b

Statistics
Netherlands

Discussion Paper

An introduction to data
cleaning with R

The views expressed in this paper are those of the author(s) and do not necesarily reflect
the policies of Statistics Netherlands

2013 | 13

60083 201313-X-10-13

Publisher

Statistics Netherlands

Henri Faasdreef 312, 2492 JP The Hague
www.cbs.nl

Prepress: Statistics Netherlands, Grafimedia
Design: Edenspiekermann

Information
Telephone +31 88 570 70 70, fax +31 70 337 59 94
Via contact form: www.cbs.nl/information

Where to order
verkoop@cbs.nl

Fax +31 45 570 62 68
ISSN 1572-0314

© Statistics Netherlands, The Hague/Heerlen 2013.
Reproduction is permitted, provided Statistics Netherlands is quoted as the source.

An introduction to data cleaning
with R

Edwin de Jonge and Mark van der Loo

Summary. Data cleaning, or data preparation is an essential part of statistical analysis. In fact,
in practice it is often more time-consuming than the statistical analysis itself. These lecture
notes describe a range of techniques, implemented in the R statistical environment, that allow
the reader to build data cleaning scripts for data suffering from a wide range of errors and
inconsistencies, in textual format. These notes cover technical as well as subject-matter related
aspects of data cleaning. Technical aspects include data reading, type conversion and string
matching and manipulation. Subject-matter related aspects include topics like data checking,
error localization and an introduction to imputation methods in R. References to relevant
literature and R packages are provided throughout.

These lecture notes are based on a tutorial given by the authors at the useR!2013 conference in
Albacete, Spain.

Keywords: methodology, data editing, statistical software

An introduction to data cleaning withR 3

Contents

1

Notestothereader

Introduction

1.1 Statistical analysisinfivesteps L oo

1.2 Somegeneral backgroundinR Lo
1.2.1 Variable types and indexing techniques
1.2.2 Specialvalues

Exercises

From raw data to technically correct data

2.1 TechnicallycorrectdatainR.
2.2 ReadingtextdataintoaRdata.frame
2.2.1 read.tableanditscousins L
2.2.2 ReadingdatawithreadLines
2.3 Typeconversion e
2.3.1 IntroductiontoR'stypingsystem
2.3.2 Recodingfactors
2.3.3 Convertingdates
2.4 charactermanipulation Lo
2.4.1 Stringnormalization
2.4.2 Approximate stringmatching o oL
2.5 Characterencodingissues
Exercises

From technically correct data to consistent data

3.1 Detection and localizationoferrors o oL
3.1 Missingvalues.
3.1.2 Specialvalues L
3.1.3 Outliers L
3.1.4 Obviousinconsistencies
3.1.5 Errorlocalization
3.2 Correction
3.2.1 Simpletransformationrules oL
3.2.2 Deductivecorrection
3.2.3 Deterministicimputation o 000000
3.3 Imputation. . . . L
3.3.1 Basicnumericimputationmodels oL
3.3.2 Hotdeckimputation

0 00 N N

10

11

12
12
12
13
15
18
19
20

20

An introduction to data cleaning withR 4

3.3.3 kNN-imputation 48
3.3.4 Minimalvalueadjustment 49

Exercises e 51

An introduction to data cleaning withR 5

Notes to the reader

This tutorial is aimed at users who have some R programming experience. That is, the reader is
expected to be familiar with concepts such as variable assignment, vector, 1ist, data.frame,
writing simple loops, and perhaps writing simple functions. More complicated constructs, when
used, will be explained in the text. We have adopted the following conventions in this text.

Code. All code examples in this tutorial can be executed, unless otherwise indicated. Code
examples are shown in gray boxes, like this:

1+1
[1] 2

where output is preceded by a double hash sign ##. When code, function names or arguments
occur in the main text, these are typeset in fixed width font, just like the code in gray boxes.
When we refer to R data types, like vector or numeric these are denoted in fixed width font as
well.

Variables. In the main text, variables are written in slanted format while their values (when
textual) are written in fixed-width format. For example: the Marital status is unmarried.

Data. Sometimes small data files are used as an example. These files are printed in the
document in fixed-width format and can easily be copied from the pdf file. Here is an example:

%% Data on the Dalton Brothers
Gratt,1861,1892

Bob, 1892

1871, Emmet,1937

% Names, birth and death dates

v P~ W N R

Alternatively, the files can be found at http://tinyurl.com/mblhtsg.

Tips. Occasionally we have tips, best practices, or other remarks that are relevant but not part
of the main text. These are shown in separate paragraphs as follows.

Tip. To become an R master, you must practice every day.

Filenames. Asis usual in R, we use the forward slash (/) as file name separator. Under windows,
one may replace each forward slash with a double backslash \\.

References. For brevity, references are numbered, occurring as superscript in the main text.

An introduction to data cleaning withR 6

http://tinyurl.com/mblhtsg

1.1

Introduction

Analysis of data is a process of inspecting, cleaning, transforming, and modeling
data with the goal of highlighting useful information, suggesting conclusions, and
supporting decision making.

Wikipedia, July 2013

Most statistical theory focuses on data modeling, prediction and statistical inference while it is
usually assumed that data are in the correct state for data analysis. In practice, a data analyst
spends much if not most of his time on preparing the data before doing any statistical operation.
It is very rare that the raw data one works with are in the correct format, are without errors, are
complete and have all the correct labels and codes that are needed for analysis. Data Cleaning is
the process of transforming raw data into consistent data that can be analyzed. It is aimed at
improving the content of statistical statements based on the data as well as their reliability.

Data cleaning may profoundly influence the statistical statements based on the data. Typical
actions like imputation or outlier handling obviously influence the results of a statistical
analyses. For this reason, data cleaning should be considered a statistical operation, to be
performed in a reproducible manner. The R statistical environment provides a good
environment for reproducible data cleaning since all cleaning actions can be scripted and
therefore reproduced.

Statistical analysis in five steps

In this tutorial a statistical analysis is viewed as the result of a number of data processing steps
where each step increases the *“value" of the data”.

Figure 1 shows an overview of a typical data
analysis project. Each rectangle represents

/ (Rowdata) data in a certain state while each arrow

w type checking, normalizing represents the activities needed to get from
£ A one state to the other. The first state (Raw
3 Technically . . .
° correct data data) is the data as it comes in. Raw data
k= .
S ‘ _ files may lack headers, contain wrong data
fix and impute .
L v types (e.g. numbers stored as strings), wrong
(__Consistent data category labels, unknown or unexpected
. . character encoding and so on. In short
estimate, analyze, derive, etc. !
v reading such files into an R data. frame
(__ Statistical results directly is either difficult or impossible

tabulate, plot without some sort of preprocessing.

Y Once this preprocessing has taken place,
@ data can be deemed Technically correct.
That s, in this state data can be read into

Figure 1: Statistical analysis value chain anR data.frame, with correct names, types
and labels, without further trouble. However,

that does not mean that the values are error-free or complete. For example, an age variable
may be reported negative, an under-aged person may be registered to possess a driver's license,
or data may simply be missing. Such inconsistencies obviously depend on the subject matter

*In fact, such a value chain is an integral part of Statistics Netherlands business architecture.

An introduction to data cleaning withR 7

1.2

that the data pertains to, and they should be ironed out before valid statistical inference from
such data can be produced.

Consistent data is the stage where data is ready for statistical inference. It is the data that most
statistical theories use as a starting point. Ideally, such theories can still be applied without
taking previous data cleaning steps into account. In practice however, data cleaning methods
like imputation of missing values will influence statistical results and so must be accounted for in
the following analyses or interpretation thereof.

Once Statistical results have been produced they can be stored for reuse and finally, results can
be Formatted to include in statistical reports or publications.

Best practice. Store the input data for each stage (raw, technically correct,
consistent, aggregated and formatted) separately for reuse. Each step between the
stages may be performed by a separate R script for reproducibility.

Summarizing, a statistical analysis can be separated in five stages, from raw data to formatted
output, where the quality of the data improves in every step towards the final result. Data
cleaning encompasses two of the five stages in a statistical analysis, which again emphasizes its
importance in statistical practice.

Some general background in R

We assume that the reader has some proficiency in R. However, as a service to the reader, below
we summarize a few concepts which are fundamental to working with R, especially when
working with *dirty data".

1.2.1 Variable types and indexing techniques

If you had to choose to be proficient in just one R-skill, it should be indexing. By indexing we
mean all the methods and tricks in R that allow you to select and manipulate data using
logical, integer or named indices. Since indexing skills are important for data cleaning, we
quickly review vectors, data.frames and indexing techniques.

The most basic variable in Ris a vector. An R vector is a sequence of values of the same type.
All basic operations in R act on vectors (think of the element-wise arithmetic, for example). The
basic types in R are as follows.

numeric Numeric data (approximations of the real numbers, R)
integer Integer data (whole numbers, Z)

factor Categorical data (simple classifications, like gender)
ordered Ordinal data (ordered classifications, like educational level)
character Character data (strings)

raw Binary data

All basic operations in R work element-wise on vectors where the shortest argument is recycled
if necessary. This goes for arithmetic operations (addition, subtraction,...), comparison
operators (==, <=,...), logical operators (&, |, !,...) and basic math functions like sin, cos, exp
and so on. If you want to brush up your basic knowledge of vector and recycling properties, you
can execute the following code and think about why it works the way it does.

An introduction to data cleaning withR 8

vectors have variables of _one_ type
c(1, 2, "three")

shorter arguments are recycled

(1:3) * 2

(1:4) * c(1, 2)

warning! (why?)

(1:4) * (1:3)

Each element of a vector can be given a name. This can be done by passing named arguments to
the c () function or later with the names function. Such names can be helpful giving meaning to
your variables. For example compare the vector

x <- c("red", "green", "blue")

with the one below.

capColor = c(huey = "red", duey = "blue", louie = "green")

Obviously the second version is much more suggestive of its meaning. The names of a vector
need not be unique, but in most applications you'll want unique names (if any).

Elements of a vector can be selected or replaced using the square bracket operator []. The
square brackets accept either a vector of names, index numbers, or a logical. In the case of a
logical, the index is recycled if it is shorter than the indexed vector. In the case of numerical
indices, negative indices omit, in stead of select elements. Negative and positive indices are not
allowed in the same index vector. You can repeat a name or an index number, which results in
multiple instances of the same value. You may check the above by predicting and then verifying
the result of the following statements.

capColor["louie"]

names (capColor)[capColor == "blue"]
X <- c(4, 7, 6, 5, 2, 8)

I <-x<6

J <-x>7

x[I | 3]

Xx[c(TRUE, FALSE)]

X[C('l: '2)]

Replacing values in vectors can be done in the same way. For example, you may check that in
the following assignment

X <- 1:10
x[c(TRUE, FALSE)] <- 1

every other value of x is replaced with 1.

A listis a generalization of a vector in that it can contain objects of different types, including
other lists. There are two ways to index a 1ist. The single bracket operator always returns a
sub-1list of the indexed 1ist. That s, the resulting type is againa 1ist. The double bracket
operator ([[]1) may only result in a single item, and it returns the object in the list itself.
Besides indexing, the dollar operator $ can be used to retrieve a single element. To understand
the above, check the results of the following statements.

L <- list(x = c(1:5), y = c("a", "b", "c"), z = capColor)

LL[2]]

Ly

Llc(1, 3)]

Llc("x", "y")]

L[["z"]]

An introduction to data cleaning withR g

Especially, use the class function to determine the type of the result of each statement.

A data.frame is not much more than a 1ist of vectors, possibly of different types, but with
every vector (now columns) of the same length. Since data.frames are a type of list, indexing
them with a single index returns a sub-data.frame; that is, a data. frame with less columns.
Likewise, the dollar operator returns a vector, not a sub-data. frame. Rows can be indexed
using two indices in the bracket operator, separated by a comma. The first index indicates rows,
the second indicates columns. If one of the indices is left out, no selection is made (so
everything is returned). It is important to realize that the result of a two-index selection is
simplified by R as much as possible. Hence, selecting a single column using a two-index results
in a vector. This behaviour may be switched off using drop=FALSE as an extra parameter. Here
are some short examples demonstrating the above.

d <- data.frame(x = 1:10, y = letters[1:10], z = LETTERS[1:10])
d[1]

df, 1]

d[, "x", drop = FALSE]

dlc("x", "z")]

d[d$x > 3, "y", drop = FALSE]

drz, 1

1.2.2 Special values

Like most programming languages, R has a number of Special values that are exceptions to the
normal values of a type. These are NA, NULL, +Inf and NaN. Below, we quickly illustrate the
meaning and differences between them.

NA Stands for not available. NA is a placeholder for a missing value. All basic operations in R
handle NA without crashing and mostly return NA as an answer whenever one of the input
arguments is NA. If you understand NA, you should be able to predict the result of the
following R statements.

NA + 1

sum(c(NA, 1, 2))

median(c(NA, 1, 2, 3), na.rm = TRUE)
length(c(NA, 2, 3, 4))

3 == NA
NA == NA
TRUE | NA

The function is.na can be used to detect NA's.

NULL You may think of NULL as the empty set from mathematics. NULL is special since it has no
class (its class is NULL) and has length 0 so it does not take up any space in a vector. In
particular, if you understand NULL, the result of the following statements should be clear to
you without starting R.
length(c(1, 2, NULL, 4))
sum(c(1, 2, NULL, 4))

x <- NULL
c(x, 2)
The function is.null can be used to detect NULL variables.

Inf Stands for infinity and only applies to vectors of class numeric. A vector of class integer can
never be Inf. This is because the Inf in R is directly derived from the international standard
for floating point arithmetic®. Technically, Inf is a valid numeric that results from
calculations like division of a number by zero. Since Inf is a numeric, operations between Inf
and a finite numeric are well-defined and comparison operators work as expected. If you
understand Inf, the result of the following statements should be clear to you.

An introduction to data cleaning withR 10

pi/e
2 * Inf
Inf - le+l0
Inf + Inf
3 < -Inf
Inf == Inf

NaN Stands for not a number. This is generally the result of a calculation of which the result is
unknown, but it is surely not a number. In particular operations like /0, Inf-Inf and
Inf/Inf resultin NaN. Technically, NaN is of class numeric, which may seem odd since it is
used to indicate that something is not numeric. Computations involving numbers and NaN
always result in NaN, so the result of the following computations should be clear.

NaN + 1
exp(NaN)

The function is.nan can be used to detect NaN's.

Tip. The function is.finite checks a vector for the occurrence of any non-numerical
or special values. Note that it is not useful on character vectors.

Exercises

Exercise 1.1. Predict the result of the following R statements. Explain the reasoning behind the
results.

exp(-Inf)

NA == NA

NA == NULL
NULL == NULL
NA & FALSE

R0 o R

Exercise 1.2. In which of the steps outlined in Figure 1 would you perform the following activities?

Estimating values for empty fields.

Setting the font for the title of a histogram.

Rewrite a column of categorical variables so that they are all written in capitals.
Use the knitr package3® to produce a statistical report.

© o o R

Exporting data from Excel to csv.

An introduction to data cleaning withR 11

2.1

2.2

From raw data to technically correct data

A data set is a collection of data that describes attribute values (variables) of a number of
real-world objects (units). With data that are technically correct, we understand a data set where
each value

1. can be directly recognized as belonging to a certain variable;
2. is stored in a data type that represents the value domain of the real-world variable.

In other words, for each unit, a text variable should be stored as text, a numeric variable as a
number, and so on, and all this in a format that is consistent across the data set.

Technically correct data in R

The R environment is capable of reading and processing several file and data formats. For this
tutorial we will limit ourselves to ‘rectangular' data sets that are to be read from a text-based
format. In the case of R, we define technically correct data as a data set that

— isstoredin a data.frame with suitable columns names, and
— each column of the data. frame is of the R type that adequately represents the value domain
of the variable in the column.

The second demand implies that numeric data should be stored as numeric or integer, textual
data should be stored as character and categorical data should be stored as a factor or
ordered vector, with the appropriate levels.

Limiting ourselves to textual data formats for this tutorial may have its drawbacks, but there are
several favorable properties of textual formats over binary formats:

— Itis human-readable. When you inspect a text-file, make sure to use a text-reader (more,
less) or editor (Notepad, vim) that uses a fixed-width font. Never use an office application for
this purpose since typesetting clutters the data's structure, for example by the use of ligature.

— Text is very permissive in the types values that are stored, allowing for comments and
annotations.

The task then, is to find ways to read a textfile into R and have it transformed to a well-typed
data.frame with suitable column names.

Best practice. Whenever you need to read data from a foreign file format, like a
spreadsheet or proprietary statistical software that uses undisclosed file formats,
make that software responsible for exporting the data to an open format that can be
read by R.

Reading text data into a R data.frame

In the following, we assume that the text-files we are reading contain data of at most one unit
per line. The number of attributes, their format and separation symbols in lines containing data
may differ over the lines. This includes files in fixed-width or csv-like format, but excludes
XML-like storage formats.

An introduction to data cleaning withR 12

2.2.1 read.table and its cousins

The following high-level R functions allow you to read in data that is technically correct, or close
toit.

read.delim read.delim2
read.csv read.csv2
read.table read.fwf

The return type of all these functions is a data. frame. If the column names are stored in the
first line, they can automatically be assigned to the names attribute of the resulting
data.frame.

Best practice. A freshly read data. frame should always be inspected with functions
like head, str, and summary.

The read.table function is the most flexible function to read tabular data that is stored in a
textual format. In fact, the other read-functions mentioned above all eventually use
read.table with some fixed parameters and possibly after some preprocessing. Specifically

read.csv for comma separated values with period as decimal separator.
read.csv2 for semicolon separated values with comma as decimal separator.
read.delim tab-delimited files with period as decimal separator.
read.delim2 tab-delimited files with comma as decimal separator.

read. fwf data with a predetermined number of bytes per column.

Each of these functions accept, amongst others, the following optional arguments.

Argument description

header Does the first line contain column names?
col.names character vector with column names.
na.string Which strings should be considered NA?
colClasses character vector with the types of columns.

Will coerce the columns to the specified types.
stringsAsFactors If TRUE, converts all character vectors into
factor vectors.
sept Field separator.

TUsed only internally by read. fuf

Except for read.table and read. fuf, each of the above functions assumes by default that the
first line in the text file contains column headers. To demonstrate this, we assume that we have
the following text file stored under files/unnamed. txt.

21,6.0
42,5.9
18,5.7*
21, NA

S~ w N R

Now consider the following script.

An introduction to data cleaning withR 13

first line is erroneously interpreted as column names
(person <- read.csv("files/unnamed.txt"))

#H# X21 X6.0

1 42 5.9

2 18 5.7*

3 21 <NA>

so we better do the following

person <- read.csv(

file = "files/unnamed.txt"

, header = FALSE

, col.names = c("age","height"))
person

age height
1 21 6.0
##t 2 42 5.9
3 18 5o 7%
4 21 <NA>

In the first attempt, read. csv interprets the first line as column headers and fixes the numeric
data to meet R's variable naming standards by prepending an X.

If colClasses is not specified by the user, read.table will try to determine the column types.
Although this may seem convenient, it is noticeably slower for larger files (say, larger than a few
MB) and it may yield unexpected results. For example, in the above script, one of the rows
contains a malformed numerical variable (5.7%*), causing R to interpret the whole column as a
text variable. Moreover, by default text variables are converted to factor, so we are now stuck
with a height variable expressed as levels in a categorical variable:

str(person)
'data.frame': 4 obs. of 2 variables:
$ age : int 21 42 18 21

$ height: Factor w/ 3 levels "5.7*","5.9","6.0": 3 2 1 NA

Using colClasses, we can force R to either interpret the columns in the way we want or throw
an error when this is not possible.

read.csv("files/unnamed. txt",
header=FALSE,
colClasses=c('numeric', 'numeric'))

Error: scan() expected 'a real', got '5.7*'

This behaviour is desirable if you need to be strict about how data is offered to your R script.
However, unless you are prepared to write tryCatch constructions, a script containing the
above code will stop executing completely when an error is encountered.

As an alternative, columns can be read in as character by setting stringsAsFactors=FALSE.
Next, one of the as.-functions can be applied to convert to the desired type, as shown below.

dat <- read.csv(

file = "files/unnamed.txt"
, header = FALSE
, col.names = c("age","height")

, stringsAsFactors=FALSE)
dat$height <- as.numeric(dat$height)

Warning: NAs introduced by coercion

An introduction to data cleaning withR 14

dat

age height
1 21 6.0
##H 2 42 5.9
3 18 NA
4 21 NA

Now, everything is read in and the height column is translated to numeric, with the exception
of the row containing 5.7*. Moreover, since we now get a warning instead of an error, a script
containing this statement will continue to run, albeit with less data to analyse than it was
supposed to. It is of course up to the programmer to check for these extra NA's and handle them
appropriately.

2.2.2 Reading data with readLines

When the rows in a data file are not uniformly formatted you can consider reading in the text
line-by-line and transforming the data to a rectangular set yourself. With readLines you can
exercise precise control over how each line is interpreted and transformed into fields in a
rectangular data set. Table 1 gives an overview of the steps to be taken. Below, each step is
discussed in more detail. As an example we will use a file called daltons.txt. Below, we show
the contents of the file and the actual table with data as it should appear in R.

Data file: Actual table:
1 %% Data on the Dalton Brothers
> Gratt,1861,1892 Name Birth Death
3 Bob,1892 Gratt 1861 1892
4 1871,Emmet, 1937 Bob NA 1892
5 % Names, birth and death dates Emmet 1871 1937

The file has comments on several lines (starting with a % sign) and a missing value in the second
row. Moreover, in the third row the name and birth date have been swapped.

Step 1. Reading data. The readLines function accepts filename as argument and returns a
character vector containing one element for each line in the file. readLines detects both the
end-of-line and carriage return characters so lines are detected regardless of whether the file
was created under DOS, UNIX or MAC (each OS has traditionally had different ways of marking an
end-of-line). Reading in the Daltons file yields the following.

(txt <- readLines("files/daltons.txt"))
[1] "%% Data on the Dalton Brothers" "Gratt,1861,1892"
[3] "Bob,1892" "1871,Emmet,1937"
[5] "% Names, birth and death dates”

The variable txt has 5 elements, equal to the number of lines in the textfile.

Step 2. Selecting lines containing data. This is generally done by throwing out lines containing
comments or otherwise lines that do not contain any data fields. You can use grep or grepl to
detect such lines.

detect lines starting with a percentage sign..

I <- grepl("~%", txt)

and throw them out

(dat <- txt[!I])

[1] "Gratt,1861,1892" "Bob,1892" "1871,Emmet,1937"

An introduction to data cleaning withR 15

Table 1: Steps to take when converting lines in a raw text file to a data. frame
with correctly typed columns.

Step result
1 Readthe data with readLines character
2 Selectlines containing data character
3 Splitlines into separate fields list of character vectors
4 Standardize rows list of equivalent vectors
5 Transformto data.frame data.frame
6 Normalize and coerce to correct type data.frame

Here, the first argument of grepl is a search pattern, where the caret (Jindicates a start-of-line.
The result of grepl is a logical vector that indicates which elements of txt contain the
pattern 'start-of-line' followed by a percent-sign. The functionality of grep and grep1l will be
discussed in more detail in section 2.4.2.

Step 3. Split lines into separate fields. This can be done with strsplit. This function accepts
a character vector and a split argument which tells strsplit how to split a string into
substrings. The resultis a 1ist of character vectors.

(fieldList <- strsplit(dat, split = ","))
[[1]1]

[1] "Gratt" "1861" "1892"

#i#

[[2]]

[1] "Bob" "1892"

##

[[3]1]

[1] "1871" "Emmet" "1937"

Here, split is a single character or sequence of characters that are to be interpreted as field
separators. By default, split is interpreted as a regular expression (see Section 2.4.2) which
means you need to be careful when the split argument contains any of the special characters
listed on page 25. The meaning of these special characters can be ignored by passing
fixed=TRUE as extra parameter.

Step 4. Standardize rows. The goal of this step is to make sure that 1) every row has the same
number of fields and 2) the fields are in the right order. In read.table, lines that contain less
fields than the maximum number of fields detected are appended with NA. One advantage of
the do-it-yourself approach shown here is that we do not have to make this assumption. The
easiest way to standardize rows is to write a function that takes a single character vector as
input and assigns the values in the right order.

assignFields <- function(x){
out <- character(3)
get names
i <- grepl("[[:alpha:]]",x)
out[1] <- x[1i]
get birth date (if any)
i <- which(as.numeric(x) < 1890)
out[2] <- ifelse(length(i)>@, x[i], NA)
get death date (if any)
i <- which(as.numeric(x) > 1890)
out[3] <- ifelse(length(i)>@, x[i], NA)
out

An introduction to data cleaning withR 16

The above function accepts a character vector and assigns three values to an output vector of
class character. The grepl statement detects fields containing alphabetical values a-z or
A-Z.To assign year of birth and year of death, we use the knowledge that all Dalton brothers
were born before and died after 1890. To retrieve the fields for each row in the example, we
need to apply this function to every element of fieldList.

standardFields <- lapply(fieldList, assignFields)
standardFields

[[1]]

[1] "Gratt" "1861" "1892"

#H#

[[2]]

[1] "Bob" NA "1892"

#H#

[[3]]

[1] "Emmet" "1871" "1937"

Here, we suppressed the warnings about failed conversions that R generates in the output.

The advantage of this approach is having greater flexibility than read. table offers. However,
since we are interpreting the value of fields here, it is unavoidable to know about the contents of
the dataset which makes it hard to generalize the field assigner function. Furthermore,
assignFields function we wrote is still relatively fragile. That is: it crashes for example when
the input vector contains two or more text-fields or when it contains more than one numeric
value larger than 1890. Again, no one but the data analyst is probably in a better position to
choose how safe and general the field assigner should be.

Tip. Element-wise operations over lists are easy to parallelize with the paral Lel
package that comes with the standard R installation. For example, on a quadcore
computer you can do the following.

library(parallel)

cluster <- makeCluster(4)

standardFields <- parLapply(cl=cluster, fieldlList, assignFields)
stopCluster(cl)

Of course, parallelization only makes sense when you have a fairly long list to process,
since there is some overhead in setting up and running the cluster.

Step 5. Transform to data. frame. There are several ways to transform a list to a data. frame
object. Here, first all elements are copied into a matrix which is then coerced into a
data.frame.

(M <- matrix(
unlist(standardFields)
, nrow=length(standardFields)
, byrow=TRUE))

#i [,1] [,21 [,3]
[1,] "Gratt" "1861" "1892"
[2,] "Bob" NA "1892"

[3,] "Emmet" "1871" "1937"

colnames(M) <- c("name","birth","death")

(daltons <- as.data.frame(M, stringsAsFactors=FALSE))
#i# name birth death

An introduction to data cleaning withR 17

2.3

1 Gratt 1861 1892
2 Bob <NA> 1892
3 Emmet 1871 1937

The function unlist concatenates all vectors in a 1ist into one large character vector. We then
use that vector to fill amatrix of class character. However, the matrix function usually fills
up a matrix column by column. Here, our data is stored with rows concatenated, so we need to
add the argument byrow=TRUE. Finally, we add column names and coerce the matrix to a
data.frame. We use stringsAsFactors=FALSE since we have not started interpreting the
values yet.

Step 6. Normalize and coerce to correct types.

This step consists of preparing the character columns of our data. frame for coercion and
translating numbers into numeric vectors and possibly character vectors to factor variables.
String normalization is the subject of section 2.4.1 and type conversion is discussed in some
more detail in the next section. However, in our example we can suffice with the following
statements.

daltons$birth <- as.numeric(daltons$birth)
daltons$death <- as.numeric(daltons$death)
daltons

#HH name birth death

1 Gratt 1861 1892

2 Bob NA 1892

3 Emmet 1871 1937

Or, using transform:
daltons = transform(daltons

, birth = as.numeric(birth)
, death = as.numeric(death)

)

Type conversion

Converting a variable from one type to another is called coercion. The reader is probably familiar
with R's basic coercion functions, but as a reference they are listed here.

as.numeric as.logical
as.integer as.factor

as.character as.ordered

Each of these functions takes an R object and tries to convert it to the class specified behind the
"‘as.". By default, values that cannot be converted to the specified type will be converted to a
NA value while a warning is issued.

as.numeric(c("7", "7*", "7.0", "7,0"))
Warning: NAs introduced by coercion

[1] 7 NA 7 NA

In the remainder of this section we introduce R's typing and storage system and explain the
difference between R types and classes. After that we discuss date conversion.

An introduction to data cleaning withR 18

2.3.1 Introduction to R's typing system

Everything in R is an object“. An object is a container of data endowed with a label describing
the data. Objects can be created, destroyed or overwritten on-the-fly by the user.

The function class returns the class label of an R object.

class(c("abc", "def"))

[1] "character"

class(1:10)

[1] "integer"

class(c(pi, exp(1)))

[1] "numeric"
class(factor(c("abc", "def")))
[1] "factor"

Tip. Here's a quick way to retrieve the classes of all columns in a data. frame called
dat.

sapply(dat, class)

For the user of R these class labels are usually enough to handle R objects in R scripts. Under the
hood, the basic R objects are stored as C structures as C is the language in which R itself has been
written. The type of C structure that is used to store a basic type can be found with the typeof
function. Compare the results below with those in the previous code snippet.

typeof(c("abc", "def"))

[1] "character"

typeof(1:10)

[1] "integer"

typeof(c(pi, exp(1)))

[1] "double"
typeof(factor(c("abc", "def")))
[1] "integer"

Note that the type of an R object of class numeric is double. The term double refers to
double precision, whichis a standard way for lower-level computer languages such as C to
store approximations of real numbers. Also, the type of an object of class factor is integer.
The reason is that R saves memory (and computational time!) by storing factor values as
integers, while a translation table between factor and integers are kept in memory. Normally, a
user should not have to worry about these subtleties, but there are exceptions. An example of
this is the subject of Exercise 2.2.

In short, one may regard the class of an object as the object's type from the user's point of view
while the type of an object is the way R looks at the object. It is important to realize that R's
coercion functions are fundamentally functions that change the underlying type of an object
and that class changes are a consequence of the type changes.

Confusingly, R objects also have a mode (and storage.mode) which can be retrieved or set using
functions of the same name. Both mode and storage . mode differ slightly from typeof, and are
only there for backwards compatibility with R's precursor language: S. We therefore advise the
user to avoid using these functions to retrieve or modify an object's type.

An introduction to data cleaning withR 19

2.3.2 Recoding factors

In R, the value of categorical variables is stored in factor variables. A factoris an integer
vector endowed with a table specifying what integer value corresponds to what level. The
values in this translation table can be requested with the 1evels function.

_F <- 'Factor‘(c("a", nbu) nau’ |la||’ ||C||))
levels(f)
[1] "a" "b" "c"

The use of integers combined with a translation table is not uncommon in statistical software,
so chances are that you eventually have to make such a translation by hand. For example,
suppose we read in a vector where 1 stands for male, 2 stands for female and o stands for
unknown. Conversion to a factor variable can be done as in the example below.

example:

gender <- c(2, 1, 1, 2, 0, 1, 1)

recoding table, stored in a simple vector

recode <- c(male = 1, female = 2)

(gender <- factor(gender, levels = recode, labels = names(recode)))
[1] female male male female <NA> male male

Levels: male female

Note that we do not explicitly need to set NA as a label. Every integer value that is encountered
in the first argument, but not in the levels argument will be regarded missing.

Levels in a factor variable have no natural ordering. However in multivariate (regression)
analyses it can be beneficial to fix one of the levels as the reference level. R's standard
multivariate routines (1m, glm) use the first level as reference level. The relevel function allows
you to determine which level comes first.

(gender <- relevel(gender, ref = "female"))
[1] female male male female <NA> male male
Levels: female male

Levels can also be reordered, depending on the mean value of another variable, for example:

age <- c(27, 52, 65, 34, 89, 45, 68)

(gender <- reorder(gender, age))

[1] female male male female <NA> male male
attr(,"scores"

female male

#H# 30.5 57.5

Levels: female male

Here, the means are added as a named vector attribute to gender. It can be removed by setting
that attribute to NULL.

attr(gender, "scores") <- NULL

gender

[1] female male male female <NA> male male
Levels: female male

2.3.3 Converting dates

The base R installation has three types of objects to store a time instance: Date, POSIX1t and
POSIXct. The Date object can only be used to store dates, the other two store date and/or

An introduction to data cleaning withR 20

time. Here, we focus on converting text to POSIXct objects since this is the most portable way
to store such information.

Under the hood, a POSIXct object stores the number of seconds that have passed since January
1, 1970 00:00. Such a storage format facilitates the calculation of durations by subtraction of
two POSIXct objects.

When a POSIXct object is printed, R shows it in a human-readable calender format. For
example, the command Sys . time returns the system time provided by the operating system in
POSIXct format.

current_time <- Sys.time()
class(current_time)

[1] "POSIXct" "POSIXt"
current_time

[1] "2013-10-28 11:12:50 CET"

Here, Sys.time uses the time zone that is stored in the locale settings of the machine running
R.

Converting from a calender time to POSIXct and back is not entirely trivial, since there are
many idiosyncrasies to handle in calender systems. These include leap days, leap seconds,
daylight saving times, time zones and so on. Converting from text to POSIXct is further
complicated by the many textual conventions of time/date denotation. For example, both 28
September 1976 and 1976/09/28 indicate the same day of the same year. Moreover, the
name of the month (or weekday) is language-dependent, where the language is again defined in
the operating system's locale settings.

The lubridate package™ contains a number of functions facilitating the conversion of text to
POSIXct dates. As an example, consider the following code.

library(lubridate)

dates <- c("15/02/2013", "15 Feb 13", "It happened on 15 02 '13")
dmy(dates)

[1] "2013-02-15 UTC" "2013-02-15 UTC" "2013-02-15 UTC"

Here, the function dmy assumes that dates are denoted in the order day-month-year and tries to
extract valid dates. Note that the code above will only work properly in locale settings where
the name of the second month is abbreviated to Feb. This holds for English or Dutch locales, but
fails for example in a French locale (Février).

There are similar functions for all permutations of d, mand y. Explicitly, all of the following
functions exist.

dmy myd ydm
mdy dym ymd

So once it is known in what order days, months and years are denoted, extraction is very easy.

Note. /t is not uncommon to indicate years with two numbers, leaving out the
indication of century. In R, 00-68 are interpreted as 2000-2068 and 69-99 as
1969-1999.

dmy("01 01 68")

[1] "2068-01-01 UTC"

dmy("@1 @1 69")
[1] "1969-01-01 UTC"

An introduction to data cleaning withR 21

Table 2: Day, month and year formats recognized by R.

Code description Example
%a Abbreviated weekday name in the current locale. Mon

%A Full weekday name in the current locale. Monday

%b Abbreviated month name in the current locale. Sep

%B Full month name in the current locale. September
%m Month number (01-12) 09

%d Day of the month as decimal number (01-31). 28

%y Year without century (00-99) 13

%Y Year including century. 2013

This behaviour is according to the 2008 POSIX standard, but one should expect that
this interpretation changes over time.

It should be noted that lubridate (as well as R's base functionality) is only capable of
converting certain standard notations. For example, the following notation does not convert.

dmy("15 Febr. 2013")

Warning: All formats failed to parse. No formats found.

[1] NA

The standard notations that can be recognized by R, either using lubridate or R's built-in
functionality are shown in Table 2. Here, the names of (abbreviated) week or month names that
are sought for in the text depend on the locale settings of the machine that is running R. For
example, on a PC running under a Dutch locale, “'maandag" will be recognized as the first day of
the week while in English locales “*Monday" will be recognized. If the machine running R has
multiple locales installed you may add the argument locale to one of the dmy-like functions. In
Linux-alike systems you can use the command locale -ainbash terminalto see the list of
installed locales. In Windows you can find available locale settings under "‘language and
regional settings", under the configuration screen.

If you know the textual format that is used to describe a date in the input, you may want to use
R's core functionality to convert from text to POSIXct. This can be done with the as.POSIXct
function. It takes as arguments a character vector with time/date strings and a string
describing the format.

dates <- c("15-9-2009", "16-07-2008", "17 12-2007", "29-02-2011")
as.POSIXct(dates, format = "%d-%m-%Y")
[1] "2009-09-15 CEST" "2008-07-16 CEST" NA NA

In the format string, date and time fields are indicated by a letter preceded by a percent sign (%).
Basically, such a %-code tells R to look for a range of substrings. For example, the %d indicator
makes R look for numbers 1-31 where precursor zeros are allowed, so 01, 02,...31 are
recognized as well. Table 2 shows which date-codes are recognized by R. The complete list can
be found by typing ?strptime in the R console. Strings that are not in the exact format
specified by the format argument (like the third string in the above example) will not be
converted by as.POSIXct. Impossible dates, such as the leap day in the fourth date above are
also not converted.

Finally, to convert dates from POSIXct back to character, one may use the format function that
comes with base R. It accepts a POSIXct date/time object and an output format string.

An introduction to data cleaning withR 22

2.4

mybirth <- dmy("28 Sep 1976")
format(mybirth, format = "I was born on %B %d, %Y")
[1] "I was born on September 28, 1976"

character manipulation

Because of the many ways people can write the same things down, character data can be
difficult to process. For example, consider the following excerpt of a data set with a gender
variable.

gender
1 M
2 male

3 Female
4 fem.

If this would be treated as a factor variable without any preprocessing, obviously four, not two
classes would be stored. The job at hand is therefore to automatically recognize from the above
data whether each element pertains to male or female. In statistical contexts, classifying such
“"messy" text strings into a number of fixed categories is often referred to as coding.

Below we discuss two complementary approaches to string coding: string normalization and
approximate text matching. In particular, the following topics are discussed.

Remove prepending or trailing white spaces.

Pad strings to a certain width.

Transform to upper/lower case.

Search for strings containing simple patterns (substrings).

Approximate matching procedures based on string distances.

2.4.1 String normalization

String normalization techniques are aimed at transforming a variety of strings to a smaller set of
string values which are more easily processed. By default, R comes with extensive string
manipulation functionality that is based on the two basic string operations: finding a patternin a
string and replacing one pattern with another. We will deal with R's generic functions below but
start by pointing out some common string cleaning operations.

The stringr package3® offers a number of functions that make some some string manipulation
tasks a lot easier than they would be with R's base functions. For example, extra white spaces at
the beginning or end of a string can be removed using str_trim.

library(stringr)

str_trim(" hello world ")

[1] "hello world"

str_trim(" hello world ", side = "left")
[1] "hello world "

str_trim(" hello world ", side = "right")
[1] " hello world"

Conversely, strings can be padded with spaces or other characters with str_pad to a certain
width. For example, numerical codes are often represented with prepending zeros.

An introduction to data cleaning withR 23

str_pad(112, width = 6, side = "left", pad = @)
[1] "000112"

Both str_trimand str_pad accept a side argument to indicate whether trimming or padding
should occur at the beginning (1eft), end (right) or both sides of the string.

Converting strings to complete upper or lower case can be done with R's built-in toupper and
tolower functions.

toupper("Hello world")
[1] "HELLO WORLD"
tolower("Hello World")
[1] "hello world"

2.4.2 Approximate string matching

There are two forms of string matching. The first consists of determining whether a (range of)
substring(s) occurs within another string. In this case one needs to specify a range of substrings
(called a pattern) to search for in another string. In the second form one defines a distance
metric between strings that measures how "different" two strings are. Below we will give a
short introduction to pattern matching and string distances with R.

There are several pattern matching functions that come with base R. The most used are
probably grep and grepl. Both functions take a pattern and a character vector as input. The
output only differs in that grepl returns a logical index, indicating which element of the input
character vector contains the pattern, while grep returns a numerical index. You may think of
grep(...) aswhich(grepl(...)).

In the most simple case, the pattern to look for is a simple substring. For example, using the
data of the example on page 23, we get the following.

gender <- c("M", "male ", "Female", "fem.")

grepl("m", gender)

[1] FALSE TRUE TRUE TRUE
grep("m", gender)

[1] 2 3 4

Note that the result is case sensitive: the capital Min the first element of gender does not match
the lower case m. There are several ways to circumvent this case sensitivity. Either by case
normalization or by the optional argument ignore. case.

grepl("m", gender, ignore.case = TRUE)
[1] TRUE TRUE TRUE TRUE

grepl("m", tolower(gender))
[1] TRUE TRUE TRUE TRUE

Obviously, looking for the occurrence of mor Min the gender vector does not allow us to
determine which strings pertain to male and which not. Preferably we would like to search for
strings that start with an m or M. Fortunately, the search patterns that grep accepts allow for
such searches. The beginning of a string is indicated with a caret (J.

grepl("~m", gender, ignore.case = TRUE)
[1] TRUE TRUE FALSE FALSE

An introduction to data cleaning withR 24

Indeed, the grepl function now finds only the first two elements of gender. The caretis an
example of a so-called meta-character. That is, it does not indicate the caret itself but
something else, namely the beginning of a string. The search patterns that grep, grepl (and
sub and gsub) understand have more of these meta-characters, namely:

SN OYTD L~ x+2

If you need to search a string for any of these characters, you can use the option fixed=TRUE.

grepl("~", gender, fixed = TRUE)
[1] FALSE FALSE FALSE FALSE

This will make grepl or grep ignore any meta-characters in the search string.

Search patterns using meta-characters are called regular expressions. Regular expressions offer
powerful and flexible ways to search (and alter) text. A discussion of regular expressions is
beyond the scope of these lecture notes. However, a concise description of regular expressions
allowed by R's built-in string processing functions can be found by typing ?regex at the R
command line. The books by Fitzgerald*® or Fried|** provide a thorough introduction to the
subject of regular expression. If you frequently have to deal with “*messy" text variables,
learning to work with regular expressions is a worthwhile investment. Moreover, since many
popular programming languages support some dialect of regexps, it is an investment that could
pay off several times.

We now turn our attention to the second method of approximate matching, namely string
distances. A string distance is an algorithm or equation that indicates how much two strings
differ from each other. An important distance measure is implemented by the R's native adist
function. This function counts how many basic operations are needed to turn one string into
another. These operations include insertion, deletion or substitution of a single character®®. For
example

adist("abc", "bac")

#H [,1]
[1,] 2

The result equals two since turning "abc" into "bac" involves two character substitutions:
abc—bbc—bac.

Using adist, we can compare fuzzy text strings to a list of known codes. For example:

codes <- c("male", "female")
D <- adist(gender, codes)
colnames(D) <- codes
rownames(D) <- gender

D

it male female
M 4 6
male 1 3
Female 2 1
fem. 4 3

Here, adist returns the distance matrix between our vector of fixed codes and the input data.
For readability we added row- and column names accordingly. Now, to find out which code
matches best with our raw data, we need to find the index of the smallest distance for each row
of D. This can be done as follows.

An introduction to data cleaning withR 25

2.5

i <- apply(D, 1, which.min)

data.frame(rawtext = gender, coded = codes[i])
#it rawtext coded

#H 1 M male

#H 2 male male

3 Female female

#it 4 fem. female

We use apply to apply which.min to every row of D. Note that in the case of multiple minima,
the first match will be returned. At the end of this subsection we show how this code can be
simplified with the stringdist package.

Finally, we mention three more functions based on string distances. First, the R-built-in function
agrep is similar to grep, but it allows one to specify a maximum Levenshtein distance between
the input pattern and the found substring. The agrep function allows for searching for regular
expression patterns, which makes it very flexible.

Secondly, the stringdist package3? offers a function called stringdist which can compute a
variety of string distance metrics, some of which are likely to provide results that are better than
adist's. Most importantly, the distance function used by adist does not allow for character
transpositions, which is a common typographical error. Using the optimal string alignment
distance (the default choice for stringdist) we get

library(stringdist)

stringdist("abc", "bac")
[1] 1

The answer is now 1 (not 2 as with adist), since the optimal string alignment distance allows for
transpositions of adjacent characters:

abc— bac.

Thirdly, the stringdist package provides a function called amatch, which mimics the
behaviour of R's match function: it returns an index to the closest match within a maximum
distance. Recall the gender and code example of page 25.

this yields the closest match of 'gender' in 'codes' (within a distance of 4)
(i <- amatch(gender,codes,maxDist=4))
##[1] 112 2

store results in a data.frame
data.frame(
rawtext = gender
, code = codes[i]
)
rawtext code
1 M male
#H# 2 male male
##t 3 Female female
#H 4 fem. female

Character encoding issues

A character encoding system is a system that defines how to translate each character of a given
alphabet into a computer byte or sequence of bytes'. For example, ASCII is an encoding

*In fact, the definition can be more general, for example to include Morse code. However, we limit ourselves to com-
puterized character encodings

An introduction to data cleaning withR 26

system that prescribes how to translate 127 characters into single bytes (where the first bit of
each byte is necessarily 0). The ASCII characters include the upper and lower case letters of the
Latin alphabet (a-z, A-Z), Arabic numbers (8-9), a number of punctuation characters and a
number of invisible so-called control characters such as newline and carriage return.

Although it is widely used, ASCII is obviously incapable of encoding characters outside the
Latin alphabet, so you can say ""hello", but not “'yeta oag" in this encoding. For this reason, a
number of character encoding systems have been developed that extend ASCII or replace it all
together. Some well-known schemes include UTF-8 and 1atinl. The character encoding
scheme that is used by default by your operating system is defined in your locale settings.
Most Unix-alikes use UTF -8 by default while older Windows applications, including the Windows
version of R use latinl. The UTF-8 encoding standard is widely used to encode web pages:
according to a frequently repeated survey of w3techs35, about 75% of the 10 million most
visited web pages are encoded in UTF-8.

You can find out the character encoding of your system by typing (not copy-pasting!) a
non-ASCII character and ask for the encoding scheme, like so.

Encoding("Queensryche")
[1] "unknown"

If the answer is "unknown", this means that the local native encoding is used. The default
encoding used by your OS can be requested by typing

Sys.getlocale("LC_CTYPE")
[1] "en_US.UTF-8"

at the R command-line.

For R to be able to correctly read in a textfile, it must understand which character encoding
scheme was used to store it. By default, R assumes that a textfile is stored in the encoding
scheme defined by the operating system's locale setting. This may fail when the file was not
generated on the same computer that R is running on but was obtained from the web for
example. To make things worse, it is impossible to determine automatically with certainty from
a file what encoding scheme has been used (although for some encodings it is possible). This
means that you may run into situations where you have to tell R literally in which encoding a file
has been stored. Once a file has been read into R, a character vector will internally be translated
to either UTF-8 or 1latini.

The fileEncoding argument of read.table and its relatives tells R what encoding scheme
was used to store the file. For readLines the file encoding must be specified when the file is
opened, before calling readLines, as in the example below.

1. open a connection to your file, specifying its encoding

f <- file("myUTF16file.txt", encoding = "UTF-16")

2. Read the data with readLines. Text read from the file is converted to
uft8 or latinil

input <- readlLines(f)

close the file connection.

close(f)

When reading the file, R will not translate the encoding to UTF-8 or 1atin1 by itself, but instead
relies on an external iconv library. Depending on the operating system, R either uses the
conversion service offered by the OS, or uses a third-party library included with R. R's iconv
function allows users to translate character representations, because of the OS-dependencies

An introduction to data cleaning withR 27

just mentioned, not all translations will be possible on all operating systems. With iconvlist()
you can check what encodings can be translated by your operating system. The only encoding
systems that is guaranteed to be available on all platforms are UTF-8 and 1atinl.

An introduction to data cleaning withR 28

Exercises

Exercise 2.1. Type conversions.

a.

Load the built in warpbreaks data set . Find out, in a single command, which columns of
warpbreaks are either numeric or integer.

Is numeric a natural data type for the columns which are stored as such? Convert to integer
when necessary. (See also >warpbreaks for an explanation of the data).

Error messages in R sometimes report the underlying type of an object rather than the
user-level class. Derive from the following code and error message what the underlying type
of an R function is.

mean[1]

Error: object of type 'closure' is not subsettable

Confirm your answer using typeof.

Exercise 2.2. Type the following code in your R terminal.

v <- factor(c("2", "3", "s5", "7", "11"))

a.
b.
c

Convert v to character with as . character. Explain what just happened.
Convert v to numeric with as . numeric. Explain what just happened.
How would you convert the values of v to integers?

Exercise 2.3. In this exercise we'll use readLines to read in an irregular textfile. The file looks like

this (without numbering).

oy O W N R

// Survey data. Created : 21 May 2013
// Field 1: Gender

// Field 2: Age (in years)

// Field 3: Weight (in kg)

M;28;81.3

male;45;

Female;17;57,2

fem.;64;62.8

You may copy the text from this pdf file in a textfile called example . txt or download the file from

our Github page.

a.
b.

Read the complete file using readLines.

Separate the vector of lines into a vector containing comments and a vector containing
the data. Hint: use grepl.

Extract the date from the first comment line.

d. Read the data into a matrix as follows.

(a) Split the character vectors in the vector containing data lines by semicolon (;) using
strsplit.
(b) Find the maximum number of fields retrieved by spLit. Append rows that are shorter
with NA's.
(c) Useunlist and matrix to transform the data to row-column format.
From comment lines 2-4, extract the names of the fields. Set these as colnames for the
matrix you just created.

Exercise 2.4. We will coerce the columns of the data of the previous exercise to a structured data

set.

a.

Coerce the matrix to a data. frame, making sure all columns are character columns.

An introduction to data cleaning withR 29

https://github.com/edwindj/datacleaning/blob/master/Rnw/syllabus/files

. Use a string distance technique to transform the Gender column into a factor variable
with labels man and woman.

. Coerce the Age column to integer.

d. Coerce the weight column to numeric. Hint: use gsub to replace comma's with a period.

An introduction to data cleaning withR 30

3.1

From technically correct data to consistent data

Consistent data are technically correct data that are fit for statistical analysis. They are data in
which missing values, special values, (obvious) errors and outliers are either removed, corrected
or imputed. The data are consistent with constraints based on real-world knowledge about the
subject that the data describe.

Consistency can be understood to include in-record consistency, meaning that no contradictory
information is stored in a single record, and cross-record consistency, meaning that statistical
summaries of different variables do not conflict with each other. Finally, one can include
cross-dataset consistency, meaning that the dataset that is currently analyzed is consistent with
other datasets pertaining to the same subject matter. In this tutorial we mainly focus on
methods dealing with in-record consistency, with the exception of outlier handling which can be
considered a cross-record consistency issue.

The process towards consistent data always involves the following three steps.

1. Detection of an inconsistency. That is, one establishes which constraints are violated. For
example, an age variable is constrained to non-negative values.

2. Selection of the field or fields causing the inconsistency. This is trivial in the case of a
univariate demand as in the previous step, but may be more cumbersome when
cross-variable relations are expected to hold. For example the marital status of a child must
be unmarried. In the case of a violation it is not immediately clear whether age, marital
status or both are wrong.

3. Correction of the fields that are deemed erroneous by the selection method. This may be
done through deterministic (model-based) or stochastic methods.

For many data correction methods these steps are not necessarily neatly separated. For
example, in the deductive correction methods described in subsection 3.2.2 below, the three
steps are performed with a single mathematical operation. Nevertheless, it is useful to be able
to recognize these sub-steps in order to make clear what assumptions are made during the data
cleaning process.

In the following subsection (3.1) we introduce a number of techniques dedicated to the
detection of errors and the selection of erroneous fields. If the field selection procedure is
performed separately from the error detection procedure, it is generally referred to as error
localization. The latter is described in subsection 3.1.5. Subsection 3.2 describes techniques that
implement correction methods based on “direct rules' or *deductive correction'. In these
techniques, erroneous values are replaced by better ones by directly deriving them from other
values in the same record. Finally, subsection 3.3 gives an overview of some commonly used
imputation techniques that are available in R.

Detection and localization of errors

This section details a number of techniques to detect univariate and multivariate constraint
violations. Special attention is paid tot the error localization problem in subsection 3.1.5.

3.1.1 Missing values

A missing value, represented by NA in R, is a placeholder for a datum of which the type is known
but its value isn't. Therefore, it is impossible to perform statistical analysis on data where one or
more values in the data are missing. One may choose to either omit elements from a dataset

An introduction to data cleaning withR 31

that contain missing values or to impute a value, but missingness is something to be dealt with
prior to any analysis.

In practice, analysts, but also commonly used numerical software may confuse a missing value
with a default value or category. For instance, in Excel 20180, the result of adding the contents
of a field containing the number 1 with an empty field results in 1. This behaviour is most
definitely unwanted since Excel silently imputes "o' where it should have said something along
the lines of "unable to compute'. It should be up to the analyst to decide how empty values are
handled, since a default imputation may yield unexpected or erroneous results for reasons that
are hard to trace. Another commonly encountered mistake is to confuse an NA in categorical
data with the category unknown. If unknown is indeed a category, it should be added as a
factor level so it can be appropriately analyzed. Consider as an example a categorical variable
representing place of birth. Here, the category unknown means that we have no knowledge
about where a person is born. In contrast, NA indicates that we have no information to
determine whether the birth place is known or not.

The behaviour of R's core functionality is completely consistent with the idea that the analyst
must decide what to do with missing data. A common choice, namely ‘leave out records with
missing data' is supported by many base functions through the na. rmoption.

age <- c(23, 16, NA)
mean(age)

[1] NA

mean(age, na.rm = TRUE)
[1] 19.5

Functions such as sum, prod, quantile, sd and so on all have this option. Functions
implementing bivariate statistics such as cor and cov offer options to include complete or
pairwise complete values.

Besides the is.na function, that was already mentioned in section 1.2.2, R comes with a few
other functions facilitating NA handling. The complete. cases function detects rows in a
data.frame that do not contain any missing value. Recall the person data set example from

page 14.

print(person)

age height

1 21 6.0

2 42 5.9

3 18 5o 7

4 21 <NA>
complete.cases(person)

[1] TRUE TRUE TRUE FALSE

The resulting logical can be used to remove incomplete records from the data. frame.
Alternatively the na.omit function, does the same.

(persons_complete <- na.omit(person))
age height

1 21 6.0

##H 2 42 5.9

3 18 5o 7
na.action(persons_complete)

#H# 4

#H# 4

attr(,"class")

[1] "omit"

An introduction to data cleaning withR 32

The result of the na.omit function is a data. frame where incomplete rows have been deleted.
The row. names of the removed records are stored in an attribute called na.action.

Note. /t may happen that a missing value in a data set means 0 or Not applicable.
If that is the case, it should be explicitly imputed with that value, because it is not
unknown, but was coded as empty.

3.1.2 Special values

As explained in section 1.2.2, numeric variables are endowed with several formalized special
values including +Inf, NA and NaN. Calculations involving special values often result in special
values, and since a statistical statement about a real-world phenomenon should never include a
special value, it is desirable to handle special values prior to analysis.

For numeric variables, special values indicate values that are not an element of the
mathematical set of real numbers (R). The function is.finite determines which values are
‘regular values.

is.finite(c(1, Inf, NaN, NA))
[1] TRUE FALSE FALSE FALSE

This function accepts vectorial input. With little effort we can write a function that may be used
to check every numerical column in a data.frame

is.special <- function(x){
if (is.numeric(x)) !is.finite(x) else is.na(x)

}

person
age height

1 21 6.0

2 42 5.9

3 18 5075

4 21 <NA>
sapply(person, is.special)
#it age height

[1,] FALSE FALSE

[2,] FALSE FALSE

[3,] FALSE FALSE

[4,] FALSE TRUE

Here, the is.special function is applied to each column of person using sapply. is.special
checks its input vector for numerical special values if the type is numeric, otherwise it only
checks for NA.

3.1.3 Outliers

There is a vast body of literature on outlier detection, and several definitions of outlier exist. A
general definition by Barnett and Lewis* defines an outlier in a data set as an observation (or set
of observations) which appear to be inconsistent with that set of data. Although more precise
definitions exist (see e.g. the book by Hawkins*3), this definition is sufficient for the current
tutorial. Below we mention a few fairly common graphical and computational techniques for
outlier detection in univariate numerical data.

An introduction to data cleaning withR 33

Note. Outliers do not equal errors. They should be detected, but not necessarily
removed. Their inclusion in the analysis is a statistical decision.

For more or less unimodal and symmetrically distributed data, Tukey's box-and-whisker
method?? for outlier detection is often appropriate. In this method, an observation is an outlier
when it is larger than the so-called *"whiskers" of the set of observations. The upper whisker is
computed by adding 1.5 times the interquartile range to the third quartile and rounding to the
nearest lower observation. The lower whisker is computed likewise.

The base R installation comes with function boxplot.stats, which, amongst other things, list
the outliers.

x <- c(1l:10, 20, 30)
boxplot.stats(x)$out
[1] 20 30

Here, 20 and 50 are detected as outliers since they are above the upper whisker of the
observations in x. The factor 1.5 used to compute the whisker is to an extent arbitrary and it can
be altered by setting the coef option of boxplot.stats. A higher coefficient means a higher
outlier detection limit (so for the same dataset, generally less upper or lower outliers will be
detected).

boxplot.stats(x, coef = 2)$out
[1] 30

The box-and-whisker method can be visualized with the box-and-whisker plot, where the box
indicates the interquartile range and the median, the whiskers are represented at the ends of
the box-and-whisker plots and outliers are indicated as separate points above or below the
whiskers.

The box-and-whisker method fails when data are distributed skewly, as in an exponential or
log-normal distribution for example. In that case one can attempt to transform the data, for
example with a logarithm or square root transformation. Another option is to use a method that
takes the skewness into account.

A particularly
easy-to-implement example is the method of & °
Hiridoglou and Berthelot*® for positive observations. 9 |
In this method, an observation is an outlier when
9 o
x x* o
h(x) =max| —,— |=r,andx > 0. (1) S
x* x
8 i —
Here, r is a user-defined reference value
and x™ is usually the median observation, although 1 :

other measures of centrality may be chosen. Here, the o
score function h(x) grows as 1/x as x approaches zero

and grows linearly with x when it is larger than x*. It is

therefore appropriate for finding outliers on both sides ~ Figure 2: A box-and-whisker plot, pro-
of the distribution. Moreover, because of the different duced with the boxpLot function.
behaviour for small and large x-values, it is appropriate

for skewed (long-tailed) distributions. An implementation of this method in R does not seem

available but it is implemented simple enough as follows.

An introduction to data cleaning withR = 34

hboutlier <- function(x,r){
X <- x[is.finite(x)]
stopifnot(
length(x) > ©
, all(x>0)
)

xref <- median(x)
if (xref <= sqrt(.Machine$double.eps))

warning("Reference value close to zero: results may be inaccurate")
pmax(x/xref, xref/x) > r

The above function returns a logical vector indicating which elements of x are outliers.

3.1.4 Obvious inconsistencies

An obvious inconsistency occurs when a record contains a value or combination of values that
cannot correspond to a real-world situation. For example, a person's age cannot be negative, a
man cannot be pregnant and an under-aged person cannot possess a drivers license.

Such knowledge can be expressed as rules or constraints. In data editing literature these rules
are referred to as edit rules or edits, in short. Checking for obvious inconsistencies can be done
straightforwardly in R using logical indices and recycling. For example, to check which elements
of x obey the rule "x must be non negative' one simply uses the following.

X_nonnegative <- x >= 0

However, as the number of variables increases, the number of rules may increase rapidly and it
may be beneficial to manage the rules separate from the data. Moreover, since multivariate
rules may be interconnected by common variables, deciding which variable or variables in a
record cause an inconsistency may not be straightforward.

The editrules package® allows one to define rules on categorical, numerical or mixed-type
data sets which each record must obey. Furthermore, editrules can check which rules are
obeyed or not and allows one to find the minimal set of variables to adapt so that all rules can be
obeyed. The package also implements a number of basic rule operations allowing users to test
rule sets for contradictions and certain redundancies.

As an example, we will work with a small file containing the following data.

age,agegroup,height,status,yearsmarried
21,adult,6.0,single, -1
2,child,3,married, ©
18,adult,5.7,married, 20

221,elderly, 5,widowed, 2

34,child, -7,married, 3

ot S W N R

We read this data into a variable called people and define some restrictions on age using
editset.

people <- read.csv("files/people.txt")
library(editrules)

(E <- editset(c("age >=0", "age <= 150")))
H##

Edit set:

numl : O <= age

num2 : age <= 150

An introduction to data cleaning withR 35

The editset function parses the textual rules and stores them in an editset object. Eachrule
is assigned a name according to it's type (numeric, categorical, or mixed) and a number. The
data can be checked against these rules with the violatedEdits function. Record 4 contains
an error according to one of the rules: an age of 21 is not allowed.

violatedEdits(E, people)

it edit

record numl num2
#1 1 FALSE FALSE
it 2 FALSE FALSE
3 FALSE FALSE
#1 4 FALSE TRUE
it 5 FALSE FALSE

violatedEdits returns a logical array indicating for each row of the data, which rules are
violated.

The number and type of rules applying to a data set usually quickly grow with the number of
variables. With editrules, users may read rules, specified in a limited R-syntax, directly from a
text file using the editfile function. As an example consider the contents of the following text
file.

1 # numerical rules
2 age >= 0

3 height > 0

4 age <= 150

5 age > yearsmarried
6

7

8

9

categorical rules
status %in% c("married","single","widowed")
agegroup %in% c("child","adult","elderly")
10 if (status == "married") agegroup %in% c("adult","elderly")
11
12 # mixed rules
13 if (status %in% c("married","widowed")) age - yearsmarried >= 17

14 if (age < 18) agegroup == "child"
15 if (age >= 18 && age <65) agegroup == "adult"
16 if (age >= 65) agegroup == "elderly"

There are rules pertaining to purely numerical, purely categorical and rules pertaining to both
data types. Moreover, there are univariate as well as multivariate rules. Comments are written
behind the usual # character. The rule set can be read as follows.

E <- editfile("files/edits.txt")
As the number of rules grows, looking at the full array produced by violatedEdits becomes
cumbersome. For this reason, editrules offers methods to summarize or visualize the result.

ve <- violatedEdits(E, people)

summary (ve)

Edit violations, 5 observations, @ completely missing (0%):
H##

editname freq rel

#it cat5 2 40%

#i# mix6 2 40%

#it num2 1 20%

#it num3 1 20%

#i num4 1 20%

An introduction to data cleaning withR 36

it mix8 1 20%

it

Edit violations per record:
##

errors freq rel

0 1 20%

20%

40%

20%

plot(ve)

w N R
BN R

Edit violation frequency of top 10 edits

0.0 0.1 0.2 0.3 0.4

Frequency

Edit violations per record

1 records with no violations

- o

1.8

Count
1.4

1.0

1.0 15 2.0 2.5 3.0

Number of violations

Here, the edit labeled cats5 is violated by two records (20% of all records). Violated edits are
sorted from most to least often violated. The plot visualizes the same information.

Since rules may pertain to multiple variables, and variables may occur in several rules (e.g. the
age variable in the current example), there is a dependency between rules and variables. It can
be informative to show these dependencies in a graph using the plot function, as in Figure 3.

3.1.5 Error localization

The interconnectivity of edits is what makes error localization difficult. For example, the graph
in Figure 3 shows that a record violating edit num4 may contain an error in age and/or years
married. Suppose that we alter age so that num4 is not violated anymore. We then run the risk of
violating up to six other edits containing age.

An introduction to data cleaning withR 37

numl

numa3

num4

age

Mix7. num2

&,

Mix6 Mix8

catb

Figure 3: A graph plot, created with pLot (E), showing the interconnection of restrictions. Blue cir-
cles represent variables and yellow boxes represent restrictions. The lines indicate which restrictions
pertain to what variables.

An introduction to data cleaning withR 38

3.2

If we have no other information available but the edit violations, it makes sense to minimize the
number of fields being altered. This principle, commonly referred to as the principle of Fellegi
and Holt3, is based on the idea that errors occur relatively few times and when they do, they
occur randomly across variables. Over the years several algorithms have been developed to
solve this minimization problem? of which two have been implemented in editrules. The
localizeErrors function provides access to this functionality.

As an example we take two records from the people dataset from the previous subsection.

id <- c(2, 5)
people[id,]
age agegroup height status yearsmarried

#H# 2 2 child 3 married 0

5 34 child -7 married 3

violatedEdits(E, people[id,])

edit

record numl num2 num3 num4 datl dat7 cat5 mix6 mix7 mix8 mix9
2 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
5 FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

Record 2 violates mix6 while record 5 violates edits num2, cat5 and mix8. We use
localizeErrors, with a mixed-integer programming approach to find the minimal set of
variables to adapt.

le <- localizeErrors(E, people[id,], method = "mip")
le$adapt

#it age agegroup height status yearsmarried

1 FALSE FALSE FALSE TRUE FALSE

2 FALSE TRUE TRUE FALSE FALSE

Here, the 1e object contains some processing metadata and a logical array labeled adapt which
indicates the minimal set of variables to be altered in each record. It can be used in correction
and imputation procedures for filling in valid values. Such procedures are not part of
editrules, but for demonstration purposes we will manually fill in new values showing that the
solution computed by localizeErrors indeed allows one to repair records to full compliance
with all edit rules.

people[2, "status"] <- "single"
people[5, "height"] <- 7

people[5, "agegroup"] <- "adult"
summary(violatedEdits(E, people[id,]))

No violations detected, @ checks evaluated to NA

The behaviour of localizeErrors can be tuned with various options. It is possible to supply a
confidence weight for each variable allowing for fine grained control on which values should be
adapted. Itis also possible to choose a branch-and-bound based solver (instead of the MIP
solver used here), which is typically slower but allows for more control.

Correction

Correction methods aim to fix inconsistent observations by altering invalid values in a record
based on information from valid values. Depending on the method this is either a single-step
procedure or a two-step procedure where first, an error localization method is used to empty
certain fields, followed by an imputation step.

An introduction to data cleaning withR 39

In some cases, the cause of errors in data can be determined with enough certainty so that the
solution is almost automatically known. In recent years, several such methods have been
developed and implemented in the deducorrect package33. In this section we give a quick
overview of the possibilities of deducorrect.

3.2.1 Simple transformation rules

In practice, data cleaning procedures involve a lot of ad-hoc transformations. This may lead to
long scripts where one selects parts of the data, changes some variables, selects another part,
changes some more variables, etc. When such scripts are neatly written and commented, they
can almost be treated as a log of the actions performed by the analyst. However, as scripts get
longer it is better to store the transformation rules separately and log which rule is executed on
what record. The deducorrect package offers functionality for this. Consider as an example
the following (fictitious) dataset listing the body length of some brothers.

(marx <- read.csv("files/marx.csv", stringsAsFactors = FALSE))
#it name height unit
1 Gaucho 170.00 cm
2 Zeppo 1.74 m
3 Chico 70.00 inch
4 Gummo 168.00 cm
5 Harpo 5.91 ft

The task here is to standardize the lengths and express all of them in meters. The obvious way
would be to use the indexing techniques summarized in Section 1.2.1, which would look
something like this.

marx_m <- marx

I <- marx$unit == "cm"

marx_m[I, "height"] <- marx$height[I]/100

I <- marx$unit == "inch"

marx_m[I, "inch"] <- marx$height[I]/39.37

I <- marx$unit == "ft"

marx_m[I, "ft"] <- marx$height[I]/3.28

marx_m$unit <- "m"

Such operations quickly become cumbersome. Of course, in this case one could write a for-loop
but that would hardly save any code. Moreover, if you want to check afterwards which values
have been converted and for what reason, there will be a significant administrative overhead.

The deducorrect package takes all this overhead of your hands with the correctionRules
functionality. For example, to perform the above task, one first specifies a file with correction
rules as follows.

1 # convert centimeters

2 if (unit == "cm"){

3 height <- height/100
4}

5 # convert inches

6 if (unit == "inch"){

7 height <- height/39.37
8 1}

9 # convert feet

10 if (unit == "ft"){

11 height <- height/3.28
12}

13 # set all units to meter
14 unit <- "m"

An introduction to data cleaning withR 40

With deducorrect we can read these rules, apply them to the data and obtain a log of all actual
changes as follows.

read the conversion rules.
R <- correctionRules("files/conversions.txt")

R

Object of class 'correctionRules'
H## ## 1-------

if (unit == "cm") {

#i# height <- height/100
o}

H#it ##t 2-------

if (unit == "inch") {

it height <- height/39.37
#}

#it ## 3-------

if (unit == "ft") {

height <- height/3.28
o}

H#t ## 4-------

correctionRules has parsed the rules and stored them in a correctionRules object. We
may now apply them to the data.

cor <- correctWithRules(R, marx)

The returned value, cor, is a 1ist containing the corrected data

cor$corrected

H#it name height unit
1 Gaucho 1.700 m
2 Zeppo 1.740 m
3 Chico 1.778 m
4 Gummo 1.680 m
5 Harpo 1.802 m

as well as a log of applied corrections.

cor$corrections[1:4]
row variable old new

1 1 height 170 1.7
#H# 2 1 unit cm m
#it 3 3 height 70 1.778
4 3 unit inch m
5 4 height 168 1.68
#tt 6 4 unit cm m
#t 7 5 height 5.91 1.802
8 5! unit ft m

The log lists for each row, what variable was changed, what the old value was and what the new
value is. Furthermore, the fifth column of cor$corrections shows the corrections that were
applied (not shown above for formatting reasons)

cor$corrections[5]

#H# how
#it 1 if (unit == "cm") { height <- height/100 }
2 unit <- "m"
3 if (unit == "inch") { height <- height/39.37 }

An introduction to data cleaning withR 41

#H# 4 unit <- "m"

5 if (unit == "cm") { height <- height/100 }
6 unit <- "m"
7 if (unit == "ft") { height <- height/3.28 }
8 unit <- "m"

So here, with just two commands, the data is processed and all actions logged in a data.frame
which may be stored or analyzed. The rules that may be applied with deducorrect are rules
that can be executed record-by-record.

By design, there are some limitations to which rules can be applied with correctWithRules.
The processing rules should be executable record-by-record. That is, it is not permitted to use
functions like mean or sd. The symbols that may be used can be listed as follows.

getOption("allowedSymbols")

o [1] if" "else" "is.na" "is.finite" "=="
#[6] "<" "e=" o "= "
[11] "1=" e "%in%" "identical™ "sign"
[16] "abs” "l " "8&" "y
[21] (" e "e-n na e
[26] "-" e " A "%%"

[31] "%/%"

When the rules are read by correctionRules, it checks whether any symbol occurs that is not
in the list of allowed symbols and returns an error message when such a symbol is found as in
the following example.

correctionRules(expression(x <- mean(x)))
iHE

Forbidden symbols found:

ERR 1 ------

Forbidden symbols: mean

x <- mean(x)

Error: Forbidden symbols found

Finally, it is currently not possible to add new variables using correctionRules although such a
feature will likely be added in the future.

3.2.2 Deductive correction

When the data you are analyzing is generated by people rather than machines or measurement
devices, certain typical human-generated errors are likely to occur. Given that data has to obey
certain edit rules, the occurrence of such errors can sometimes be detected from raw data with
(almost) certainty. Examples of errors that can be detected are typing errors in numbers (under
linear restrictions) rounding errors in numbers and sign errors or variable swaps?>. The
deducorrect package has a number of functions available that can correct such errors. Below
we give some examples, every time with just a single edit rule. The functions can handle larger
sets of edits however.

With correctRoundings deviations of the size of one or two measurement units can be
repaired. The function randomly selects one variable to alter such that the rule violation(s) are
nullified while no new violations are generated.

An introduction to data cleaning withR 42

e <- editmatrix("x + y == z")

d <- data.frame(x = 100, y = 101, z = 200)
cor <- correctRounding(e, d)

cor$corrected

#i# X y z

1 100 101 201

cor$corrections

#H# row variable old new

1 1 z 200 201

The function correctSigns is able to detect and repair sign errors. It does this by trying
combinations of variable swaps on variables that occur in violated edits.

e <- editmatrix("x + y == z")

d <- data.frame(x = 100, y = -100, z = 200)
cor <- correctSigns(e, d)

cor$corrected

it X y z

1 100 100 200

cor$corrections

#4# row variable old new

1 1 y -100 100

Finally, the function correctTypos is capable of detecting and correcting typographic errors in
numbers. It does this by computing candidate solutions and checking whether those candidates
are less than a certain string distance (see Section 2.4.2) removed from the original.

e <- editmatrix("x + y == z"

d <- data.frame(x = 123, y = 132, z = 246)
cor <- correctTypos(e, d)

cor$corrected

#i# X y z

1 123 123 246

cor$corrections

row variable old new

1 1 y 132 123

Indeed, swapping the 3 and the 2 in y = 132 solves the edit violation.

Tip. Every correct- function in deducorrect is an object of class deducorrect.
When printed, it doesn't show the whole contents (the corrected data and logging
information) but a summary of what happened with the data. A deducorrect object
also contains data on timing, user, and so on. See ?"deducorrect-object" fora full
explanation.

3.2.3 Deterministic imputation

In some cases a missing value can be determined because the observed values combined with
their constraints force a unique solution. As an example, consider a record with variables listing
the costs for staff cleaning, housing and the total total. We have the following rules.

staff + cleaning + housing = total
staff = 0

housing = 0

cleaning = 0

(2)

An introduction to data cleaning withR 43

In general, if one of the variables is missing the value can clearly be derived by solving it for the
first rule (providing that the solution doesn't violate the last rule). However, there are other
cases where unique solutions exist. Suppose that we have staf f = total. Assuming that these
values are correct, the only possible values for the other two variables is

housing = cleaning = 0. The deducorrect function deduImpute is able to recognize such
cases and compute the unique imputations.

E <- editmatrix(expression(
staff + cleaning + housing == total,
staff >= 0,
housing >= 0,
cleaning >= ©

))

dat <- data.frame(
staff = c(100,100,100),
housing = c(NA,50,NA),
cleaning = c(NA,NA,NA),
total = c(100,180,NA)

)

dat

staff housing cleaning total
1 100 NA NA 100
2 100 50 NA 180
3 100 NA NA NA
cor <- deduImpute(E,dat)
cor$corrected

staff housing cleaning total
1 100 0 0 100
#H# 2 100 50 30 180
3 100 NA NA NA

Note that deduImpute only imputes those values that can be derived with absolute certainty
(uniquely) from the rules. In the example, there are many possible solutions to impute the last
record and hence deduImpute leaves it untouched.

Similar situations exist for categorical data, which are handled by deduImpute as well.

E <- editarray(expression(
age %in% c("adult","under-aged"),
driverslicense %in% c(TRUE, FALSE),
if (age == "under-aged") !driverslicense
))
dat <- data.frame(
age = NA,
driverslicense = TRUE
)
dat
age driverslicense
1 NA TRUE
cor <- deduImpute(E,dat)
cor$corrected
#i age driverslicense
1 adult TRUE

Here, deduImpute uses automated logic to derive from the conditional rules that if someone
has a drivers license, he has to be an adult.

An introduction to data cleaning withR = 44

3.3

Imputation

Imputation is the process of estimating or deriving values for fields where data is missing. There
is a vast body of literature on imputation methods and it goes beyond the scope of this tutorial
to discuss all of them. In stead, we present in Table 3 an overview of packages that offer some
kind of imputation method and list them against a number of popular model-based imputation
methods. We note that the list of packages and methods are somewhat biased towards
applications at Statistics Netherlands, as the table was originally produced during a study for
internal purposes3*. Nevertheless we feel that this overview can be a quite useful place to start.
De Waal, Pannekoek and Scholtus? (Chpt. 7) give a consice overview of several well-established
imputation methods.

The packages Amelia, deducorrect and mix do not implement any of the methods mentioned
in the table. That is because Amelia implements a multiple imputation method which was out
of scope for the study mentioned above. The deducorrect package implements deductive and
deterministic methods, and we choose not to call this model-based in this tutorial. The mix
package implements a Bayesian estimation method based on an Markov Chain Monte Carlo
algorithm.

There is no one single best imputation method that works in all cases. The imputation model of
choice depends on what auxiliary information is available and whether there are (multivariate)
edit restrictions on the data to be imputed. The availability of R software for imputation under
edit restrictions is, to our best knowledge, limited. However, a viable strategy for imputing
numerical data is to first impute missing values without restrictions, and then minimally adjust
the imputed values so that the restrictions are obeyed. Separately, these methods are available
inR.

In the following subsections we discuss three types of imputation models and give some
pointers to how to implement them using R. The next section (3.3.4) is devoted to value
adjustment.

3.3.1 Basic numeric imputation models
Here, we distinguish three imputation models. The first is imputation of the mean:
X =X, (3)

where the X; is the imputation value and the mean is taken over the observed values. The
usability of this model is limited since it obviously causes a bias in measures of spread, estimated
from the sample after imputation. However, in base R it is implemented simply enough.

x[is.na(x)] <- mean(x, na.rm = TRUE)

In principle one can use other measures of centrality, and in fact, the Hmisc package has a
convenient wrapper function allowing you to specify what function is used to compute imputed
values from the non-missing. For example, imputation of the mean or median can be done as
follows.

library(Hmisc)

X <- impute(x, fun = mean) # mean imputation
X <- impute(x, fun = median) # median imputation

An nice feature of the impute function is that the resulting vector *‘remembers" what values
were imputed. This information may be requested with is.imputed as in the example below.

An introduction to data cleaning withR = 45

Table 3: An overview of imputation functionality offered by some R packages. reg: regression, rand:
random, seq: sequential, NN: nearest neighbor, pmm: predictive mean matching, kNN: k-nearest-
neighbors, int: interpolation, lo/no last observation carried forward / next observation carried back-
ward, LS: method of Little and Su.

Numeric Hot deck Longitudinal
Package mean ratio reg. | rand seq pmm | kNN | int lo/no LS
Amelia17
BaBoon*° ‘ v
cat?¥ . . . v
deducorrect33
ele71*
ForImp
Hmisc?® . :
imputation?’ /1 . : . v
impute v/
mi 23 . . Ve
mice3° v
mix3
norm
robCompositions?25 . . Ve v
rrcovNA28
StatMatch® . : . v
VIM24 : . Ve v
yaImputeS
20039 v/ v/ /

*Methods are ultimately based on some form of regression, but are more involved than simple linear regression.

SSNN

N
AN
AN

26

NSNS - N

tUses a non-informative auxiliary variable (row number).

*Uses nearest neighbor as part of a more involved imputation scheme.

X <- 1:5 # create a vector...

x[2] <- NA # ...with an empty value
X <- impute(x, mean)

X

H#H# 1 2 3 4 5

1.00 3.25*%* 3.00 4.00 5.00
is.imputed(x)

[1] FALSE TRUE FALSE FALSE FALSE

Note also that imputed values are printed with a post-fixed asterix.

The second imputation model we discuss is ratio imputation. Here, the imputation estimate %;
is given by

% = Ry, (4)

Where y; is a covariate and R is an estimate of the average ratio between x and y. Often this will
be given by the sum of observed x values divided by the sum of corresponding y values
although variants are possible. Ratio imputation has the property that the estimated value
equals x = 0 wheny = 0, which is in general not guaranteed in linear regression. Ratio
imputation may be a good model to use when restrictions like x = 0 and/ory = 0 apply. There
is no package directly implementing ratio imputation, unless it is regarded a special case of
regression imputation. It is easily implemented using plain R though. Below, we suppose that x
and y are numeric vectors of equal length, x contains missing values and y is complete.

An introduction to data cleaning withR 46

I <- is.na(x)
R <- sum(x[!I])/sum(y[!'I])
X[I] <- R * y[I]

Unfortunately, it is not possible to simply wrap the above in a function and pass this to HMisc's
impute function. There seem to be no packages that implement ratio imputation in a single
function.

The third, and last numerical model we treat are (generalized) linear regression models. In such
models, missing values are imputed as follows

2 = Po+ By + - + Bivieis (5)

where the f, 81 ... B are estimated linear regression coefficients for each of the auxiliary
variables y;, ¥, ..., V. Estimating linear models is easy enough using 1m and predict in
standard R. Here, we use the built-in iris data set as an example.

data(iris)

iris$Sepal.Length[1:10] <- NA

model <- 1lm(Sepal.Length ~ Sepal.Width + Petal.Width, data = iris)
I <- is.na(iris$Sepal.Length)

iris$Sepal.Length[I] <- predict(model, newdata = iris[I,])

Above, 1m automatically omits rows with empty values and estimates the model based on the
remaining records. Next, we used predict to estimate the missing values.

It should be noted that although Hmisc, VIM, mi and mice all implement imputation methods
that ultimately use some form of regression, they do not include a simple interface for the case
described above. The more advanced methods in those packages are aimed to be more precise
and/or robust against outliers than standard (generalized) linear regression. Moreover, both
mice and mi implement methods for multiple imputation, which allows for estimation of the
imputation variance. Such methods are beyond the scope of the current text. The imputation
package has a function ImImpute but it uses the row number as auxiliary variable which limits
its practical usability to cases where the row number is directly related to a covariate value.

3.3.2 Hot deck imputation

In hot deck imputation, missing values are imputed by copying values from similar records in
the same dataset. Or, in notation:

.XA'L' =Xj, (6)

where x; is taken from the observed values. Hot-deck imputation can be applied to numerical
as well as categorical data but is only viable when enough donor records are available.

The main question in hot-deck imputation is how to choose the replacement value x; from the
observed values. Here, we shortly discuss four well-known flavors.

In random hot-deck imputation, a value is chosen randomly, and uniformly from the same data
set. When meaningful, random hot deck methods can be applied per stratum. For example, one
may apply random hot-deck imputation of body height for male and female respondents
separately. Random hot-deck on a single vector can be applied with the impute function of the
Hmisc package.

An introduction to data cleaning withR 47

data(women)

add some missings

height <- women$height

height[c(6, 9)] <- NA

height

[1] 58 59 60 61 62 NA 64 65 NA 67 68 69 70 71 72

(height <- impute(height, "random"))

#i# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
58 59 60 61 62 64* 64 65 70* 67 68 69 70 71 72

Note that the outcome of this imputation is very likely tot be different each time it is executed.
If you want the results to be random, but repeatable (e.g. for testing purposes) you can use
set.seed(<a number>) priorto calling impute.

In sequential hot deck imputation, the vector containing missing values is sorted according to
one or more auxiliary variables so that records that have similar auxiliaries occur sequentially in
the data.frame. Next, each missing value is imputed with the value from the first following
record that has an observed value. There seems to be no package that implements the
sequential hot deck technique. However, given a vector that is sorted, the following function
offers some basic functionality.

x : vector to be imputed
last : value to use if last value of x is empty
seqImpute <- function(x,last){
n <- length(x)
X <- c(x,last)
i <- is.na(x)
while(any(i)){
x[1i] <- x[which(i) + 1]
i <- is.na(x)

¥
x[1:n]

¥

We will use this function in exercise 3.4.

Predictive mean matching (pmm) is a form of nearest-neighbor hot-deck imputation with a
specific distance function. Suppose that in record j, the ith value is missing. One then estimates
the value % ; using a prediction model (often some form of regression) for the record with the
missing values as well as for possible donor records k # j where the ithe value is not missing.
One then determines k* = arg minkij d (R, ;) with d a distance function and copies the
observed value x;+; to the jth record.

Predictive mean matching imputation has been implemented in several packages (mi, mice,
BaBoon) but each time either for a specific type of data and/or using a specific prediction model
(e.g. Bayesglm). Moreover, the packages known to us always use pmm as a part of a more
elaborate multiple imputation scheme, which we deemed out of scope for this tutorial.

3.3.3 KkNN-imputation

In k nearest neighbor imputation one defines a distance function d(i, j) that computes a
measure of dissimilarity between records. A missing value is then imputed by finding first the k
records nearest to the record with one or more missing values. Next, a value is chosen from or
computed out of the k nearest neighbors. In the case where a value is picked from the k nearest
neighbors, kNN-imputation is a form of hot-deck imputation.

An introduction to data cleaning withR 48

The VIM package contains a function called kNN that uses Gowers distance*? to determine the k
nearest neighbors. Gower's distance between two records labeled i and j is defined as

2 Wijk i (6,))
Zk Wijk

dg(i,)) , ?)
where the sum runs over all variables in the record and d (i, j) is the distance between the value
of variable k in record i and record j. For categorical variables, dy (i, j) = 0 when the value for
the k'th variable is the same in record i and j and 1 otherwise. For numerical variables the
distance is given by 1 — (x; — x;)/(max(x) — min(x)). The weight w;;;, = 0 when the k'th
variable is missing in record i or record j and otherwise 1.

Here is an example of kNN.

library(VIM)
data(iris)
n <- nrow(iris)
provide some empty values (10 in each column, randomly)
for (i in 1:ncol(iris)) {
iris[sample(1:n, 10, replace = FALSE), i] <- NA
}

iris2 <- kNN(iris)
Time difference of -0.05939 secs

The kNN function determines the k (default: 5) nearest neighbors of a record with missing
values. For numerical variables the median of the k nearest neighbors is used as imputation
value, for categorical variables the category that most often occurs in the k nearest neighbors is
used. Both these functions may be replaced by the user. Finally, kNN prints (negatively) the time
it took to complete the imputation. We encourage the reader to execute the above code and
experiment further.

3.3.4 Minimal value adjustment

Once missing numerical values have been adequately imputed, there is a good chance that the
resulting records violate a number of edit rules. The obvious reason is that there are not many
methods that can perform imputation under arbitrary edit restrictions. One viable option is
therefore to minimally adjust imputed values such that after adjustment the record passes
every edit check within a certain tolerance.

We need to specify more clearly what minimal adjustment means here. The rspa package3* is
able to take a numerical record x° and replace it with a record x, such that the weighted
Euclidean distance

Z w;(x; — x{)?, ®)

is minimized and x obeys a given set of (in)equality restrictions

Ax < b. (9)

As a practical example consider the following script.

library(editrules)

library(rspa)

E <- editmatrix(expression(x +y ==z, x >= 0, y >= 0))
d <- data.frame(x = 10, y = 10, z = 21)

An introduction to data cleaning withR 49

dl <- adjustRecords(E, d)
di$adjusted

#H# X y z
1 10.33 10.33 20.67

The function adjustRecords adjusts every record minimally to obey the restrictions in E.
Indeed, we may check that the adjusted data now obeys every rule within adjustRecords'
default tolerance of 0.01.

violatedEdits(E, dl$adjusted, tol = 0.01)

bz edit
record numl num2 num3
#H# 1 FALSE FALSE FALSE

By default, all variables in the input data. frame are adjusted with equal amounts. However,
suppose that z is an imputed value while x and y are observed, original values. We can tell
adjustRecords to only adjust z as follows.

A <- array(c(x = FALSE, y = FALSE, z = TRUE), dim = c(1, 3))
A

(11 [,2] [,3]

[1,] FALSE FALSE TRUE

d2 <- adjustRecords(E, d, adjust = A)

d2$adjusted

H#H# X y z

1 10 10 20

An introduction to data cleaning withR 5o

Exercises

In the following exercises we are going to use the dirty_iris dataset. You can download this
dataset from
https://raw.github.com/edwindj/datacleaning/master/data/dirty_iris.csv

Exercise 3.1. Reading and manually checking.

a. View the file in a text-editor to determine its format and read the file into R. Make sure that
strings are not converted to factor.

b. Calculate the number and percentage of observations that are complete.

¢. Does the data contain other special values? If it does, replace them with NA

Exercise 3.2. Checking with rules

a. Besides missing values, the data set contains errors. We have the following background
knowledge:

Species should be one of the following values: setosa, versicolor orvirginica.

All measured numerical properties of an iris should be positive.

The petal length of an iris is at least 2 times its petal width.

The sepal length of an iris cannot exceed 30 cm.

The sepals of an iris are longer than its petals.
Define these rules in a separate text file and read them into R using editfile (package
editrules). Print the resulting constraint object.

b. Determine how often each rule is broken (violatedEdits). Also summarize and plot the
result.

¢. What percentage of the data has no errors?

d. Find out which observations have too long petals using the result of violatedEdits.

e. Find outliers in sepal length using boxplot and boxplot. stats. Retrieve the
corrosponding observations and look at the other values. Any ideas what might have
happened? Set the outliers to NA (or a value that you find more appropiate)

Exercise 3.3. Correcting

a. Replace non positive values from Petal . Width with NA using correctWithRules from
the library deducorrect.
b. Replace all erronous values with NA using (the result of) LocalizeErrors

Exercise 3.4. Imputing

a. Use RNN imputation (VIM) to impute all missing values.

b. Use sequential hotdeck imputation to impute Petal . Width by sorting the dataset on
Species. Compare the imputed Petal . Width with the sequential hotdeck imputation
method. Note the ordering of the data!

¢. Do the same but now by sorting the dataset on Species and Sepal . Length.

An introduction to data cleaning withR 51

https://raw.github.com/edwindj/datacleaning/master/data/dirty_iris.csv

References

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1--58, 2008.
[2] V.Barnettand T. Lewis. Outliers in statistical data. Wiley, New York, NY, 3rd edition, 1994.

[3] Original by J.L. Schafer. mix: Estimation/multiple Imputation for Mixed Categorical and
Continuous Data, 2010. R package version 1.0-8.

[4] J.M. Chambers. Software for data analyses; programming with R. Springer, 2008.

[5] N.L.Crookstonand A. O. Finley. yaimpute: An r package for knn imputation. Journal of
Statistical Software, 23(10), 10 2007.

[6] Edwin de Jonge and Mark van der Loo. editrules: R package for parsing, applying, and
manipulating data cleaning rules, 2012. R package version 2.8.

[71 T.De Waal, J. Pannekoek, and S. Scholtus. Handbook of statistical data editing and
imputation. Wiley handbooks in survey methodology. John Wiley & Sons, 2011.

[8] M. D'Orazio. StatMatch: Statistical Matching, 2012. R package version 1.2.0.

[9] I. P. Fellegi and D. Holt. A systematic approach to automatic edit and imputation. Journal
of the Americal Statistical Association, 71:17--35, 1976.

[10] M. Fitzgerald. Introducing reqular expressions. O'Reilley Media, 2012.
[11] J. Friedl. Mastering regular expressions. O'Reilley Media, 2006.

[12] J.C. Gower. A general coefficient of similarity and some of its properties. Biometrics,
27:857--874, 1971.

[13] G. Grolemund and H. Wickham. Dates and times made easy with lubridate. Journal of
Statistical Software, 40(3):1--25, 2011.

[14] T.Hastie, R. Tibshirani, B. Narasimhan, and G. Chu. impute: impute: Imputation for
microarray data. R package version 1.34.0.

[15] D.M.Hawkins. Identification of outliers. Monographs on applied probability and statistics.
Chapman and Hall, 1980.

[16] M.A.Hiridoglou and J.-M. Berthelot. Statistical editing and imputation for periodic
business surveys. Survey methodology, 12(1):73--83, 1986.

[17] J. Honaker, G. King, and M. Blackwell. Amelia Il: A program for missing data. Journal of
Statistical Software, 45(7):1--47, 2011.

[18] F.E. Harrell Jr, with contributions from C. Dupont, and many others. Hmisc: Harrell
Miscellaneous, 2013. R package version 3.10-1.1.

[19] V.. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady, 10:707--710, 1966.

[20] F. Meinfelder. BaBooN: Bayesian Bootstrap Predictive Mean Matching - Multiple and single
imputation for discrete data, 2011. R package version 0.1-6.

[21] D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch. ez071: Misc Functions of
the Department of Statistics (e1071), TU Wien, 2012. R package version 1.6-1.

An introduction to data cleaning withR 52

[22] S. Scholtus. Algorithms for correcting sign errors and rounding errors in business survey
data. Journal of Official Statistics, 27(3):467--490, 2011.

[23] Y.-S.Su, A. Gelman, J. Hill, and M. Yajima. Multiple imputation with diagnostics (mi) in R:
Opening windows into the black box. Journal of Statistical Software, 45(2):1--31, 2011.

[24] M. Templ, A. Alfons, A. Kowarik, and B. Prantner. VIM: Visualization and Imputation of
Missing Values, 2012. R package version 1.2.0.

[25] M. Templ, K. Hron, and P. Filzmoser. robCompositions: an R-package for robust statistical
analysis of compositional data. John Wiley and Sons, 2011.

[26] Ported to R by Alvaro A. Novo. Original by Joseph L. Schafer. norm: Analysis of
multivariate normal datasets with missing values, 2013. R package version 1.0-9.5.

[27] Ported to R by T. Harding and F. Tusell. Original by J. L. Schafer. cat: Analysis of
categorical-variable datasets with missing values, 2012. R package version 0.0-6.5.

[28] V. Todorov. Robust Location and Scatter Estimation and Robust Multivariate Analysis with
High Breakdown Point for Incomplete Data, 2012. R package version 0.4-03.

[29] J.W. Tukey. Exploratory data analysis. Adison-Wesley, 1977.

[30] S.van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained
equations in R. Journal of Statistical Software, 45(3):1--67, 2011.

[31] B.vanden Broek. Imputation in R, 2012. Statistics Netherlands, internal report.
[32] M.van der Loo. stringdist: String distance functions for R, 2013. R package version o.5.0.

[33]1 M.vanderLoo, E. de Jonge, and S. Scholtus. deducorrect: Deductive correction, deductive
imputation, and deterministic correction., 2011-2013. R package version 1.3-2.

[34] Markvan der Loo. rspa: Adapt numerical records to fit (in)equality restrictions with the
Successive Projection Algorithm, 2012. R package version 0.1-2.

[35] watechs. Usage of character encodings for websites, 2013.

[36] H. Wickham. stringr: modern, consistent string processing. R Journal, 2(2):38--40, 2010.
[37] J. Wong. imputation: imputation, 2013. R package version 2.0.1.

[38]1 Y. Xi. Dynamic Documents with R and knitr. Chapman and Hall/CRC, 2013.

[39] A. Zeileis and G. Grothendieck. zoo: S3 infrastructure for regular and irregular time series.
Journal of Statistical Software, 14(6):1--27, 2005,

An introduction to data cleaning withR 53

	Notes to the reader
	Introduction
	Statistical analysis in five steps
	Some general background in R
	Variable types and indexing techniques
	Special values

	Exercises

	From raw data to technically correct data
	Technically correct data in R
	Reading text data into a R data.frame
	read.table and its cousins
	Reading data with readLines

	Type conversion
	Introduction to R's typing system
	Recoding factors
	Converting dates

	character manipulation
	String normalization
	Approximate string matching

	Character encoding issues
	Exercises

	From technically correct data to consistent data
	Detection and localization of errors
	Missing values
	Special values
	Outliers
	Obvious inconsistencies
	Error localization

	Correction
	Simple transformation rules
	Deductive correction
	Deterministic imputation

	Imputation
	Basic numeric imputation models
	Hot deck imputation
	kNN-imputation
	Minimal value adjustment

	Exercises

