, 7, 13
countP (CountingCor), 7
CPSPpoints, 8, 11, 48, 51
CPSPPOTevents, 9, 9

depchi, 3, 8, 12
DepCPSPKenv (DepCPSPNHK), 13
DepCPSPNHK, 13
DepNHCPSP, 14, 15, 15, 19, 20, 22, 35
DepNHNeyScot, 17, 17, 20, 22, 33, 35
DepNHPPMarked, 17, 19, 19, 22, 35, 54, 60
DepNHPPqueue, 17, 19, 20, 20, 24, 35
DepNHPPqueue1 (DepNHPPqueue), 20
DepNHPPqueueI (DepNHPPqueue), 20
DepqueueKenv (DepqueueNHK), 23
DepqueueNHK, 23
DistObs, 25, 30, 58, 62
Distributions, 21, 23
DistShift, 26, 56
DistSim, 26, 27, 28, 58, 62
DistSimfix (DistSim), 28
dotchart, 27, 29
DutilleulPlot, 6, 30, 37, 56, 58

firstt (IntMPP), 35
fn2 (TestIndNH), 56
fn2B (TestIndLS), 55
fn2fix (TestIndNH), 56

fn3 (DutilleulPlot), 30
funMPPGen (IntMPP), 35

genbiPos (uniongentri), 61
GenSons (DepNHNeyScot), 17
gentriPos (uniongentri), 61

HDFaux (NHD), 37

IndNHNeyScot, 19, 29, 30, 32, 34
IndNHPP, 16, 17, 20, 22, 33, 34, 52, 53
IndTestPP (IndTestPP-package), 2
IndTestPP-package, 2
IntMPP, 35

Jenv (NHJ), 41

Kenv (NHK), 45

marca (CPSPpoints), 8
miKS (TestIndNH), 56
mirank (TestIndNH), 56

nearestD (NHD), 37
nearestdist, 31, 36
NHD, 4, 37, 41, 44, 47
NHDaux (NHD), 37
NHDFaux (NHJ), 41
NHF, 4, 39, 39, 44, 47
NHFaux (NHF), 39
NHJ, 4, 6, 39, 41, 41, 47
NHJaux (NHJ), 41
NHK, 4, 6, 14, 15, 24, 39, 41, 44, 45
NHKaux (NHK), 45
NHKaux2 (NHK), 45
NHKaux3 (NHK), 45
nMenr (NHD), 37
NumI (IntMPP), 35

par, 8, 10, 16, 42, 49
pdist (nearestdist), 36

63

64 INDEX

plot, 5, 8, 10, 12, 14, 16, 18, 19, 21, 24, 25,
27, 29, 30, 32, 34, 38, 40, 42, 46,
48–50, 61

PlotICPSP, 9, 11, 48, 51
PlotMargP, 48, 49
PlotMCPSP, 9, 11, 48, 50, 50
prodN2 (NHD), 37
PsimNHPc (DepNHCPSP), 15

simHPc, 51, 51, 53
simNHPc, 29, 30, 34, 51, 52, 52
SpecGap, 20, 54

TestIndLS, 27, 55, 58
TestIndNH, 6, 26, 29–31, 55, 56, 56, 62
TranM, 59
TxBHZ, 60

uniongentri, 25, 26, 58, 61

	IndTestPP-package
	BinPer
	ComplPos
	CondTest
	CountingCor
	CPSPpoints
	CPSPPOTevents
	depchi
	DepCPSPNHK
	DepNHCPSP
	DepNHNeyScot
	DepNHPPMarked
	DepNHPPqueue
	DepqueueNHK
	DistObs
	DistShift
	DistSim
	DutilleulPlot
	IndNHNeyScot
	IndNHPP
	IntMPP
	nearestdist
	NHD
	NHF
	NHJ
	NHK
	PlotICPSP
	PlotMargP
	PlotMCPSP
	simHPc
	simNHPc
	SpecGap
	TestIndLS
	TestIndNH
	TranM
	TxBHZ
	uniongentri
	Index

