
Generalized Wendland Function

Thomas Caspar Fischer

May 13, 2022

1 Introduction

Kriging models are an important tool for geostatistical modeling. However, technological advances have

greatly increased data volumes, to the point where the model lacks the scalability to work with these

large data sets. This is in part because the Matérn covariance, which is commonly used in geostatistics

because of its continuous parameterization of the smoothness, does not have compact support and will

thus generally produce dense covariance matrices. For large datasets, computing the cholesky decompo-

sition of the resulting covariance matrix becomes an intractable task, as the computational complexity

of the operation is of order O(n3). Attempts to address this issue have focused on sparse methods,

proposing different ways to compose covariance functions with compact support and continuous smooth-

ness parameters, for example by applying a taper to the Matérn covariance function, because there exist

few covariance functions with both compact support and continuously parameterized smoothness of the

underlying Gaussian Random Field.

One exception is the generalized Wendland correlation function, which is a function of distance with

three parameters: a range (β) and two shape parameters (κ and µ). The function is positive definite if

β > 0, κ > 0, µ ≥ 1 + d/2 + κ (Bevilacqua et al., 2019). The shape parameter of the Matérn covariance

and parameter κ of the generalized Wendland function follow the relationship ν = κ + 0.5 (Bevilacqua

et al., 2019). Yet unlike the Matérn covariance, the generalized Wendland function has compact support

and has an additional parameter for smoothness. Note that the generalized Wendland covariance function

approximates the Matérn covariance in the limit Bevilacqua et al. (2022).

The primary disadvantage that has so far prevented a wider adoption of the generalized Wendland

covariance in geostatistics is its computational intensity, as it generally requires the use of numerical inte-

gration techniques to evaluate because the function does not generally have a closed form representation.

We consider the following correlation with range one:

ρ1,κ,µ(h) =

{
1

B(1+2κ,µ)

∫ 1

h
(u2 − h2)κ (1− u)µ−1du 0 < h < 1

0 h ≥ 1

ρ1,κ,µ(h) =

{
1

B(2κ,µ+1)

∫ 1

h
u(u2 − h2)κ−1 (1− u)µdu 0 < h < 1

0 h ≥ 1

There exist some special cases such as the Askey function, which arises for κ = 0, and others at κ =

1, 2,

κ ρ1,κ,µ(h)

0 (1− h)µ+
1 (1− h)µ+1

+ (1 + h(µ+ 1))

2 (1− h)µ+2
+ (1 + h

3 (µ+ 2) + h2(µ2 + 4µ+ 3))

1

with

ρ1,κ,µ(h) = (1− h)µ+ =

{
(1− h)µ 0 < h < 1

0 h ≥ 1

The covariance function corresponding to these correlation functions is then given by the expression

ϕβ,σ,κ,µ,θ(h) =


σ + θ h/β < ϵ

σρβ,κ,µ(h/β) 0 < h/β < 1

0 h/β ≥ 1

kappa= 5

kappa= 2.5

kappa= 0

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Distance

C
ov

ar
ia

nc
e

mu

1.5 4 6.5 9 11.5

Figure 1: Wendland correlation function for different values of κ and µ.

This package intended to solve both of these issues. The covariance function implemented in this

package reduces computation time by using a C++ backend, and further offers powerful approximation

methods.

2

2 Installation

Users must install the GSL C library (Galassi et al., 2021) manually on their system. On unix-based

systems the library can be directly installed from a source package or via sudo apt install gsl-bin.

Windows users, on the other hand, will first need to install the Rtools toolchain (CRAN, 2022), locate

and launch the msys2 executable, run pacman -Syu to update the toolchain, and finally run pacman -S

mingw-w64-gsl to install GSL.

Note that the GSL library is also a dependency of the RcppGSL package (Eddelbuettel and Francois,

2022), which will tell the user during installation whether the library has been installed correctly.

3 Features and how to use them

Albeit its properties make it useful for geostatistical modeling, the lack of a closed form of the generalized

Wendland function necessitates the use of computationally expensive numerical integration. The impact

is even substantial enough as to overpower the expected benefits of sparsity. The implementation in this

package therefore provides users with multiple methods for approximating the actual function with less

computationally expensive numerical interpolation. The most important features of the package can be

summarized as follows:

1. Fully parameterized implementation of the generalized Wendland covariance function.

2. Option to estimate models with fixed range and/or nugget parameters.

3. Approximation methods based on numerical interpolation.

4. Full compatibility with spam (Furrer et al., 2022).

5. Easy interface to optimParallel (Gerber and Furrer, 2019).

3.1 Fully parameterized implementation

As was discussed in the previous section, the implementation offered here allows users to freely specify

parameters β, κ, µ. Recalling that the covariance is only positive definite for a subset of the parameter

space, users can further configure whether to make use of the parameterization µ = (1 + d)/2 + κ + ν

via a global setting or as an optional argument in cov.args. This in essence facilitates the use of the

covariance function in maximum likelihood estimation.

3.2 Fixing parameters during maximum likelihood estimation

All of the covariance functions contained in the spam package include both a range and nugget param-

eter, which are typically estimated jointly with the shape parameters and partial sill. These additional

parameters greatly increase computation time during estimation, and may not be relevant to every user.

For these cases, this package offers a wrapper for covariance functions which permits users to fix the

range and nugget parameter to a constant value.

3

Table 1: Simple timing (in ms) of different computation methods.

Minimum Q1 Mean Median Q3 Maximum

Exact 68.29 68.64 69.09 68.75 69.13 82.71

Askey 0.10 0.12 0.25 0.13 0.14 14.40

Linear Interpolation 1.84 1.90 1.97 1.93 1.97 14.90

Cubic Spline Interpolation 1.85 1.91 2.01 1.94 1.97 19.65

Polynomial Interpolation 1.97 2.02 2.13 2.05 2.09 16.83

3.3 Working with approximations

Given that the purpose of using the generalized Wendland covariance is to alleviate the scalability issue,

the cost incurred by numerical integration should not be ignored, as it can become quite substantial for

larger data sets. Consider for example a data set with 100 measurements. Assuming that the distance

matrix is dense, at worst this would require 4950 evaluations of the correlation function. Approximations

can help address this, and as a consequence of correlation functions being positive-definite, they are

straightforward to approximate using interpolation. This package provides linear interpolation, cubic

spline interpolation, and polynomial interpolation. Table 1 presents timing statistics for one complete

evaluation with n = 100, κ = 1.25 µ = 0.75

Table 1 provides an overview of computation time across different methods for evaluating the Askey

covariance. The comparison between the actual Askey function and the corresponding exact generalized

Wendland function illustrates how expensive the latter is to evaluate. For a one-time evaluation this

might still be negligible, but not necessarily in maximum likelihood estimation, which generally requires

the covariance matrix to be computed in each iteration. Using interpolation, on the other hand, greatly

decreases the computational cost of such an evaluation. As Figures 2 and 3 indicate, this is actually

a trade-off against the accuracy of the covariance matrix, and results may vary to different extents

depending on the choice of interpolator and number of support points. Of particular note in Figure 2 is

the erratic nature of the polynomial interpolator for large number of support points. In some applications,

it can clearly outperform the other interpolators, yielding absolute errors well below the single precision

threshold, yet the interpolated values may also explode. Cubic splines are perhaps the most forgiving

method, as the results are barely below the single precision threshold for moderately many support points

(n = 80).

As curves are visually indistinguishable, but the timing information indicates just how much time was

actually saved. A more in-depth analysis of interpolation error is shown in Section 4.

3.4 Compatibility with spam

The GeneralizedWendland package was designed for use with the spam package, and thus follows its

naming convention barring one exception: due to the vast number of optional configuration parameters,

these are passed to the function in a list. To ensure that this follows a certain logic, the eps argument

has also been moved to this list. The function cov.wendland() is itself fully compatible with all spam

functions, as are the wrapper functions generated using covarianceFactory(). Furthermore, the pack-

age also provides its own suite of tools for parameter estimation, albeit these still require spam as a

dependency.

Despite the focus on the spam package, the functions could also be adapted for use in other packages for

4

polynomial

cspline

linear

0.00 0.25 0.50 0.75 1.00

1e−13

1e−08

1e−03

1e+02

1e−13

1e−08

1e−03

1e+02

1e−13

1e−08

1e−03

1e+02

Distance

A
bs

ol
ut

e
E

rr
or

Support points

10

20

30

40

50

60

70

80

Figure 2: Absolute error of interpolated Wendland correlation function relative to exact method, using

κ = 1.25, µ = 3.5.

geostatistical modeling like the fields package. Compatibility to these packages and perhaps to different

formats of sparse matrices may be extended in future versions of the GeneralizedWendland package.

The package also provides an alternative framework for maximum likelihood estimation which, while

based on the spam implementation, makes heavy use of function factories to assist the user in setting up

their analysis. Finally, the package provides a diagnostic suite which allows users to obtain a selection of

error metrics for the generalized Wendland covariance.

5

polynomial

cspline

linear

0.00 0.25 0.50 0.75 1.00

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

Distance

R
el

at
iv

e
E

rr
or

Support points

10

20

30

40

50

60

70

80

Figure 3: Relative error of interpolated Wendland correlation function compared to exact method, using

κ = 1.25, µ = 0.75.

3.5 Compatibility with optimParallel

When performing maximum likelihood estimation using gradient-based methods such as L-BFGS-B, the

gradient needs to be estimated numerically unless the user specifies a gradient function. These operations

can be performed in parallel using optimParallel. The mle framework provided in this package is directly

compatible with optimParallel, allowing users to specify the relevant arguments in their initial call to the

mle function.

6

4 Technical details

4.1 Implementation of generalized Wendland covariance function

The integral is evaluated via the numerical integration methods provided by the GSL C library. The

covariance function itself is implemented as a C++ class and made accessible in R through Rcpp (Ed-

delbuettel, 2013).

4.2 Integration methods

The three available options are

• non-adaptive Gauss-Kronrod integration (QNG, default),

• adaptive integration (QAG),

• adaptive integration with singularities (QAGS).

Figure 4 provides a visual comparison of the results obtained using QNG, QAG, and QAGS integration

in the upper left panel, plotting the absolute error in comparison to the Askey function. As immediately

apparent, all integration configurations perform well within double precision for whole numbered µ. For

rational valued µ, on the other hand, the absolute error just falls short of the single precision threshold,

and even slightly exceeds it when using QNG integration. Overall, QAG integration with a high key

value performed best among all configurations.

4.3 Covariance interpolation

The three options currently implemented are

• linear interpolation,

• polynomial interpolation,

• Cubic spline interpolation.

These tend to behave very differently with respect to the choice of the number of support points k.

Figure 4 shows the absolute error of the interpolated covariance functions compared to the Askey function.

The benchmark against the Askey function shows that polynomial interpolation can potentially out-

perform the other two using fewer support points, but lacks stability. It tends to explode if using too

many support points, and only behaves consistently for whole numbered µ, in which case its absolute

error does not exceed the single precision threshold. Linear interpolation, on the other hand, performs

very consistently, even for real valued µ. The downside is that it requires a substantial number of sup-

port points to obtain approximations with single precision absolute errors. To put this into perspective,

linear interpolation would still be worthwhile when working with large data sets, especially since it is

the most robust method with regards to µ. Finally, cubic spline interpolation achieves absolute errors

below single precision threshold with moderately many support points, and below double precision using

a large number of support points.

7

polynomial

cspline

linear

0.0 0.5 1.0

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Kappa

S
up

po
rt

 p
oi

nt
s Maximum absolute Error

(1e−05,0.0001]

(0.0001,0.001]

(0.001,Inf]

Figure 4: Absolute error of interpolation methods relative to Askey function. Dashed line corresponds

to single precision and dotted line to double precision. y-axis is log10 scaled.

One thing users should keep in mind is that the results shown in Figure 4 also depend on the choice

of the numeric tolerances. For example, tuning these parameters can help attenuate the instability of

polynomial interpolation, at least to an extent. Users may want to explore feasible settings using the

cov.wendland.diagnostics() function. For applications such as maximum likelihood estimation, on the

other hand, the author recommends choosing either linear or cubic spline interpolation with a reasonably

large number of support points.

4.4 Direct misspecification

The range parameter is typically estimated jointly with the other covariance parameters. Direct mis-

specification is the deliberate fixing of the range at an arbitrary value. Note that this will effectively

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Range

F
ra

ct
io

n
of

 n
on

−
ze

ro
 e

nt
rie

s

(a) Range and sparsity. (b) β = 0.6

(c) β = 0.4 (d) β = 0.2

Figure 5: Functional relationship between range and sparsity, and permutated covariance matrices ob-

tained using range β = {0.6, 0.4, 0.2}.

bias the estimates at least with respect to the range parameter. The motivation for this compromise is

twofold: firstly, fixing the range removes one parameter to estimate, resulting in a substantial reduction

of computation time. Secondly, reducing the range also reduces the number of non-zero entries in the

covariance matrix Σ, which translates into an additional reduction in computation time. The effect of

varying ranges on the sparsity of a given covariance matrix is illustrated in Figure 5a, where sparsity is

described as a function of range, and in Figure 5 which presents the actual covariance matrices at specific

ranges.

To make use of this option for arbitrary covariance functions, users can set the fixed range value

argument in covarianceFactory. This will be further illustrated in the next section.

9

5 Estimating Kriging models using GeneralizedWendland

Simulated spatial data

n <- 1000

grid_resolution <- 2.5e-3#3.33e-3

pred_resolution <- 5e-2

locs <- expand.grid(x = seq(-1, 1, grid_resolution),

y = seq(-1, 1, grid_resolution))

max_dist <- sqrt((max(locs$x)-min(locs$x))^2 + (max(locs$y)-min(locs$y))^2)

set.seed(random_seed)

obs_ind <- sample(1:nrow(locs), n)

locs0 <- locs[obs_ind,]

locs1 <- expand.grid(x = seq(-1 + pred_resolution/2,

1 - pred_resolution/2,

pred_resolution),

y = seq(-1 + pred_resolution/2,

1 - pred_resolution/2,

pred_resolution))

Specify true model

drift_formula <- ~1 + x + y

true_beta <- c(0.5, -0.1, 0.1)

true_theta <- c(0.7, 3.0, 0.5, 1.5, 1)

Initial values and box constraints

init_theta <- c(0.7, 1.0, 0.5, 1.5, 0.1)

lower_theta <- rep(0, 5)

upper_theta <- c(max_dist, rep(1e1, 4))

Design matrices

X0 <- model.matrix(drift_formula, locs0)

X1 <- model.matrix(drift_formula, locs1)

Distance matrix

dmat <- spam::nearest.dist(locs0, locs0, delta = true_theta[1])

True covariance matrix

true_Sigma <- cov.wendland(dmat, theta = true_theta)

Simulate from multivariate normal

y <- c(spam::rmvnorm.spam(1, mu = X0 %*% true_beta, Sigma = true_Sigma))

To illustrate how to use GeneralizedWendland for geostatistical modeling, this section presents a

small, artificial example. For simplicity, we assume that measurement locations occupy an equidistant

2D grid with n =1000 points. Furthermore, the data model includes a global mean and linear spatial

drift. As the spatial Gaussian process model is frequently applied to interpolating between measurement

10

−2 0 2 4

Predictive mean

0.4 0.8 1.2 1.6

Predictive SD

Figure 6: Empiric predictive mean and standard deviation at new locations for true parameters.

locations, Figures 6, 7, 8, 9, and 10 illustrate this by drawing realizations from a multivariate Gaussian

distribution and computing the mean and standard deviation per location.

5.1 Exact method

cov.args1 <- cov.args <- list()

mleFun <- mleFactory(covariance = cov.wendland, cov.args = cov.args,

chol.args = chol.args, optim.args = optim.args, hessian = FALSE,

optimParallel.args = optimParallel.args)

time1 <- system.time({
result1 <- mleFun(y = y, X = X0, distmat = dmat,

init_parameters = init_theta, theta_llim = lower_theta,

theta_ulim = upper_theta)

})

print(result1[c("par", "value", "counts")], digits = digits)

$par

[1] 1.04 0.34 0.13 0.59 2.59 0.66 0.91 1.09

##

$value

[1] 3342

##

$counts

11

−2 0 2 4

Predictive mean

0.5 1.0 1.5

Predictive SD

Figure 7: Empiric predictive mean and standard deviation at new locations for parameters estimated

using method 1.

function gradient

51 51

In the basic use case, maximum likelihood estimation utilizes a covariance matrix obtained from the

exact formulation of the generalized Wendland function, and all model parameters are estimated jointly.

The implementation is mostly equivalent to that provided in the spam package.

5.2 Using covariance interpolation

cov.args2 <- cov.args <- list(interp.num_support = 100, interp.method = "cspline")

mleFun <- mleFactory(covariance = cov.wendland, cov.args = cov.args,

chol.args = chol.args, optim.args = optim.args, hessian = FALSE,

optimParallel.args = optimParallel.args)

time2 <- system.time({
result2 <- mleFun(y = y, X = X0, distmat = dmat,

init_parameters = init_theta, theta_llim = lower_theta,

theta_ulim = upper_theta)

})

print(result2[c("par", "value", "counts")], digits = digits)

$par

12

−2 0 2 4

Predictive mean

0.5 1.0

Predictive SD

Figure 8: Empiric predictive mean and standard deviation at new locations for parameters estimated

using method 2.

[1] 1.04 0.34 0.13 0.59 2.59 0.66 0.91 1.09

##

$value

[1] 3342

##

$counts

function gradient

53 53

Covariance interpolation is provided by a C++ wrapper for the GSL library. The R function itself

only passes the corresponding parameters to this C++ function, and consequently these methods can-

not be accessed directly by the user. To make use of covariance interpolation, users have to provide

interp.method and interp.num support in cov.args.

5.3 Using direct misspecification

cov.args3 <- cov.args <- list(fixed_range_value = true_theta[1])

mleFun <- mleFactory(covariance = cov.wendland, cov.args = cov.args,

chol.args = chol.args, optim.args = optim.args, hessian = FALSE,

optimParallel.args = optimParallel.args)

time3 <- system.time({
result3 <- mleFun(y = y, X = X0, distmat = dmat,

13

−2 0 2 4

Predictive mean

0.5 1.0 1.5

Predictive SD

Figure 9: Empiric predictive mean and standard deviation at new locations for parameters estimated

using method 3.

init_parameters = init_theta[-1], theta_llim = lower_theta[-1],

theta_ulim = upper_theta[-1])

})

print(result3[c("par", "value", "counts")], digits = digits)

$par

[1] 1.05 0.34 0.14 2.57 0.86 1.79 1.11

##

$value

[1] 3343

##

$counts

function gradient

34 34

Direct misspecification is implemented through the covarianceFactory function. This is a func-

tion factory which essentially serves as a wrapper to any arbitrary covariance function with compara-

ble arguments to cov.wendland(). Users can fix the range to a specific value by assigning it to the

fixed range value argument of cov.args.

5.4 Combining interpolation and direct misspecification

14

−2 0 2 4

Predictive mean

0.5 1.0

Predictive SD

Figure 10: Empiric predictive mean and standard deviation at new locations for parameters estimated

using method 4.

cov.args4 <- cov.args <- list(interp.num_support = 100,

interp.method = "cspline", fixed_range_value = true_theta[1])

mleFun <- mleFactory(covariance = cov.wendland, cov.args = cov.args,

chol.args = chol.args, optim.args = optim.args, hessian = FALSE,

optimParallel.args = optimParallel.args)

time4 <- system.time({
result4 <- mleFun(y = y, X = X0, distmat = dmat,

init_parameters = init_theta[-1], theta_llim = lower_theta[-1],

theta_ulim = upper_theta[-1])

})

print(result4[c("par", "value", "counts")], digits = digits)

$par

[1] 1.05 0.34 0.14 2.58 0.86 1.79 1.11

##

$value

[1] 3343

##

$counts

function gradient

34 34

15

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Distance

C
ov

ar
ia

nc
e

True Estimated

(a) Exact method.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Distance

C
ov

ar
ia

nc
e

True Estimated

(b) Cubic splines (100 support points).

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Distance

C
ov

ar
ia

nc
e

True Estimated

(c) Direct misspecification (β = 0.7).

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Distance

C
ov

ar
ia

nc
e

True Estimated

(d) Both (100 support points, β =0.7).

Figure 11: Actual covariance function versus estimated covariance functions.

Direct misspecification and covariance interpolation can also be used conjointly to further reduce

computation time.

5.5 Comparison of results

Figure 11 indicates that all methods discussed here yield very similar estimates for the covariance function,

the main differences pertaining to the reparameterized µ. The actual estimates are presented in Table 2.

Of particular interest are the timings for the maximum likelihood estimation itself. For the exact approach

and direct misspecification with a reasonable range, computation time is eclipse 3 minutes, whereas

using interpolation reduces this down to just over a minute, and even just 40 seconds when using both

interpolation and misspecification.

16

Table 2: Overview of results and computation time for all examples.

Intercept x-drift y-drift range sill kappa mu nugget elapsed

Actual 0.50 -0.10 0.10 0.70 3.00 0.50 1.50 1.00 NA

Exact 1.04 0.34 0.13 0.59 2.59 0.66 0.91 1.09 249.88

Interpolation 1.04 0.34 0.13 0.59 2.59 0.66 0.91 1.09 66.73

Direct Misspecification 1.05 0.34 0.14 0.70 2.57 0.86 1.79 1.11 217.55

Both 1.05 0.34 0.14 0.70 2.58 0.86 1.79 1.11 42.47

6 Conclusion

The preceding sections provided a brief overview of the generalized Wendland covariance function and

its properties, and illustrated several of the features which are present within the GeneralizedWendland

package. The most important features of this package are the accessible implementation of the generalized

Wendland covariance, a framework for direct misspecification of the range parameter, and covariance

interpolation. All of these features are of particular usefulness for geostatisticians working with large

datasets, as for example obtained from remote sensing. Such applications may benefit from adjustable

sparsity.

References

Bevilacqua, M., Caamaño-Carrillo, C., and Porcu, E. (2022). Unifying compactly supported and matern

covariance functions in spatial statistics. arXiv:2008.02904v3.

Bevilacqua, M., Furrer, R., Faouzi, T., and Porcu, E. (2019). Estimation and prediction using generalized

wendland covariance functions under fixed domain asymptotics. The Annals of Statistics, 47 828–856.

CRAN (2022). Rtools42 for windows. https://cran.r-project.org/bin/windows/Rtools/rtools42/

rtools.html.

Eddelbuettel, D. (2013). Seamless R and C++ Integration with Rcpp. Springer, New York.

Eddelbuettel, D. and Francois, R. (2022). RcppGSL: ’Rcpp’ Integration for ’GNU GSL’ Vectors and

Matrices. R package version 0.3.11, https://CRAN.R-project.org/package=RcppGSL.

Furrer, R., Flury, R., and Gerber, F. (2022). spam: SPArse Matrix. R package version 2.8-0, https:

//CRAN.R-project.org/package=spam.

Galassi, M., Davies, J., Theiler, J., and Gough, B. (2021). GNU scientific library reference manual (2.7).

https://www.gnu.org/software/gsl/doc/latex/gsl-ref.pdf.

Gerber, F. and Furrer, R. (2019). optimParallel: An R Package Providing a Parallel Version of the

L-BFGS-B Optimization Method. The R Journal, 11 352–358.

17

