Package 'DLMRMV'

June 24, 2025

Type Package

Version 0.2.0

Title Distributed Linear Regression Models with Response Missing Variables

Depends R (>= 4.1.0)

Description As a distributed imputation strategy, the Distributed full information Multiple Imputation method is developed to impute missing response variables in distributed linear regression. The philosophy of the package is described in 'Guo' (2025) <doi:10.1038/s41598-025-93333-6>.

License Apache License (== 2.0)

RoxygenNote 7.3.2

Encoding UTF-8

Imports stats

Date/Publication 2025-06-24 05:10:02 UTC

Config/testthat/edition 3

NeedsCompilation no

Author Guangbao Guo [aut, cre] (ORCID: https://orcid.org/0000-0002-4115-6218),

Limin Song [aut]

Maintainer Guangbao Guo <ggb11111111@163.com>

Repository CRAN

Contents

AVGM	. 2
CSLMI	. 3
DAVGMMI	. 4
DCSLMI	. 5
EMRE	. 6
ERLS	. 7

AVGM

fiMI	8
FimIMI	9
GMD	
ΙΜΙ	
LS	11
PMMI	13
PPLS	14
	16

Index

```
AVGM
```

Averaged Generalized Method of Moments Imputation (AVGM)

Description

This function performs multiple imputations on missing values in the response variable Y, using AVGMMI logic with support for grouped data. It is fully self-contained.

Usage

AVGM(data, M, midx = 1)

Arguments

data	A data frame where the first column is the response variable (Y), and others are predictors (X).
М	Number of multiple imputations.
midx	Integer indicating which column is the response variable (default = 1).

Value

A list containing:

betahat	Final averaged regression coefficient estimates.
Yhat	Imputed response variable with all missing values filled in.
comm	Completion flag $(1 = success)$.

```
set.seed(123)
data <- data.frame(
    y = c(rnorm(50), rep(NA, 10)),
    x1 = rnorm(60),
    x2 = rnorm(60)
)
result <- AVGM(data, M = 10)
head(result$Yhat)</pre>
```

CSLMI

CSLMI: Consensus-based Stochastic Linear Multiple Imputation (Simplified Version)

Description

Performs multiple imputation and parameter estimation using a consensus-based approach. It assumes: - The response variable is in the first column - All other columns are predictors - Missing values are automatically detected - The whole dataset is treated as one block

Usage

CSLMI(data, M)

Arguments

data	Dataframe with response variable in 1st column and predictors in others
М	Number of imputations

Value

A list containing:

Yhat	Matrix of size n x M with imputed response values.
betahat	Average regression coefficients across imputations.
comm	Communication cost (number of messages passed).

```
set.seed(123)
data <- data.frame(
  y = c(rnorm(50), rep(NA, 10)),
  x1 = rnorm(60),
  x2 = rnorm(60)
)
result <- CSLMI(data = data, M = 10)
head(result$Yhat)
print(result$betahat)
print(result$comm)
```

DAVGMMI

DAVGMMI

Impute Missing Values in Response Variable Y Using Distributed AVG-MMI Method (With Grouping)

Description

This function implements the Distributed Averaged Generalized Method of Moments Imputation (DAVGMMI) to fill in missing values in the response variable Y based on observed covariates X. Assumes a single group structure and does not require group size input ('n').

Usage

DAVGMMI(data, R, M)

Arguments

data	A data frame or matrix where the first column is the response variable Y (may contain NA), and remaining columns are covariates X.
R	Number of simulations for stable Beta estimation.
М	Number of multiple imputations.

Value

A list containing:

Yhat	The vector of Y with missing values imputed.
betahat	Final averaged regression coefficient estimates used for imputation.

```
set.seed(123)
data <- data.frame(
    y = c(rnorm(50), rep(NA, 10)),
    x1 = rnorm(60),
    x2 = rnorm(60)
)
result <- DAVGMMI(data, R = 50, M = 10)
head(result$Yhat)</pre>
```

DCSLMI

Distributed and Consensus-Based Stochastic Linear Multiple Imputation (DCSLMI)

Description

Performs multiple imputation for missing response variables in linear regression models. This method iteratively updates parameter estimates using ordinary least squares (OLS) and generates M complete datasets by imputing missing values with different parameter draws.

Usage

DCSLMI(data, R = 1000, M = 20)

Arguments

data	A data frame or matrix. The first column contains the response variable 'y'
	(which may include NA values), and the remaining columns are predictors 'X'.
R	Number of internal iterations for parameter estimation per imputation.
Μ	Number of multiple imputations to generate.

Value

A list containing:

Yhat A matrix of size n x M, where each column is a completed response vector.

betahat A matrix of size (p+1) x M, where each column contains the estimated regression coefficients.

missing_count The number of missing values in the original response variable.

```
# Simulate data with missing responses
set.seed(123)
data <- data.frame(
  y = c(rnorm(50), rep(NA, 10)),
  x1 = rnorm(60),
  x2 = rnorm(60)
)
# Perform multiple imputation
result <- DCSLMI(data, R = 500, M = 10)
# View imputed response values
head(result$Yhat)
# View coefficient estimates
apply(result$betahat, 1, mean) # average estimates
```

apply(result\$betahat, 1, sd) # uncertainty across imputations

EMRE

EM Algorithm for Linear Regression with Missing Data

Description

EM Algorithm for Linear Regression with Missing Data

Usage

EMRE(data, d = 1, tol = 1e-06, nb = 100, niter = 1)

Arguments

data	Dataframe with first column as response (Y) and others as predictors (X)
d	Initial convergence threshold (default=1)
tol	Termination tolerance (default=1e-6)
nb	Maximum iterations (default=100)
niter	Starting iteration counter (default=1)

Value

List containing:

Yhat	Imputed response vector
betahat	Estimated coefficients

```
# Generate data with 20% missing Y values
set.seed(123)
data <- data.frame(Y=c(rnorm(80),rep(NA,20)), X1=rnorm(100), X2=rnorm(100))
# Run EM algorithm
result <- EMRE(data, d=1, tol=1e-5, nb=50)
print(result$betahat) # View coefficients</pre>
```

ERLS

Description

Exponentially Weighted Recursive Least Squares with Missing Value Imputation

Usage

ERLS(data, rho = 0.01, lambda = 0.95, nb = 100, niter = 1)

Arguments

data	Linear regression dataset (1st column as Y, others as X)
rho	Regularization parameter
lambda	Forgetting factor
nb	Maximum iterations
niter	Initial iteration count (typically 1)

Value

List containing:

Yhat	Imputed response vector
betahat	Estimated coefficients

```
set.seed(123)
data <- data.frame(
  y = c(rnorm(50), rep(NA, 10)),
  x1 = rnorm(60),
  x2 = rnorm(60)
)
result <- ERLS(data, rho = 0.01, lambda = 0.95, nb = 100, niter = 1)
head(result$Yhat)
```

fiMI

Description

This function predicts missing response variables in a linear regression dataset using multiple imputation. It leverages the FimIMI function to perform multiple runs of improved multiple imputation and averages the regression coefficients to predict the missing response values.

Usage

fiMI(data, R, n, M)

Arguments

data.frame containing the linear regression model dataset with missing response variables.
Number of runs for multiple imputation.
Number of rows in the dataset.
Number of multiple imputations per run.

Details

This function assumes that the first column of data is the response variable and the remaining columns are the independent variables. The function uses the FimIMI function to perform multiple runs of improved multiple imputation and averages the regression coefficients to predict the missing response values.

Value

A list containing:

Yhat

Predicted response values with missing values imputed.

Examples

```
# Example data
set.seed(123)
n <- 1000 # Number of rows
p <- 5 # Number of independent variables
data <- data.frame(Y = rnorm(n), X1 = rnorm(n), X2 = rnorm(n))
data[sample(n, 100), 1] <- NA # Introduce missing response values
# Call fiMI function
result <- fiMI(data, R = 10, n = n, M = 20)
# View results
print(result$Yhat) # Predicted response values</pre>
```

fiMI

FimIMI

Description

This function performs multiple runs of the Improved Multiple Imputation (IMI) estimation and collects the results. It is designed to facilitate batch processing and repeated runs of IMI.

Usage

FimIMI(d, R, n, M, batch = 0)

Arguments

d	The data structure.
R	Number of runs to perform.
n	Vector of sample sizes for each group.
М	Number of multiple imputations per run.
batch	Batch number (default is 0). This can be used to distinguish different batches of
	runs.

Details

This function assumes that the data structure d is properly defined and contains the necessary information. The function repeatedly calls the IMI function and collects the regression coefficients and indicator variables.

Value

A list containing:

R	Vector of run numbers.
Beta	Matrix of regression coefficients for each run.
comm	Vector of indicator variables for each run.

```
# Example data
set.seed(123)
n <- c(300, 300, 400) # Sample sizes for each group
p <- 5 # Number of independent variables
d <- list(p = p, Y = rnorm(sum(n)), X0 = matrix(rnorm(sum(n) * p), ncol = p))
# Call FimIMI function
result <- FimIMI(d = d, R = 10, n = n, M = 20, batch = 1)
# View results</pre>
```

print(result\$Beta) # Regression coefficients for each run

GMD

10

Generate Missing Data function

Description

This function generates missing data in a specified column of a data frame according to a given missing ratio.

Usage

GMD(data, ratio)

Arguments

data	A data frame containing the linear regression model dataset
ratio	The missing ratio (e.g., 0.5 means 1/2 of data will be made missing)

Value

data0 A modified version of 'data' with missing values inserted	data0	A modified version of	'data' with missing	g values inserted.
---	-------	-----------------------	---------------------	--------------------

Examples

```
set.seed(123) # for reproducibility
data <- data.frame(x = 1:10, y = rnorm(10))
modified_data <- GMD(data, ratio = 0.5)
summary(modified_data)</pre>
```

IMI

Improved Multiple Imputation (IMI) Estimation

Description

This function performs Improved Multiple Imputation (IMI) estimation for grouped data with missing values. It iteratively imputes missing values using the LS function and estimates regression coefficients using the PPLS function. The final regression coefficients are averaged across multiple imputations.

Usage

IMI(d, M, midx, n)

Arguments

d	data.frame containing the dependent variable (\boldsymbol{Y}) and independent variables $(\boldsymbol{X}).$
М	Number of multiple imputations to perform.
midx	Column indices of the missing variables in d.
n	Vector of sample sizes for each group.

Details

The function assumes the data is grouped and contains missing values in specified columns (midx). It uses the LS function to impute missing values and the PPLS function to estimate regression coefficients. The process is repeated M times, and the final regression coefficients are averaged.

Value

A list containing the following elements:

betahat	Average regression coefficients across all imputations.
comm	Indicator variable (0 for single group, 1 for multiple groups).

Examples

Example data

```
set.seed(123)
n <- c(300, 300, 400) # Sample sizes for each group
p <- 5 # Number of independent variables
Y <- rnorm(sum(n)) # Dependent variable
X0 <- matrix(rnorm(sum(n) * p), ncol = p) # Independent variables matrix
d <- list(p = p, Y = Y, X0 = X0) # Data list
d$all <- cbind(Y, X0)
# Indices of missing variables (assuming some variables are missing)
midx <- c(2, 3) # For example, the second and third variables are missing
# Call IMI function
result <- IMI(d, M = 5, midx = midx, n = n)
# View results
print(result$betahat) # Average regression coefficients
```

LS

Least Squares Estimation for Grouped Data with Ridge Regularization

Description

This function implements the least squares estimation for grouped data, supporting ridge regression regularization. It can handle missing data and returns regression coefficients and the sum of squared residuals for each group.

Usage

LS(d, yidx, Xidx, n, lam = 0.005)

Arguments

d	A data frame containing dependent and independent variables.
yidx	The column index of the dependent variable.
Xidx	The column indices of the independent variables.
n	A vector of starting indices for the groups.
lam	Regularization parameter for ridge regression, default is 0.005.

Value

A list containing the following elements:

beta	A matrix of regression coefficients for each group.
SSE	The sum of squared residuals for each group.
df	The sample size for each group.
gram	The Gram matrix for each group.
cgram	The Cholesky decomposition result for each group.
comm	An unused variable (reserved for future expansion).

```
# Example data
set.seed(123)
n <- 1000
p <- 5
d <- list(all = cbind(rnorm(n), matrix(rnorm(n*p), ncol=p)))
# Call the LS function
result <- LS(d, yidx = 1, Xidx = 2:(p + 1), n = c(1, 300, 600, 1000))
# View the results
print(result$beta) # Regression coefficients
print(result$SE) # Sum of squared residuals</pre>
```

PMMI

Description

Implements PMM algorithm for handling missing data in linear regression models. Uses chained equations approach to generate multiple imputed datasets and pools results using Rubin's rules.

Usage

PMMI(data, k = 5, m = 5)

Arguments

data	Dataframe with response variable in 1st column and predictors in others
k	Number of nearest neighbors for matching (default=5)
m	Number of imputations (default=5)

Value

List containing:

Υ	Original response vector with NAs
Yhat	Final imputed response vector (averaged across imputations)
betahat	Pooled regression coefficients
imputations	List of m completed datasets
m	Number of imputations performed
k	Number of neighbors used

```
# Create dataset with 30% missing values
data <- data.frame(Y=c(rnorm(70),rep(NA,30)), X1=rnorm(100))
results <- PMMI(data, k=5, m=5)</pre>
```

Description

This function performs Penalized Partial Least Squares (PPLS) estimation for grouped data. It supports ridge regression regularization and handles missing data by excluding incomplete cases. The function returns regression coefficients, residual sum of squares, and other diagnostic information.

Usage

PPLS(d, yidx, Xidx, n, lam = 0.005)

Arguments

d	Containing the dependent and independent variables.
yidx	Column index of the dependent variable in d.
Xidx	Column indices of the independent variables in d.
n	Vector of sample sizes for each group.
lam	Regularization parameter for ridge regression (default is 0.005).

Details

This function assumes that the data is grouped and that the sample sizes for each group are provided. It excludes cases with missing values in the dependent or independent variables. The function uses Cholesky decomposition to solve the regularized least squares problem.

Value

A list containing the following elements:

beta	Regression coefficients.
SSE	Residual sum of squares.
df	Number of complete cases used in the estimation.
gram	Gram matrix $(X^T X + \lambda I)$.
cgram	Cholesky decomposition of the Gram matrix.
comm	Indicator variable (0 for single group, 1 for multiple groups).

Examples

```
# Example data
set.seed(123)
n_total <- 1000
p <- 5
n_groups <- c(300, 300, 400)
d <- list(all = cbind(rnorm(n_total), matrix(rnorm(n_total*p), ncol=p)),p = p)</pre>
```

PPLS

Call PPLS function
result <- PPLS(d, yidx=1, Xidx=2:(p+1), n=n_groups)
View results
print(result\$beta) # Regression coefficients
print(result\$SSE) # Residual sum of squares</pre>

Index

AVGM, 2 CSLMI, 3 DAVGMMI, 4 DCSLMI, 5 EMRE, 6 ERLS, 7 fiMI, 8 FimIMI, 9 GMD, 10 IMI, 10 LS, 11 PMMI, 13 PPLS, 14