Package 'CorBin'

January 20, 2025

 Type
 Package

 Title
 Generate High-Dimensional Binary Data with Correlation Structures

Version 1.0.0

Author Wei Jiang [aut], Shuang Song [aut, cre], Lin Hou [aut] and Hongyu Zhao [aut]

Maintainer Shuang Song <song-s19@mails.tsinghua.edu.cn>

Description We design algorithms with linear time complexity with respect to the dimension for three commonly studied correlation structures, including exchangeable, decaying-product and K-dependent correlation structures, and extend the algorithms to generate binary data of general non-negative correlation matrices with quadratic time complexity. Jiang, W., Song, S., Hou, L. and Zhao, H. ``A set of efficient methods to generate high-dimensional binary data with specified correlation structures." The American Statistician. See <doi:10.1080/00031305.2020.1816213> for a detailed presentation of the method.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2020-11-14 09:20:02 UTC

Contents

Bern	2
Bern1dep	3
BernDCP	4
BernEx	4
hoMax1dep	5
hoMaxDCP	5
hoMaxEx	6
	- 7

Index

cBern

Description

The main function of our package, through which we can simulate correlated binary data under different settings.

Usage

cBern(n, p, rho, type, k = NULL)

Arguments

n	number of observations
р	the vector of marginal probabilities with dimension m
rho	For the first three types, rho is either a non-negative value indecating the shared correlation coefficient or and m-1 vector indicating the correlation coefficients between adjacent variables. For the general case, rho should be a list, the i-th element of which specifies the coefficients on the i-th minor diagnal.
type	including 4 types. type="exchange" type="DCP" type="1-dependent" type="General"
k	(for 'General' use only). The number of layers setting for k-dependent structure. k=m-1 for the general case.

Value

an n*p matrix of binary data

References

Jiang, W., Song, S., Hou, L. and Zhao, H. A set of efficient methods to generate high-dimensional binary data with specified correlation structures. *The American Statistician*. DOI:10.1080/00031305.2020.1816213

See Also

cBernEx, cBernDCP, cBern1dep

cBern1dep

Examples

X <- cBern(10, rep(0.5,3), 0.5, type="exchange")
X <- cBern(10, rep(0.5,3), c(0.2,0.2), type="DCP")
X <- cBern(5, c(0.4,0.5,0.6), c(0.2,0.3), type="1-dependent")
rho <- list()
rho[[1]] <- c(0.2,0.3)
rho[[2]] <- 0.1
X <- cBern(2, c(0.7,0.8,0.9),rho=rho,type="General", k=2)</pre>

cBern1dep

Generate binary data with 1-dependent correlated structure

Description

Equivalent to cBern(n, p, rho, type="1-dependent")

Usage

cBern1dep(n, p, rho)

Arguments

n	number of observations
р	the vector of marginal probabilities with dimension m
rho	either a non-negative value indecating the shared correlation coefficient or and m-1 vector indicating the correlation coefficients between adjacent variables.

Value

an n*p matrix of binary data

Examples

X <- cBern1dep(5, c(0.4,0.5,0.6), c(0.2,0.3))

cBernDCP

Description

Equivalent to cBern(n, p, rho, type="DCP")

Usage

cBernDCP(n, p, rho)

Arguments

n	number of observations
р	the vector of marginal probabilities with dimension m
rho	either a non-negative value indecating the shared correlation coefficient or and
	m-1 vector indicating the correlation coefficients between adjacent variables.

Value

an n*p matrix of binary data

Examples

X <- cBernDCP(10, rep(0.5,3), c(0.2,0.2))

cBernE	Ξx
--------	----

Generate binary data with exchangeable correlated structure

Description

Equivalent to cBern(n, p, rho, type="exchange")

Usage

cBernEx(n, p, rho)

Arguments

n	number of observations
р	the vector of marginal probabilities with dimension m
rho	a non-negative value indecating the shared correlation coefficient

Value

an n*p matrix of binary data

rhoMax1dep

Examples

X <- cBernEx(10, rep(0.5,3), 0.5)

rhoMax1dep	То	calculate	the	maximal	allowed	correlations	max .	for	using
	cBe	ern1dep to	gene	rate binary	y data wit	h 1-dependent	structi	ıre	

Description

To calculate the maximal allowed correlations max for using cBern1dep to generate binary data with 1-dependent structure

Usage

rhoMax1dep(p)

Arguments

р

the vector of marginal probabilities with dimension m

Value

an (m-1)-dimensional vector rho, which is the maximum the correlation between the adjacent variables

rhoMaxDCP	For calculating the maximal allowed correlations max for binary data
	with decaying-product structure.

Description

For calculating the maximal allowed correlations max for binary data with decaying-product structure.

Usage

rhoMaxDCP(p)

Arguments p

marginal probabilities

Value

an (m-1)-dimensional vector rho, which is the maximum the correlation between the adjacent variables

rhoMaxEx

For calculating the maximal allowed correlation coefficient for binary data with exchangeable structure.

Description

For calculating the maximal allowed correlation coefficient for binary data with exchangeable structure.

Usage

rhoMaxEx(p)

Arguments

р

the vector of marginal probabilities with dimension m

Value

the maximal allowed correlation coefficient

Index

cBern, 2 cBern1dep, 2, 3 cBernDCP, 2, 4 cBernEx, 2, 4 rhoMax1dep, 5

rhoMaxDCP, 5 rhoMaxEx, 6