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Editorial
by Kurt Hornik

Welcome to this first regular issue of R News in 2002,
following the special issue on applications of R in
medical statistics. In the future, it is planned to have
two non-patch releases of R per year around the be-
ginning of April and October, and to have regular is-
sues of R News within 6 weeks after these releases.
This also means that R fans should have enough
reading material for their summer and/or winter
breaks.

As the R Project keeps gaining in size and com-
plexity, it needs to gradually replace its traditional
approach of collectively managing all R tasks by fo-
cusing responsibilities more explicitly. To this end,
the Editorial Board of R News has been reduced
from ‘all of R Core’ to three members: Fritz Leisch,
Thomas Lumley, and myself. From now on, R News
editors will each serve a three year period, acting as
Editor-in-Chief in the final year. In 2003, Doug Bates
will join the Editorial Board, with Fritz Leisch taking
over as Editor-in-Chief and me stepping down. Bill
Venables continues to serve as column editor for the
Programmer’s Niche. Suggestions and volunteers
for additional columns are most welcome (Book re-
views anyone? Of course, nowadays ‘book’ is a fairly

general concept . . . ). In addition, we welcome sug-
gestions for special issues, and in particular volun-
teers for guest-editing them.

R 1.5.0 was released on 2002-04-29, with the main
innovations in add-on packages (see “Changes in
R” for detailed release information). Two articles
by Brian Ripley and David Meyer describe enhance-
ments in the standard time series package ts: much
improved handling of missing values, full ARIMA
support, stuctural equation modeling, and exponen-
tially weighted smoothing and forecasting. In addi-
tion, there are now two more recommended pack-
ages, grid and lattice, implementing the ‘new R
graphics engine’ and the R version of Trellis. These
packages are introduced in articles by their respec-
tive authors, Paul Murrell and Deepayan Sarkar.

This issue has much more exciting information,
including news on R and spatial statistics, dis-
tributed computing, and bioinformatics. We are sure
it contains something for everyone.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org
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Time Series in R 1.5.0
by Brian D. Ripley

R has shipped with a package ts since 0.65.0 in
mid 1999; this package has been enhanced consid-
erably in version 1.5.0. The original release brought
together several existing functions written by Paul
Gilbert, Martyn Plummer, Adrian Trapletti and my-
self and included interfaces to a Fortran package I
wrote for teaching time series in the late 1970’s. Im-
provements were promised at the time, one function
being called arima0 to signal its preliminary status.

There are contributed packages with other time
series functionality, including tseries which has
an econometric/financial slant, and bundle dse, a
toolkit for working with state-space models of vec-
tor time series.

The new function HoltWinters is discussed in the
following article by David Meyer.

One of the goals of package ts was to provide
enough functionality to cover the time series chapter
of Venables and Ripley (1999). Time-series analysis
was part of the ‘PLUS’ of S-PLUS more than a decade
ago, but unfortunately has been little updated since,
and I had planned for a long time to provide better
facilities to fit ARIMA processes. Indeed, this was
on the list of new things we intended to cover in
Venables and Ripley (1999), and it would have been
embarrassing not to have done so by Venables and
Ripley (2002). So one of the innovations for R 1.5.0
is function arima, a version of which appears in the
MASS library section for S-PLUS.

Updating package ts took so long because of tech-
nical challenges which this article hopes to illumi-
nate. There can be a lot more detail to statistical
computing than one finds even in the most complete
monographs. It is often said that the way to learn a
subject is to be forced to teach a course on it: writ-
ing a package is a much more searching way to dis-
cover if one really understands a piece of statistical
methodology!

Missing values

Missing values are an occupational hazard in some
applications of time series: markets are closed for
the day, the rain gauge jammed, a data point is
lost, . . . . So it is very convenient if the time-series
analysis software can handle missing values trans-
parently. Prior to version 1.5.0, R’s functions made
little attempt to do so, but we did provide func-
tions na.contiguous and na.omit.ts to extract non-
missing stretches of a time series.

There were several technical problems in sup-
porting arbitrary patterns of missing values:

• Most of the computations were done in For-
tran, and R’s API for missing values only cov-
ers C code: this was resolved by carefully trans-
lating code1 to C.

• Some computations only have their standard
statistical properties if the series is complete.
The sample autocorrelation function as re-
turned by acf is a valid autocorrelation for a
stationary time series if the series is complete,
but this is not necessarily true if correlations
are only computed over non-missing pairs. In-
deed, it is quite possible that the pattern of
missingness may make missing one or both of
all the pairs at certain lags. Even if most of
the pairs are missing the sampling properties
of the ACF will be affected, including the con-
fidence limits which are plotted by default by
plot.acf.

• Standard time-series operations propagate
missingness. This is true of most filtering
operations, in particular the differencing op-
erations which form the basis of the ‘Box–
Jenkins’ methodology. The archetypal Box–
Jenkins ‘airline’ model2 involves both differ-
encing and seasonal differencing. For such a
model one missing value in the original series
creates three missing values in the transformed
series.

Our approach has been to implement support
for missing values where we know of a reasonably
sound statistical approach, but expect the user to be
aware of the pitfalls.

Presidents

One of R’s original datasets is presidents, a quar-
terly time series of the Gallup polls of the approval
rating of the US presidents from 1945 to 1974. It has 6
missing values, one at the beginning as well the last
two quarters in each of 1948 and 1974. This seems
a sufficiently complete series to allow a reasonable
analysis, so we can look at the ACF and PACF (fig-
ure 1)

data(presidents)

acf(presidents, na.action = na.pass)

pacf(presidents, na.action = na.pass)

1The usual route to translate Fortran code is to f2c -a -A from http://www.netlib.org/f2c. Unfortunately this can generate illegal
C, as happened here, and if speed is important idiomatic C can run substantially faster. So the automatic translation was re-written by
hand.

2as fitted to a monthly series of numbers of international airline passengers, now available as dataset AirPassengers in package ts.
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We need an na.action argument, as the default be-
haviour is to fail if missing values are present. Func-
tion na.pass returns its input unchanged.
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Figure 1: Autocorrelation and partial correlation
plots of the presidents series. Note that the confi-
dence limits shown do not take account of missing-
ness.

The plots suggest an AR(1) or AR(3) model
would be appropriate. We cannot use ar, but the new
function arima will fit these models.

> (fit1 <- arima(presidents, c(1, 0, 0)))

Coefficients:

ar1 intercept

0.8242 56.1505

s.e. 0.0555 4.6434

sigma^2 estimated as 85.47:

log likelihood = -416.89, aic = 839.78

> tsdiag(fit1)

> (fit3 <- arima(presidents, c(3, 0, 0)))

Coefficients:

ar1 ar2 ar3 intercept

0.7496 0.2523 -0.1890 56.2223

s.e. 0.0936 0.1140 0.0946 4.2845

sigma^2 estimated as 81.12:

log likelihood = -414.08, aic = 838.16

> tsdiag(fit3)

This suggests a fairly clear preference for AR(3).
Function tsdiag is a new generic function for diag-
nostic plots.

Fitting ARIMA models

There are several approximations to full maximum-
likelihood fitting of ARIMA models in common use.
For an ARMA model (with no differencing) the
model implies a multivariate normal distribution for
the observed series. A very common approximation
is to ignore the determinant in the normal density.
The ‘conditional sum of squares’ approach uses a
likelihood conditional on the first few observations,
and reduces the problem to minimizing a sum of
squared residuals. The CSS approach has the same
asymptotics as the full ML approach, and the text-
books often regard it as sufficient. It is not adequate
for two reasons:
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Figure 2: Diagnostic plots for AR(1) (upper) and
AR(3) (lower) fits to the presidents series.

1. Missing values. The residuals are found by
a recursive filter which cannot be adapted to
handle missing values. The theory can be, but
loses its main appeal: simplicity.

2. Short series. Both conditioning and discarding
the determinant term are essentially end cor-
rections. Unlike spatial statistics, edge effects
are normally ignored in time series, in the mis-
taken belief that time series are long. For exam-
ple, AirPassengers is of length 144: surely that
is not short? Yes it is: we are fitting 12 linked
series of length 12 each, one for each month,
and the relevant end effect is that there are only
12 years. For pedagogical purposes arima and
arima0 include method = "CSS" so users can
see for themselves the size of the effect.

The state-space approach (‘Kalman filtering’) has
long been advocated as a good way to compute the
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likelihood of an ARMA model even in the presence
of missing values: computational details are given
by Durbin and Koopman (2001), and the original
arima0 used Fortran code3 published as long ago as
Gardner et al.. The state-space approach used to be
regarded (rightly) as slow, but that is no longer an
issue for tasks likely to be done in R. It is important
to use state-space models correctly, including initial-
izing them at their stationary distribution or the end
effects will return.

ARIMA models present a further challenge. The
model is for a differenced version of the observed
data rather than for the data themselves, so a like-
lihood is not actually defined. There are a num-
ber of approaches outlined in Durbin and Koopman
(2001),4 of which I find the most satisfactory is the
‘diffuse prior’ approach, and that is implemented in
arima. This assumes that the initial values of the time
series on which the traditional approach conditions
have mean zero (as someone chose the units of ob-
servation) but a large variance. Again there are both
theoretical and numerical issues, as well as practical
ones: what should one do if every January observa-
tion is missing? The approach in arima can cope with
missing values in the initial segment.

Even when one has defined a log-likelihood and
found an algorithm to compute it, there remains the
task of optimizing it. Yet again this is much harder
than the books make out. Careful study shows that
there are often multiple local maxima. Finding good
starting values is nigh to impossible if the end ef-
fects are going to be important. Finding reliable test
examples is difficult. In the early days of arima0
someone reported that it gave different results from
SPSS, and Bill Venables suggested on R-help that this
might prove helpful to the SPSS developers! One
good test is to reverse the series and see if the same
model is fitted. All ARIMA processes are reversible
and help("AirPassengers") provides an empirical
demonstration. So if arima takes a long time to find
a solution, please bear in mind that a reliable solution
is worth waiting for.

UK lung deaths

Venables and Ripley (2002, §14.3) analyse a time
series from Diggle (1990) on monthly deaths from
bronchitis, emphysema and asthma in the UK, 1974–
1979. As this has only 6 whole years, it is a fairly
severe test of the ability to handle end effects.

Looking at ACFs of the seasonally differenced se-
ries suggests an ARIMA((2, 0, 0)× (0, 1, 0)12) model,
which we can fit by arima:

data(deaths, package="MASS")

deaths.diff <- diff(deaths, 12)

## plots not shown here

acf(deaths.diff, 30); pacf(deaths.diff, 30)

> (deaths.arima1 <-

arima(deaths, order = c(2,0,0),

seasonal = list(order = c(0,1,0),

period = 12)) )

Coefficients:

ar1 ar2

0.118 -0.300

s.e. 0.126 0.125

sigma^2 = 118960:

log likelihood = -435.83, aic = 877.66

> tsdiag(deaths.arima1, gof.lag = 30)

However the diagnostics indicate the need for a sea-
sonal AR term. We can try this first without differ-
encing

> (deaths.arima2 <-

arima(deaths, order = c(2,0,0),

list(order = c(1,0,0),

period = 12)) )

Coefficients:

ar1 ar2 sar1 intercept

0.801 -0.231 0.361 2062.45

s.e. 0.446 0.252 0.426 133.90

sigma^2 = 116053:

log likelihood = -523.16, aic = 1056.3

> tsdiag(deaths.arima2, gof.lag = 30)

The AICs are not comparable, as a differenced model
is not an explanation of all the observations.
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Figure 3: Diagnostic plots for deaths.arima2.

The diagnostics suggest that there is still seasonal
structure in the residuals, so we next tried including
both differencing and a seasonal AR term:

3Not only did this have to be translated to C to handle missing values, but several undocumented efficiency gains that resulted from
assuming complete observation had to be undone.

4which in parts is an advertisement for non-free C code called SsfPack at http://www.ssfpack.com which links to a non-free Windows
program called Ox.
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> (deaths.arima3 <-

arima(deaths, order = c(2,0,0),

list(order = c(1,1,0),

period = 12)) )

Coefficients:

ar1 ar2 sar1

0.293 -0.271 -0.571

s.e. 0.137 0.141 0.103

sigma^2 = 77145:

log likelihood = -425.22, aic = 858.43

> tsdiag(deaths.arima3, gof.lag = 30)

for which the diagnostics plots look good.

Structural time series

Structural models of time series are an approach
which is most closely linked to the group of Andrew
Harvey (see in particular Harvey, 1989) but there are
several closely related approaches, such as the dy-
namic linear models of Jeff Harrison and co-workers
see (West and Harrison (1997); Pole et al. (1994) is a
gentler introduction).

I have long thought that the approach had consid-
erable merit, but believe its impact has been severely
hampered by the lack of freely-available software.5

It is beginning to appear in introductory time-series
textbooks, for example Brockwell and Davis (1996,
§8.5). As often happens, I wrote StructTS both for
my own education and to help promote the method-
ology.

Experts such as Jim Durbin have long pointed
out that all the traditional time-series models are
just ways to parametrize the second-order prop-
erties of stationary time series (perhaps after fil-
tering/differencing), and even AR models are not
models of the real underlying mechanisms. (The
new functions ARMAacf, ARMAtoMA and acf2AR al-
low one to move between the ACF representing the
second-order properties and various parametriza-
tions.) Structural time series are an attempt to
model a plausible underlying mechanism for non-
stationary time series.

The simplest structural model is a local level,
which has an underlying level mt which evolves by

µt+1 = µt +ξt, ξt ∼ N(0,σ2
ξ )

The observations are

xt = µt +εt, εt ∼ N(0,σ2
ε )

so there are two parameters, σ2
ξ and σ2

ε , either of
which could be zero. It is an ARIMA(0,1,1) model,
but with restrictions on the parameter set.

The next step up is local linear trend model which
has the same measurement equation, but with a

time-varying slope in the dynamics for µt, given by

µt+1 = µt + νt +ξt, ξt ∼ N(0,σ2
ξ )

νt+1 = νt +ζt, ζt ∼ N(0,σ2
ζ )

with three variance parameters. It is not uncom-
mon to find σ2

ζ = 0 (which reduces to the local level
model) or σ2

ξ = 0, which ensures a smooth trend.
This is a (highly) restricted ARIMA(0,2,2) model.

For a seasonal model we will normally use the
so-called Basic Structural Model (BSM) for a sea-
sonal time series. To be concrete, consider energy
consumption measures quarterly, such as the series
UKgas in package ts. This is based on a (hypothetical)
decomposition of the series into a level, trend and a
seasonal component. The measurement equation is

xt = µt + γt +εt, εt ∼ N(0,σ2
ε )

where γt is a seasonal component with dynamics

γt+1 = −(γt + γt−1 + γt−2) + ωt, ωt ∼ N(0,σ2
ω)

The boundary case σ2
ω = 0 corresponds to a de-

terministic (but arbitrary) seasonal pattern. (This is
sometimes known as the ‘dummy variable’ version
of the BSM.) There are now four variance parameters
(σ2

ζ ,σ2
ξ ,σ2

ω,σ2
ε ), one or more of which (but not all) can

be zero.
These models are quite similar to those used in

exponential smoothing and Holt–Winters forecasting
(see the accompanying article by David Meyer); one
important difference is that structural time series are
handled in a formal statistical framework.

Estimation

Structural time series are fitted by maximum likeli-
hood with a diffuse prior for those components (such
as the overall level) which are not fully specified by
the model. Using the state-space approach (as de-
tailed in Durbin and Koopman, 2001) makes it easy
to handle missing values.

What is not easy is the optimization, and I am
now convinced that many of the published exam-
ples (e.g., Figure 8-4 in Brockwell and Davis (1996))
are incorrect. One issue is multiple local maxima of
the log-likelihood, and some examples do seem to be
sub-optimal local maxima. Optimization under non-
negativity constraints can be tricky,6 and it appears
that other software either assumes that all the vari-
ances are positive or that σ2

ε > 0.
We can illustrate this on the classic airline passen-

gers dataset.
5Harvey’s coworkers have produced a Windows package called STAMP, http://stamp-software.com, and SsfPack provides code in

Ox for these models.
6Function StructTS uses optim(method="L-BFGS-B"), and it was this application that I had in mind when programming that.
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data(AirPassengers)

## choose some sensible units on log scale

ap <- log10(AirPassengers) - 2

(fit <- StructTS(ap, type= "BSM"))

Call:

StructTS(x = ap, type = "BSM")

Variances:

level slope seas epsilon

0.000146 0.000000 0.000263 0.000000

Note that the measurement variance σ2
ε is estimated

as zero.

Prediction and smoothing

One we have fitted a structural time series model, we
can compute predictions of the components, that is
the level, trend and seasonal pattern. There are two
distinct bases on which we can do so. The fitted
method for class "StructTS" displays the contempo-
raneous predictions, whereas the tsSmooth method
displays the final predictions. That is, fitted shows
the predictions of µt, νt and γt based on observ-
ing x1, . . . , xt for t = 1, . . . , T, whereas tsSmooth
gives predictions of µt, νt and γt based on observing
the whole time series x1, . . . , xT (the ‘fixed interval
smoother’ in Kalman filter parlance).

Looking at the fitted values shows how the infor-
mation about the trend and seasonal patterns (in par-
ticular) builds up: it is like preliminary estimates of
inflation etc given out by national statistical services.
The smoothed values are the final revisions after all
the information has been received and incorporated.
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Figure 4: Fitted values (top) and smoothed values
(bottom) of a BSM fit to the AirPassengers data, on
log10 scale. The original series is solid black, the level
is dashed red, the slope is dotted green and the sea-
sonal component is dash-dotted blue.

We can illustrate this for the AirPassengers data
by

plot(cbind(ap, fitted(fit)),

plot.type = "single", lty=1:4, col=1:4)

plot(cbind(ap, tsSmooth(fit)),

plot.type = "single", lty=1:4, col=1:4)

Note the way that fluctuations which are contem-
poraneously ascribed to level changes are revised to
be part of the (changing) seasonal component as the
latter changes shape around 1952–4. It is instruc-
tive to compare this with Figure 8-4 in Brockwell and
Davis (1996).

Implementation

The tools available to the R programmer have moved
on considerably since 1999. Like much of the statis-
tical functionality in R, the internals of package ts
were written in C or Fortran, interfaced via .C or
.Fortran. Nowadays much new code is being writ-
ten using C code interfaced with .Call which allows
the R objects to be manipulated at C level, and in
particular for the return object to be constructed in C
code. The approach via .Call can also be much more
efficient as it allows the programmer much more con-
trol over the copying of objects.

The first version of arima was written using the
general-purpose Kalman filter code in the (new)
functions KalmanLike and friends. This proved to be
far too slow for seasonal ARIMA models, the time
being spent in multiplying sparse matrices (and this
was confirmed by profiling). The code was sup-
planted by special-purpose code, first for ARMA and
then for ARIMA processes: having the slower refer-
ence implementation was very useful.

The original arima0 code had dynamically allo-
cated global C arrays to store information passed
down and retrieved by .C calls. This had been
flagged as a problem in the planned move to a
threaded version of R. A more elegant approach
was needed. arima passes around an R list which
represents the state space model, but arima0 only
works at C level, so the obvious approach is to
store all the information (which includes the data)
in a C structure rather than in global variables.
The remaining issue was to associate the instance
of the structure with the instance of arima0 (since
in a threaded version of R more than one could
be running simultaneously or at least interleaved).
This was solved by the use of external references.
This is a little-documented area of R (but see http:
//developer.r-project.org/simpleref.html and
http://developer.r-project.org/references.
html) that allows us to return via .Call an R ob-
ject (of type EXTPTRSXP) that contains a pointer to
our structure. We chose to de-allocate the arrays in
the structure in the on.exit function of arima0, but
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it is now possible to get the R garbage collector to do
this via a finalizer.
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Naive Time Series Forecasting Methods
The Holt-Winters Method in package ts

by David Meyer

Exponential smoothing methods forecast time series
by discounted past observations. They have be-
come very popular because of their (relative) sim-
plicity compared to their good overall performance.
Common applications range from business tasks
(e.g., forecasting of sales or stock fluctuations) to
environmental studies (e.g., measurements of atmo-
spheric components or rainfall data)—with typically
no more a priori knowledge than the possible exis-
tence of trend of seasonal patterns. Such methods
are sometimes also called naive because no covariates
are used in the models, i.e., the data are assumed to
be self-explaining. Their success is rooted in the fact
that they belong to a class of local models which au-
tomatically adapt their parameters to the data dur-
ing the estimation procedure and therefore implic-
itly account for (slow) structural changes in the train-
ing data. Moreover, because the influence of new
data is controlled by hyperparameters, the effect is
a smoothing of the original time series.

Among the simplest methods is the ordinary ex-
ponential smoothing, which assumes no trend and
no seasonality. Holt’s linear trend method (see Holt,
1957) and Winters extensions (see Winters, 1960) add
a trend and a seasonal component (the latter either
additive or multiplicative). Their methods are still
surprisingly popular, although many extensions and
more general frameworks do exist. We describe
briefly the methods implemented in package ts and

give some examples of their application.

Exponential smoothing

Let Yt denote a univariate time series. Exponential
smoothing assumes that the forecast Ŷ for period
t + h based on period t is given by a variable level
â at period t

Ŷt+h = ât (1)

which is recursively estimated by a weighted aver-
age of the observed and the predicted value for Yt:

ât = α Yt + (1 −α)Ŷt

= α Yt + (1 −α) ât−1

0 < α < 1 called the smoothing parameter; the
smaller it is chosen, the less sensitive Ŷ becomes for
changes (i.e., the smoother the forecast time series
will be). The initial value â1 is usually chosen as Y1.

An equivalent formulation for ât is the so called
error-correction form:

ât = ât−1 +α (Yt − ât−1)
= ât−1 +α (Yt − Ŷt)
= ât−1 +α et

(2)

showing that ât can be estimated by ât−1 plus an er-
ror e made in period t. (We will come back to this
later on.)

Exponential smoothing can be seen as a special
case of the Holt-Winters method with no trend and
no seasonal component. As an example, we use the
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Nile data for which an intercept-only model seems
appropriate1. We will try to predict the values from
1937 on, choosing α = 0.2:

library(ts)

data(Nile)

past <- window(Nile, end = 1936)

future <- window(Nile, start = 1937)

alpha <- 0.2

To obtain a level-only model, we set the other hyper-
parameters β and γ (see the next sections) to 0:

model <- HoltWinters(past, alpha = alpha,

beta = 0, gamma = 0)

The object model contains an object of type
"HoltWinters". The fitted values (obtained by
fitted(model)) should of course be identical2 to
those given by filter:

filter(alpha * past, filter = 1 - alpha,

method = "recursive", init = past[1])

We predict 43 periods ahead (until the end of the se-
ries):

pred <- predict(model, n.ahead = 43)

The plot method for Holt-Winters objects shows the
observed and fitted values, and optionally adds the
predicted values (see figure 1):

plot(model, predicted.values = pred)

lines(future)

Holt−Winters filtering
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Figure 1: Exponential smoothing for the Nile data up
to 1937, and the predictions in 1937 of the rest of the
series. The original series is in shown in gray.

The coefficients (here only the level) are listed in the
output produced by print() or can be extracted with
coef().

Holt’s linear trend method

An obvious extension is to include an additional
trend component, say b̂t. The forecast equation be-
comes:

Ŷt+h = ât + h · b̂t

with updating formulas expressing similar ideas to
those for exponential smoothing. There is an addi-
tional formula for the trend component:

ât = αYt + (1 −α)(ât−1 + b̂t−1)
b̂t = β (ât − ât−1) + (1 −β) b̂t−1

The use is a local fit of a straight line with the coef-
ficients adjusted for new values. We now have one
more parameter to choose: β. A straightforward ap-
proach to find the optimal values for both α and β

is to look for the OLS estimates, i.e., the parame-
ter combination minimizing the sum of squared er-
rors of the one-step-ahead predictions. That is what
HoltWinters does for all the unspecified parameters,
illustrated below for the Australian residents data:

data(austres)

past <- window(austres, start = c(1985, 1),

end = c(1989, 4))

future <- window(austres, start = c(1990, 1))

(model <- HoltWinters(past, gamma = 0))

Holt-Winters exponential smoothing with trend

and without seasonal component.

Call:

HoltWinters(x = past, gamma = 0)

Smoothing parameters:

alpha: 0.931416

beta : 0.494141

gamma: 0

Coefficients:

[,1]

a 16956.68845

b 63.58486

The start values for ât and b̂t are Y[2] and Y[2]−Y[1],
respectively; the parameters are estimated via optim
using method = "L-BFGS-B", restricting the parame-
ters to the unit cube.

Another feature is the optional computation of
confidence intervals for the predicted values, which
by default are plotted along with them (see figure 2):

pred <- predict(model, n.ahead = 14,

prediction.interval = TRUE)

plot(model, pred); lines(future)

1At least piecewise: note that one might expect a structural break in 1899 due to the construction of the first Ashwan dam
2Currently the initial value is only observation 2 as it is for the trend model (for which this is sensible). This will be changed in R 1.5.1.

R News ISSN 1609-3631



Vol. 2/2, June 2002 9

Holt−Winters filtering
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Figure 2: Holt’s linear trend method applied to data
on Autralian residents, with 95% confidence limits in
dashed blue lines. Original data are plotted in gray,
fitted and predicted values in red.

Winters’ seasonal method

Winters extended the method to include a seasonal
component. There are additive and multiplicative
versions. In the following, we suppose seasonal
trend components ŝt and a period p (e.g., 4 for quar-
terly data).

Additive version

The additive model assumes the decomposition:

Ŷt+h = ât + h · b̂t + ŝt

with an additional updating formula for the seasonal
component:

ât = α (Yt − ŝt−p) + (1 −α)(ât−1 + b̂t−1)

b̂t = β (ât − ât−1) + (1 −β) b̂t−1

ŝt = γ (Yt − ât) + (1 −γ) ŝt−p

Multiplicative version

This version assumes a model with time-increasing
seasonal component (i.e., the amplitude becomes
larger with increasing t). The prediction formula be-
comes:

Ŷt+h = (ât + h · b̂t) ŝt

and the updating formulas change accordingly:

ât = α (Yt − ŝt−p) + (1 −α)(ât−1 + b̂t−1)

b̂t = β (ât − ât−1) + (1 −β) b̂t−1

ŝt = γ (Yt/ât) + (1 −γ) ŝt−p

For automatic parameter selection, we need at least
three complete cycles to estimate an initial seasonal
component, done via a classical seasonal decompo-
sition using moving averages performed by the new
function decompose(). The intercept and trend are
estimated by a simple regression on the extracted
trend component.

As an example, we apply the multiplicative ver-
sion to the UK gas consumption data for 1960–80 and
predict the next six years.

data(UKgas)

past <- window(UKgas, end = c(1980, 4))

future <- window(UKgas, start = c(1981, 1))

model <- HoltWinters(past, seasonal = "mult")

pred <- predict(model, n.ahead = 24)

For clarity, we plot the original time series and the
predicted values separately (see figure 3):

par(mfrow = c(2,1))

plot(UKgas, main = "Original Time Series")

plot(model, pred)
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Figure 3: Winter’s method applied to quarterly UK
gas consumption data. The upper figure is the actual
data, the lower the data (gray) and fited values (red)
up to 1980Q4, the predictions (red) thereafter.

Conclusion

We have seen that the Holt-Winters method con-
sists in a simple yet effective forecasting procedure,
based on exponential moving averages, covering
both trend and seasonal models. Many extensions
exist however (see, e.g., Hyndman et al., 2001), and
the various formulations can also be seen as special
cases of a wider class of models. For example, all but
the multiplicative Holt-Winters can be identified as
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(restricted) SARIMA models. To motivate this, con-
sider equation 2—the error-correction form of expo-
nential smoothing. By plugging it into the forecast-
ing equation 1, we almost directly obtain:

(1 − L)Ŷt = α et−1

= (1 −θL)et

(θ = 1−α), which is (in terms of estimates) the stan-
dard form of an ARIMA(0,1,1)-process. Finally, we
note that we actually face state-space models: given
process Yt, we try to estimate the underlying pro-
cesses at, bt and st which cannot be observed directly.
But this is the story of structural time series and the
function structTS, told in an another article by Brian
D. Ripley . . .
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Rmpi: Parallel Statistical Computing in R
by Hao Yu

Rmpi is an R interface (wrapper) to the Message-
Passing Interface (MPI). MPI is a standard appli-
cation interface (API) governed by the MPI forum
(http://www.mpi-forum.org) for running parallel
applications. Applicable computing environments
range from dedicated Beowulf PC clusters to paral-
lel supercomputers such as IBM’s SP2. Performance
and portability are the two main strengths of MPI.
In this article, we demonstrate how the MPI API is
implemented in Rmpi. In particular, we show how
interactive R slaves are spawned and how we use
them to do sophisticated MPI parallel programming
beyond the “embarrassingly parallel”.

Introduction

Put simply, parallel statistical computing means di-
viding a job into many small parts which will be
executed simultaneously over a cluster of comput-
ers linked together in a network (LAN or WAN).
Communications among the components is a crucial
aspect of parallel computing. The message-passing
model is highly suitable for such a task. There are
two primary open-source message-passing models
available: MPI and PVM (Parallel Virtual Machine,
Geist et al., 1994). For PVM’s implementation rpvm
in R, see Li and Rossini, 2001.

Whether to use MPI or PVM largely depends on
the underlying hardware structure and one’s per-
sonal preference. Both models provide a parallel pro-
gramming interface. The main difference is in how
buffers are managed or used for sending and receiv-
ing data. Typically, in PVM, users are responsible for

packing data into a system designated buffer on the
sender side and unpacking from a system buffer on
the receiver side. This reduces the user’s responsibil-
ity for managing the buffer; on the other hand, this
may create problems of running out of buffer space if
large amounts of data are transferred. PVM can also
lead to performance draining copies. MPI, by con-
trast, requires no buffering of data within the system.
This allows MPI to be implemented on the widest
range of platforms, with great efficiency. Perhaps
Luke Tierney’s package snow (Simple Network of
Workstations, http://www.stat.umn.edu/~luke/R/
cluster) will ultimately provide a unified interface
to both Rmpi and rpvm so users can freely choose
either one to implement parallel computing.

There are 128 routines in the MPI-1 standard and
287 functions in the combined MPI (MPI-1 and MPI-
2) standard. MPI is rich in functionality; it is also ca-
pable of handling the diversity and complexity of to-
day’s high performance computers. Likely the envi-
ronment with highest potential for MPI use is the Be-
owulf cluster, a high-performance massively paral-
lel computer built primarily out of commodity hard-
ware components.

One of the goals of Rmpi is to provide an exten-
sive MPI API in the R environment. Using R as an
interface, the user can either spawn C(++) or Fortran
programs as children or join other MPI programs.
Another goal is to provide an interactive R master
and slave environment so MPI programming can be
done completely in R. This was achieved by imple-
menting a set of MPI API extensions specifically de-
signed for the R or R slave environments.
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Installation

Although MPI is a standard, its form does not ne-
cessitate implementation of all defined functions.
There are at least ten freely available implemen-
tations of MPI, the most notable of which are
MPICH (http://www.mcs.anl.gov/mpi/mpich) and
LAM-MPI (http://www.lam-mpi.org). Rmpi uses
LAM-MPI primarily because its implementation of
the MPI API is more comprehensive than other im-
plementations. However, Rmpi tries to use as few
LAM specific functions as possible to avoid portabil-
ity problems.

Before attempting installing LAM and Rmpi, a
Beowulf cluster should be set up properly. See http:
//www.beowulf.org for details.

Installing LAM

The source code or pre-compiled Linux RPMs can be
downloaded from the LAM web site. When attempt-
ing to install LAM at the system level, one should
ensure that there is no other MPI, such as MPICH, al-
ready installed. Two MPIs cannot coexist at the sys-
tem level. Once LAM is installed, edit the file ‘lam-
bhost.def’ either in the ‘/etc/lam’ system directory or
‘etc’ in the user’s home directory to add all hosts in
a cluster. LAM uses rsh by default for remote ex-
ecution. This can be changed to ssh. Check LAM
and SSH documents for setting ssh and public key
authentication to avoid passwords.

Use lamboot to boot LAM environment and run
lamexec C hostname to see if all hosts respond.
LAM provides a set of tools for host management
and MPI program monitoring (mpitask).

Installing Rmpi

For LAM installed in ‘/usr’ or ‘/usr/local’ or for the
Debian system with installed packages lam3, lam3-
dev, and lam-runtime, just use

R CMD INSTALL Rmpi_version.tar.gz

For LAM installed in another location, please use

R CMD INSTALL Rmpi_version.tar.gz
--configure-args=--with-mpi=/mpipath

Rmpi relies on Luke Tierney’s package serialize for
sending or receiving arbitrary R objects across the
network and it must be installed. If you want
to use any random number distributions in paral-
lel environment, please install Michael Li’s package
rsprng: a wrapper to SPRNG (Scalable Parallel Ran-
dom Number Generators).

A sample Rmpi session
{karl:10} lamboot

{karl:11} R

> library(Rmpi)

Rmpi version: 0.4-4

Rmpi is an interface (wrapper) to MPI APIs

with interactive R slave functionalities.

See ‘library (help=Rmpi)’ for details.

Loading required package: serialize

> mpi.spawn.Rslaves(nslaves=3)

3 slaves are spawned successfully. 0 failed.

master (rank 0,comm 1) of size 4 is running

on: karl

slave1 (rank 1,comm 1) of size 4 is running

on: karl

slave2 (rank 2,comm 1) of size 4 is running

on: karl

slave3 (rank 3,comm 1) of size 4 is running

on: karl4

> mpi.remote.exec(mean(rnorm(1000)))

X1 X2 X3

1 -0.04475399 -0.04475399 -0.04475399

> mpi.bcast.cmd(mpi.init.sprng())

> mpi.init.sprng()

Loading required package: rsprng

> mpi.remote.exec(mean(rnorm(1000)))

X1 X2 X3

1 -0.001203990 -0.0002667920 -0.04333435

> mpi.bcast.cmd(free.sprng())

> mpi.close.Rslaves()

[1] 1

> free.sprng()

> mpi.exit()

[1] "Detaching Rmpi. Rmpi cannot be used

unless relaunching R."

> q()

{karl:12} lamhalt

MPI implementation in R

MPI uses a number of objects for message-passing.
The most important one is a communicator. There
are two types of communicators: intracommunicator
and intercommunicator. A communicator (comm) usu-
ally refers to an intracommunicator which is associ-
ated with a group of members (CPU nodes). Most
point-to-point and collective operations among the
members must go through it. An intercommunicator
is associated with two groups instead of members.

Rmpi defines several pointers in system mem-
ory to represent commonly used MPI objects. When
loading Rmpi, an array of size 10 is allocated for
comm objects, and arrays of size 1 are allocated for
status and info objects. These objects are addressed
using the R argument assignment. For example,
comm = 0 represents comm object 0 which by default
is assigned to MPI_COMM_WORLD. MPI datatypes
integer, double, and character are represented by
type=1, type=2, and type=3 respectively. They
match R’s integer, double, and character datatypes.
Other types require serialization.

A general R object can be serialized to characters
(type=3) before sending and unserialized after re-
ceiving. On a heterogeneous environment, MPI takes
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care of any necessary character conversion provided
characters are represented by the same number of
bytes on both sending and receiving systems.

Rmpi retains the original MPI C interface. A no-
table exception is the omission of message length be-
cause of R’s way of determining length.

Regarding receive buffer preparation, one can
use integer(n) (double(n)) for an integer buffer
(a double buffer) of size n. However, R does
not have a function for creating a character buffer
(character(1) only creates an empty string). The
function string(n) is supplied to create a character
vector with one length n element. For example,

> string(2)

[1] " "

string can be used as a receiver buffer for either
a character vector of length 1 or a binary character
vector generated by serialization.

In .First.lib, the LAM/MPI runtime environ-
ment is checked by a LAM command lamnodes. If it
is not up, lamboot will be launched to boot a LAM
session. After Rmpi is loaded, R becomes an MPI
master with one member only (i.e., itself). Then it
can use mpi.comm.spawn to spawn children. During
spawning, an intercommunicator (default to comm 2)
is created. The master (group 1) and children (group
2) should use intercomm merger so they will be in
the same group for point-to-point or collective oper-
ations.

Interactive R slaves

In this section, we give details on how to spawn
R slaves and communicate with them. The main
function is mpi.spawn.Rslaves. This spawns a set
of R slaves by using a shell program ‘Rslaves.sh’
in the Rmpi installation directory. The slaves will
run on nodes specified by either LAM or a user.
‘Rslave.sh’ usually makes R run in BATCH mode so
input (Rscript) and output (log) are required. Those
log files are uniquely named after their host names,
master process id, and master comm number. They
can be very useful when debugging.

The default Rscript, ‘slavedaemon.R’ in the Rmpi
installation directory, performs the necessary steps
(intercomm merger) to establish communication
with the master and runs in a while loop (waiting
for an instruction from the master). When slaves
are spawned, they form their own group accessed by
comm 0. After intercomm merger, slaves use the de-
fault comm .comm (=1) to communicate with the mas-
ter while the master uses the default comm 1 to com-
municate with the slaves. If necessary, the master can
spawn additional sets of R slaves by using comm 3, 4,
etc. (slaves still use .comm=1).

To determine the maximum number of slaves
to be spawned, Rmpi provides a function
mpi.universe.size to show the total nodes (CPUs)

available in a LAM session. The master should not
participate in numerical computation since the num-
ber of master and slaves may then exceed the num-
ber of nodes available.

In a heterogeneous environment, the user may
wish to spawn slaves to specific nodes to achieve uni-
form CPU speed. For example,

> lamhosts()

karl karl karl4 karl4 karl5 karl5

0 1 2 3 4 5

> mpi.spawn.Rslaves(hosts=c(3, 4), comm=3)

2 slaves are spawned successfully. 0 failed.

master (rank 0,comm 3) of size 3 is running

on: karl

slave1 (rank 1,comm 1) of size 3 is running

on: karl4

slave2 (rank 2,comm 1) of size 3 is running

on: karl5

Once R slaves are spawned (assuming 3 slaves on
comm 1 and 2 slaves on comm 3), the master can use
mpi.bcast.cmd to send a command to be executed
by all slaves. For example,

> mpi.bcast.cmd(print(date()), comm=1)

will let all slaves (associated with comm 1) execute
the command print(date()) and the results can be
viewed by tail.slave.log(comm=1). The command

> mpi.bcast.cmd(print(.Last.value), comm=1)

tells the slaves to put their last value into the log.
If the executed results should be returned to master,
one can use

> mpi.remote.exec(date(), comm=1)

We can think of mpi.remote.exec as a parallel apply
function. It executes “embarrassingly parallel” com-
putations (i.e., those where no node depends on any
other). If the master writes a function intended to be
executed by slaves, this function must be transferred
to them first. One can use mpi.bcast.Robj2slave
for that purpose. If each slave intends to do a differ-
ent job, mpi.comm.rank can be used to identify itself:

> mpi.remote.exec(mpi.comm.rank(.comm),

comm=1)

X1 X2 X3

1 1 2 3

> mpi.remote.exec(1:mpi.comm.rank(.comm),

comm=3)

$slave1

[1] 1

$slave2

[1] 1 2

Often the master will let all slaves execute a func-
tion while the argument values are on the master.
Rather than relying on additional MPI call(s), one
can pass the original arguments as in the following
example.

> x <- 1:10

> mpi.remote.exec(mean, x, comm=1)

X1 X2 X3

1 5.5 5.5 5.5

R News ISSN 1609-3631



Vol. 2/2, June 2002 13

Here, the slaves execute mean(x) with x replaced by
1:10. Note that mpi.remote.exec allows only a small
amount of data to be passed in this way.

Example

Rmpi comes with several demos. The following two
functions are similar to the demo script ‘slave2PI.R’.

slave2 <- function(n) {

request <-1; job <-2

anytag <- mpi.any.tag(); mypi <- 0

while (1) {

## send master a request

mpi.send(integer(1), type=1, dest=0,

tag=request,comm=.comm)

jobrange<-mpi.recv(integer(2), type=1,

source=0, tag=anytag, comm=.comm)

tag <- mpi.get.sourcetag()[2]

if (tag==job) #do the computation

mypi <- 4*sum(1/(1+((seq(jobrange[1],

jobrange[2])-.5)/n)^2))/n + mypi

else break #tag=0 means stop

}

mpi.reduce(mypi, comm=.comm)

}

master2PI <- function(n, maxjoblen, comm=1) {

tsize <- mpi.comm.size(comm)

if (tsize < 2)

stop("Need at least 1 slave")

## send the function slave2 to all slaves

mpi.bcast.Robj2slave(slave2, comm=comm)

#let slave run the function slave2

mpi.remote.exec(slave2, n=n, comm=comm,

ret=FALSE)

count <- 0; request <- 1; job <- 2

anysrc <- mpi.any.source()

while (count < n) {

mpi.recv(integer(1), type=1,

source=anysrc, tag=request, comm=comm)

src <- mpi.get.sourcetag()[1]

jobrange <- c(count+1,

min(count+maxjoblen, n))

mpi.send(as.integer(jobrange), type=1,

dest=src, tag=job, comm=comm)

count <- count+maxjoblen

}

## tell slaves to stop with tag=0

for (i in 1:(tsize-1)) {

mpi.recv(integer(1), type=1,

source=anysrc, tag=request, comm=comm)

src <- mpi.get.sourcetag()[1]

mpi.send(integer(1), type=1,

dest=src, tag=0, comm=comm)

}

mpi.reduce(0, comm=comm)

}

The function slave2 is to be executed by all slaves
and master2PI is to be run on the master. The
computation is simply a numerical integration of∫ 1

0 1/(1 + x2) dx. qA load balancing approach is
used, namely, the computation is divided into more

small jobs than there are slaves so that whenever a
slave finishes a job, it can request a new one and con-
tinue. This approach is particularly useful in a het-
erogeneous environment where CPU’s speeds differ.

Notice that the wild card mpi.any.source is used
by the master in mpi.recv for first-come-first-served
(FCFS) type of queue service. During computation,
slaves keep their computed results until the last step
mpi.reduce for global reduction. Since the master is
a member, it must do the same by adding 0 to the fi-
nal number. For 10 small jobs computed by 3 slaves,
one can

> master2PI(10000, 1000, comm=1) - pi

[1] 8.333334e-10

By replacing the slaves’ computation part, one can
easily modify the above codes for other similar types
of parallel computation.

On clusters with other MPIs

Several parallel computer vendors implement their
MPI based on MPICH without spawning functional-
ity. Can Rmpi still be used with interactive R slaves
capability? This will not be an issue if one installs
LAM at the user level. However, this practice is often
not allowed for two reasons. First, vendors already
optimize MPIs for their hardware to maximize net-
work performance; LAM may not take advantage of
this. Second, a job scheduler is often used to dispatch
parallel jobs across nodes to achieve system load bal-
ancing. A user-dispatched parallel job will disrupt
the load balance.

To run Rmpi in such clusters, several steps must
be taken. The detailed steps are given in the
‘README’ file. Here we sketch these steps.

1. Modify and install Rmpi with the system sup-
plied MPI;

2. Copy and rename the file ‘Rprofile’ in the Rmpi
installation directory to the user’s root direc-
tory as ‘.Rprofile’;

3. Run mpirun -np 5 R -save -q to launch 1
master and 4 slaves with default comm 1.

On some clusters mpirun may dispatch the mas-
ter to a remote node which effectively disables R
interactive mode. Rmpi will still work in pseudo-
interactive mode with command line editing dis-
abled. One can run R in R CMD BATCH mode as
mpirun -np 5 R CMD BATCH Rin Rout . Notice that
only the master executes the Rscript Rin , exactly the
same as in interactive mode.

Discussion

MPI has many routines. It is not currently feasible
to implement them all in Rmpi. Some of the rou-
tines are not necessary. For example, many of the
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data management routines are not needed, since R
has its own sophisticated data subsetting tools.

Virtual topology is a standard feature of MPI.
Topologies provide a high-level method for manag-
ing CPU groups without dealing with them directly.
The Cartesian topology implementation will be the
target of future version of Rmpi.

MPI profiling is an interesting area that may en-
hance MPI programming in R. It remains to be seen if
the MPE (Multi-Processing Environment) library can
be implemented in Rmpi or whether it will best be
implemented as a separate package.

Other exotic advanced features of MPI under con-
sideration are Parallel I/O and Remote Memory Ac-
cess (RMA) for one-sided communication.

With parallel programming, debugging remains
a challenging research area. Deadlock (i.e., a situa-
tion arising when a failed task leaves a thread wait-
ing) and race conditions (i.e., bugs caused by failing
to account for dependence on the relative timing of
events) are always issues regardless of whether one
is working at a low level (C(++) or Fortran) or at a
high level (R). The standard MPI references can pro-
vide help.
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The grid Graphics Package
by Paul Murrell

Introduction

The grid package provides an alternative set of
graphics functions within R. This article focuses on
grid as a drawing tool. For this purpose, grid pro-
vides two main services:

1. the production of low-level to medium-level
graphical components such as lines, rectangles,
data symbols, and axes.

2. sophisticated support for arranging graphical
components.

The features of grid are demonstrated via several
examples including code. Not all of the details of the
code are explained in the text so a close consideration
of the output and the code that produced it, plus ref-
erence to the on-line help for specific grid functions,
may be required to gain a complete understanding.

The functions in grid do not provide complete
high-level graphical components such as scatterplots
or barplots. Instead, grid is designed to make it very
easy to build such things from their basic compo-
nents. This has three main aims:

1. The removal of some of the inconvenient con-
straints imposed by R’s default graphical func-
tions (e.g., the fact that you cannot draw any-
thing other than text relative to the coordinate
system of the margins of a plot).

2. The development of functions to produce high-
level graphical components which would not
be very easy to produce using R’s default
graphical functions (e.g., the lattice add-on
package for R, which is described in a compan-
ion article in this issue).

3. The rapid development of novel graphical dis-
plays.
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Figure 1: Example output from the grid primitive
functions.

grid provides the standard set of basic graphical
components: lines, text, rectangles, circles, polygons,
and data symbols. A slight difference from the base
graphics is that a set of text may be drawn such that
any overlapping text is omitted. Also, grid has the
notion of a “current location” and provides a com-
mand for resetting this location and a command for
drawing a line from the previous location. The fol-
lowing set of code is from a sample grid session; the
output produced by this code is shown in Figure 1.

grid.move.to(0.1, 0.8)

grid.line.to(0.1, 0.9)

grid.line.to(0.2, 0.9)

grid.text("Some text", x=0.15, y=0.8,

just=c("left", "center"),

gp=gpar(fontsize=20))

grid.text("Some text at an angle", x=0.85, y=0.1,

just=c("right", "center"), rot=350,

gp=gpar(fontsize=16))

grid.text(c("Overlapping", "text", "", "drawn"),

0.1 + 0:3/8, 0.4, gp=gpar(col="grey"),

just=c("left", "center"))

grid.text(c("Overlapping", "text", "not",

"drawn"),

0.1 + 0:3/8, 0.4,

just=c("left", "center"),

check.overlap=TRUE)

grid.circle(1:4/10, 0.2, r=1:4/40)

grid.points(rep(0.9, 25), 1:25/26, pch=1:25,

size=unit(0.1, "inches"))

grid.polygon(0.4 + 0:8/20,

0.6 + c(2,1,2,1,1,2,1,2,1)/10,

gp=gpar(fill="grey"))

grid.rect(x=0.7, y=0.3, w=0.2, h=0.3)

grid.lines(x=1:50/60,

y=0.6 + 0.1*sin(seq(-3*pi, 3*pi,

length=60)))

The functions are very similar to the base R coun-
terparts, however, one important difference is in the
way that graphical parameters, such as line colour

and line thickness, are specified. There are default
graphical parameter settings and any setting may
be overridden by specifying a value via the gp ar-
gument, using the gpar function. There is a much
smaller set of graphical parameters available:

lty line type (e.g., "solid" or "dashed").

lwd line width.

col “foreground” colour for drawing borders.

fill “background” colour for filling shapes.

font a number indicating plain, bold, italic, or bold-
italic.

fontsize the point size of the font.

lineheight the height of a line of text given as a
multiple of the point size.

There may be additions to this list in future ver-
sions of grid, but it will remain much smaller than
the list available in R’s par command. Parameters
such as pch are provided separately only where they
are needed (e.g., in grid.points()).

Coordinate systems

All of the drawing in Figure 1 occurred within a
so-called “normalised” coordinate system where the
bottom-left corner of the device is represented by the
location (0, 0) and the top-right corner is represented
by the location (1, 1). For producing even simple sta-
tistical graphics, a surprising number of coordinate
systems are required. grid provides a simple mech-
anism for specifying coordinate systems within rect-
angular regions, based on the notion of a viewport .

grid maintains a “stack” of viewports, which al-
lows control over the context within which drawing
occurs. There is always a default top-level viewport
on the stack which provides the normalised coordi-
nate system described above. The following com-
mands specify a new coordinate system in which the
y-axis scale is from −10 to 10 and the x-axis scale is
from 0 to 5 (the call to grid.newpage() clears the de-
vice and resets the viewport stack):

grid.newpage()

push.viewport(viewport(yscale=c(-10, 10),

xscale=c(0, 5)))

All drawing operations occur within the context of
the viewport at the top of the viewport stack (the
current viewport ). For example, the following com-
mand draws symbols relative to the new x- and y-
scales:

grid.points(1:4, c(-3, 0, 3, 9))
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In addition to x- and y-scales, a grid viewport can
have a location and size, which position the viewport
within the context of the previous viewport on the
stack. For example, the following commands draw
the points in a viewport that occupies only the cen-
tral half of the device (the important bits are the spec-
ifications width=0.5 and height=0.5):

grid.newpage()

push.viewport(

viewport(width=0.5, height=0.5,

yscale=c(-10, 10), xscale=c(0, 5)))

grid.points(1:4, c(-3, 0, 3, 9))

grid.rect(gp=gpar(lty="dashed"))

The margins around a plot in R are often specified
in terms of lines of text. grid viewports provide a
number of coordinate systems in addition to the nor-
malised one and that defined by the x- and y-scales.
When specifying the location and size of a graphical
primitive or viewport, it is possible to select which
coordinate system to use by specifying the location
and/or size using a unit object. The following com-
mands draw the points in a viewport with a margin
given in lines of text. An x-axis and a y-axis, some
labels, and a border are added to make something
looking like a standard R plot (the output is shown
in Figure 2). The important bits in the following code
involve the use of the unit() function:

grid.newpage()

plot.vp <-

viewport(x=unit(4, "lines"),

y=unit(4, "lines"),

width=unit(1, "npc") -

unit(4 + 2, "lines"),

height=unit(1, "npc") -

unit(4 + 3, "lines"),

just=c("left", "bottom"),

yscale=c(-10.5, 10.5),

xscale=c(-0.5, 5.5))

push.viewport(plot.vp)

grid.points(1:4, c(-3, 0, 3, 9))

grid.xaxis()

grid.text("X Variable",

y=unit(-3, "lines"))

grid.yaxis()

grid.text("Y Variable",

x=unit(-3, "lines"), rot=90)

grid.rect()

grid.text("Plot Title",

y=unit(1, "npc") + unit(2, "lines"),

gp=gpar(fontsize=14))

In terms of the arrangement of the graphical com-
ponents, these few lines of code reproduce most of
the layout of standard R plots. Another basic grid
feature, layouts1, allows a simple emulation of R’s
multiple rows and columns of plots.
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Figure 2: A standard scatterplot produced by grid.

If a viewport has a layout specified, then the next
viewport in the stack can specify its position within
that layout rather than using unit objects. For exam-
ple, the following code draws the plot in the previ-
ous example within a 1-row by 2-column array (and
an outer margin is added for good measure; the out-
put is shown in Figure 3). The important bits to
look for involve the specification of a layout for the
first viewport, layout=grid.layout(1, 2), and the
specification of a position within that layout for the
next viewport that is pushed onto the viewport stack,
layout.pos.col=1:

grid.newpage()

push.viewport(

viewport(x=unit(1, "lines"),

y=unit(1, "lines"),

width=unit(1, "npc") -

unit(2, "lines"),

height=unit(1, "npc") -

unit(2, "lines"),

just=c("left", "bottom"),

layout=grid.layout(1, 2),

gp=gpar(fontsize=6)))

grid.rect(gp=gpar(lty="dashed"))

push.viewport(viewport(layout.pos.col=1))

grid.rect(gp=gpar(lty="dashed"))

push.viewport(plot.vp)

grid.points(1:4, c(-3, 0, 3, 9))

grid.xaxis()

grid.text("X Variable", y=unit(-3, "lines"))

grid.yaxis()

grid.text("Y Variable", x=unit(-3, "lines"),

rot=90)

grid.rect()

grid.text("Plot Title",

y=unit(1, "npc") + unit(2, "lines"),

gp=gpar(fontsize=8))

It should be noted that the fontsize=6 setting in
the first viewport overrides the default setting for all
subsequent viewports in the stack and for all graph-
ical components within the contexts that these view-

1These are similar to the facility provided by the base layout function, which mostly follows the description in Murrell, Paul R. (1999),
but there is additional flexibility provided by the addition of extra units and these layouts can be nested by specifying multiple viewports
in the viewport stack each with its own layout.

R News ISSN 1609-3631



Vol. 2/2, June 2002 17

ports provide. This “inheritance” of graphical con-
text from parent viewports is true for all graphical
parameter settings.

●

●

●

●

0 1 2 3 4 5

X Variable

−10

−5

0

5

10

Y
 V

ar
ia

bl
e

Plot Title

Figure 3: A grid scatterplot within a 1-by-2 array,
within an outer margin.

There are three important features of this emula-
tion of R’s plot layout capabilities:

1. the control of the layout was performed com-
pletely within R code.

2. the amount of R code required was small.

3. the layout is actually more flexible than the R
equivalent.

In order to illustrate the last point, the following
examples add a couple of simple annotations to
Figure 3 which are inconvenient or impossible to
achieve in R.

The first three come from some requests to the R-
help mailing list over over the last couple of years:
drawing a plotting symbol that is a fixed number of
millimeters square; drawing text within a plot in a
location that is “in the top-left corner” rather than
relative to the current axis scales; and drawing text
at a location in the plot margins with an arbitrary ro-
tation. The final example demonstrates the ability to
draw from one coordinate system to another.

grid.rect(x=unit(1:4, "native"),

width=unit(4, "mm"),

y=unit(c(-3, 0, 3, 9), "native"),

height=unit(4, "mm"))

grid.text("Text in\nthe upper-left\ncorner",

x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"),

gp=gpar(font=3))

grid.yaxis(main=FALSE, label=FALSE)

grid.text(c("-ten", "-five", "zero",

"five", "ten"),

x=unit(1, "npc") + unit(0.8, "lines"),

y=unit(seq(-10, 10, 5), "native"),

just=c("left", "centre"), rot=70)

pop.viewport(2)

push.viewport(viewport(layout.pos.col=2))

push.viewport(plot.vp)

grid.rect()

grid.points(1:4, c(-8, -3, -2, 4))

line.between <- function(x1, y1, x2, y2) {

grid.move.to(unit(x2, "native"),

unit(y2, "native"))

pop.viewport(2)

push.viewport(viewport(layout.pos.col=1))

push.viewport(plot.vp)

grid.line.to(unit(x1, "native"),

unit(y1, "native"),

gp=gpar(col="grey"))

pop.viewport(2)

push.viewport(viewport(layout.pos.col=2))

push.viewport(plot.vp)

}

line.between(1, -3, 1, -8)

line.between(2, 0, 2, -3)

line.between(3, 3, 3, -2)

line.between(4, 9, 4, 4)
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Figure 4: A grid scatterplot with simple annotations.

Applications of grid

R’s base graphics are based on the notion of a plot
which is surrounded by margins for axes and la-
bels. Many statistical graphics cannot be conve-
niently described using such a plot as the basic build-
ing block. A good example, is the Trellis Graphics
system (Becker et al., 1996; Cleveland, 1993), particu-
larly the multipanel Trellis displays. Here, the more
natural building block is a “panel”, which consists
of a plot plus one or more “strips” above it. The
construction of such a panel is straightforward using
grid, as the following code demonstrates (the output
is shown in Figure 5:

grid.newpage()

lyt <-

grid.layout(3, 1,

heights=unit(c(1.5, 1.5, 1),

c("lines", "lines", "null")))

push.viewport(viewport(width=0.7,
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height=0.7,

layout=lyt,

xscale=c(0.5, 8.5)))

push.viewport(viewport(layout.pos.row=1))

grid.rect(gp=gpar(fill="light green"))

grid.text("Strip 1")

pop.viewport()

push.viewport(viewport(layout.pos.row=2))

grid.rect(gp=gpar(fill="orange"))

grid.text("Strip 2")

pop.viewport()

push.viewport(viewport(layout.pos.row=3,

xscale=c(0.5, 8.5),

yscale=c(.1, .9)))

grid.rect()

grid.grill()

grid.points(unit(runif(5, 1, 8), "native"),

unit(runif(5, .2, .8), "native"),

gp=gpar(col="blue"))

grid.yaxis()

grid.yaxis(main=FALSE, label=FALSE)

pop.viewport()

grid.xaxis()

grid.xaxis(main=FALSE, label=FALSE)

This panel can now be included in a higher-level
layout to produce an array of panels just as a scatter-
plot was placed within an array previously.

An important point about this example is that,
once the command

push.viewport(viewport(layout.pos.row=1))

has been issued, drawing can occur within the con-
text of the top strip, with absolutely no regard for
any other coordinate systems in the graphic. For ex-
ample, lines and rectangles can be drawn relative to
an x-scale within this strip to indicate the value of
a third conditioning variable and a text label can be
drawn relative to the normalised coordinates within
the strip — e.g., at location x=unit(0, "npc") with
just=c("left", "centre") to left-align a label.

Strip 1

Strip 2

●

●

●

●

●

0.2

0.4

0.6

0.8

2 4 6 8

Figure 5: A Trellis-like panel produced using grid.

Given this sort of flexibility and power for com-
bining graphical components, it becomes possible to

seriously consider generating novel statistical graph-
ics and producing custom images for the needs of in-
dividual data sets.

The following example, uses data from a study
which was conducted to investigate the speed of cars
at a location in Auckland, New Zealand. The vari-
able of interest was the proportion of cars travelling
above 60kph. This variable was recorded every hour
for several days. In addition, the total volume of cars
per hour was recorded. The researchers wanted to
produce a graphic which presented the proportion
data in a top panel and the volume data in a bottom
panel as well as indicate day/night transitions using
white versus grey bands and weekends or public hol-
idays using white versus black strips.

The following code produces the desired graph,
which is shown in Figure 6.

n <- dim(cardata)[1]

xrange <- c(0, n+1)

grid.newpage()

push.viewport(

viewport(x=unit(3, "lines"),

width=unit(1, "npc") -

unit(4, "lines"),

y=unit(3, "lines"),

height=unit(1, "npc") -

unit(5, "lines"),

just=c("left", "bottom"),

layout=grid.layout(5, 1,

heights=unit(rep(3, 1),

rep(c("mm", "null"),

length=5))),

xscale=xrange, gp=gpar(fontsize=8)))

grid.rect(x=unit((1:n)[cardata$day == "night"],

"native"),

width=unit(1, "native"),

gp=gpar(col=NULL, fill="light grey"))

grid.rect()

grid.xaxis(at=seq(1, n, 24), label=FALSE)

grid.text(cardata$weekday[seq(1, n, 24)],

x=unit(seq(1, n, 24)+12.5, "native"),

y=unit(-1, "lines"))

draw.workday <- function(row) {

push.viewport(viewport(layout.pos.row=row,

xscale=xrange))

grid.rect(gp=gpar(fill="white"))

x <- (1:n)[cardata$workday == "yes"]

grid.rect(x=unit(x, "native"),

width=unit(1, "native"),

gp=gpar(fill="black"))

pop.viewport()

}

draw.workday(1)

push.viewport(viewport(layout.pos.row=2,

xscale=xrange,

yscale=c(0.5, 1)))

grid.lines(unit(1:n, "native"),

unit(cardata$prop, "native"))

grid.yaxis()

pop.viewport()

draw.workday(3)

push.viewport(
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viewport(layout.pos.row=4,

xscale=xrange,

yscale=c(0, max(cardata$total))))

grid.lines(unit(1:n, "native"),

unit(cardata$total, "native"))

grid.yaxis()

pop.viewport()

draw.workday(5)

Some important points about this example are:

1. It is not impossible to do this using R’s base
graphics, but it is more “natural” using grid.

2. Having created this graphic using grid, arbi-
trary annotations are possible — all coordinate
systems used in creating the unusual arrange-
ment are available at the user-level for further
drawing.

3. Having created this graphic using grid, it may
be easily embedded in or combined with other
graphical components.

Final remarks

The most obvious use of the functions in grid is in the
development of new high-level statistical graphics
functions, such as those in the lattice package. How-
ever, there is also an intention to lower the barrier for
normal users to be able to build everyday graphics
from scratch.

There are currently no complete high-level plot-
ting functions in grid. The plan is to provide some
default functions for high-level plots, but such func-
tions inevitably have to make assumptions about
what the user wants to be able to do — and these as-
sumptions inevitably end up constraining what the

user is able to achieve. The focus for grid will con-
tinue to be the provision of as much support as pos-
sible for producing complex statistical graphics by
combining basic graphical components.

grid provides a number of features not discussed
in this article. For information on those features and
more examples of the use of grid, see the documen-
tation at http://www.stat.auckland.ac.nz/~paul/
grid/grid.html. grid was also described in a paper
at the second international workshop on Distributed
Statistical Computing (Murrell, 2001).
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Lattice
An Implementation of Trellis Graphics in R

by Deepayan Sarkar

Introduction

The ideas that were later to become Trellis Graphics
were first presented by Bill Cleveland in his book Vi-
sualizing Data (Hobart Press, 1993); to be later devel-
oped further and implemented as a suite of graph-
ics functions in S/S-PLUS. In a broad sense, Trel-
lis is a collection of ideas on how statistical graphics
should be displayed. As such, it can be implemented
on a variety of systems. Until recently, however, the

only actual implementation was in S-PLUS, and the
name Trellis is practically synonymous with this im-
plementation.

lattice is another implementation of Trellis
Graphics, built on top of R, and uses the very flexible
capabilities for arranging graphical components pro-
vided by the grid add-on package. grid is discussed
in a companion article in this issue.

In keeping with the R tradition, the API of the
high-level Lattice functions are based on published
descriptions and documentation of the S-PLUS Trel-
lis Graphics suite. It would help to remember, how-
ever, that while every effort has been made to enable
Trellis code in S-PLUS to run with minimal modifi-
cation, Lattice is different from Trellis in S-PLUS in
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Figure 6: A custom plot produced using grid.

many respects; some unavoidable, some intentional.

The Trellis paradigm

Familiarity with some general principles Trellis uses
in displaying statistical graphs can go a long way
towards understanding it. The most important fea-
ture of Trellis Graphics is the ability to produce multi-
panel, multi-page graphs — this was in fact the pri-
mary motivation (as well as the origin of the name)
for Trellis. Perhaps no less important, however, is
a basic paradigm shift from the way graphics is for-
mulated and displayed conventionally in the S lan-
guages.

Conventional S graphics draws plots incremen-
tally. For example, it is common to draw a histogram,
then draw a box around it, add the axes, and perhaps
add a few labels (main, sub, etc) to get the final plot.
Trellis, on the other hand, would first create an ob-
ject that would contain all the information necessary
to create the plot (including what to draw, how to
mark the axes, what main, sub are, if anything), and
then plot it in one go.

This approach has certain advantages. For con-
ventional S graphics, there is no way of knowing in
advance whether the axes will be drawn, whether
there will be a main label (and if so, how long or
how large it would be), etc. Consequently, when the
first plot is drawn, there has to be enough space left
for everything else, in case the user decides to add
these later. This is done by pre-allocating space for
axis labels, main labels, etc. Obviously, the default
amount of space is not always appropriate, and it
is often necessary to change these spacings via the
par() function. Trellis plots, however, take a differ-
ent approach. A plot is drawn all at once, and thus

exactly the requisite amount of space can be used for
each component of the display.

Also unlike conventional S graphics, high level
Lattice functions do not directly draw anything
when they are called, but rather, they are more like
other S functions in that they produce an object
(of class "trellis") which when printed produces
the actual plot. This enables changing several as-
pects of the plot with minimal recomputation via
the update.trellis method, as well as the ability to
save a plot for later plotting and draw the same plot
in several devices. The print method for "trellis"
objects also allows finer control over the placement
of plots within the plotting region, in turn making
possible more than one Trellis plot per page. This is
similar to setting par(mfrow), but slightly more flex-
ible.

On the downside, this holistic approach to plot-
ting can make calls to produce even slightly compli-
cated plots look very intimidating at first (although
the default display options are quite satisfactory for
the most part, the need to change these also arises
quite frequently).

Getting started

A few high level functions provide the basic inter-
face to Lattice. Each of these, by default, produce
a different kind of statistical graph. Scatter Plots
are produced by xyplot, Box Plots and Dot Plots by
bwplot and dotplot, Scatter Plot Matrices by splom,
Histograms and Kernel Density Plots by histogram
and densityplot, to name the most commonly used
ones. These functions need, at a minimum, only one
argument: a formula specifying the variables to be
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used in the plot, and optionally, the name of a data
frame containing the variables in the formula.

The formula argument and conditioning

Unlike most conventional graphics functions, the
variables in the plot are almost always specified in
terms of a formula describing the structure of the
plot. This is typically the unnamed first argument.
For bivariate functions like xyplot, bwplot, etc, it
is of the form y~x | g1 * · · · * gn. Here x, y, g1,
. . . , gn should be vectors of the same length, option-
ally in a data frame, in which case its name has to be
given as the data argument.

The variables g1, . . . , gn are optional, and are
used to investigate the relationship of several vari-
ables through conditioning. When they are absent,
the plots produced are similar to what can be done
with conventional S graphics. When present, we get
Conditioning Plots — separate ‘panels’ are produced
for each unique combination of the levels of the con-
ditioning variables, and only the subset of x and y
that corresponds to this combination is used for dis-
playing the contents of that panel. These condition-
ing variables are usually factors, but they can also be
shingles, an innovative way of conditioning on con-
tinuous variables. Conditioning is illustrated in (the
left part of) Figure 3, where dotplots of yields of dif-
ferent varieties of barley are displayed in different
panels determined by the location of the experiment.

Conditioning can be done in all high level func-
tions, but the form of the first part of the formula
changes according to the type of plot produced. The
typical form is y ~ x, where the y variable is plotted
on the vertical axis, and x on the horizontal. For uni-
variate functions like histogram and densityplot,
where only the x variable is needed, the form of the
first part is ~x, and for trivariate functions like cloud
and levelplot whose panels use three variables, the
form is z ~ x * y.

Aspect ratio and banking

The information that the human eye can perceive
from a plot can change significantly depending sim-
ply on the aspect ratio used for displaying the plot.
Some Trellis functions can use ‘banking’ to auto-
matically select a close to optimum aspect ratio that
makes the plot more informative, when given the
aspect="xy" argument. Figure 3 includes an exam-
ple illustrating the usefulness of this feature.

Changing panel functions using grid

While the high level functions provide the ability to
produce the most commonly used statistical graphs,
it is often necessary to go beyond that and produce
displays tailored for the problem at hand. Much of
the power of Trellis comes from the ability to change

the default display by means of a function supplied
as the panel argument. This can be any function
written using grid, and is called with the panel re-
gion set as the current viewport.

A word of caution: Conventional R graphics code
will not work in the panel function. However,
many predefined functions that can serve as build-
ing blocks of custom panel functions are already in-
cluded in the Lattice package. (These usually suffice
for porting Trellis code written for S-PLUS.)

An example below illustrates how to modify a
call to bwplot to produce an interaction plot:

library(nlme)

data(Alfalfa)

levels(Alfalfa$Date) <-

c(’None’, ’Sep 1’, ’Sep 20’, ’Oct 7’)

bwplot(Yield ~ Date | Variety, Alfalfa,

groups = Block, layout = c(3, 1),

panel = "panel.superpose",

panel.groups = "panel.linejoin",

xlab = "Date of third cutting",

main = "Block by Date interaction

in 3 Varieties of Alfalfa")

Block by Date interaction in 3 Varieties of Alfalfa

Date of third cutting

Y
ie

ld

1

1.5

2

None Sep 1 Sep 20 Oct 7

Cossack

None Sep 1 Sep 20 Oct 7

Ladak

None Sep 1 Sep 20 Oct 7

Ranger

Figure 1: Interaction plot produced by bwplot with a
custom panel function

A very useful feature of Lattice is that all argu-
ments not recognized by high level functions are
passed on to the panel function. This allows very
general panel functions to be written, which can then
be controlled by arguments given directly to the high
level function.

Other commonly used features

All high level Lattice functions accept several argu-
ments that modify various components of the dis-
play, some of which have been used in the exam-
ples given here. The most commonly used ones are
briefly mentioned below, further details can be found
in the documentation.

Panel Layout: When using conditioning variables,
especially when a large number of panels are pro-
duced, it is important to arrange the panels in a nice
and informative manner. While the default layout
is usually satisfactory, finer control can be achieved
via the layout, skip, between and as.table argu-
ments.
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Scales: An important component of the display is
how the axis tick marks and labels are shown. This
is controlled by the scales argument (pscales for
splom).

Grouping variable: Apart from conditioning, an-
other very common way to look at the relationship
between more than two variables, particularly when
one of them is a factor with a small number of lev-
els, is by using different graphical parameters to
distinguish between levels of this factor. This can
be done using the groups argument, usually with
panel.superpose as the panel function.

Handling multiple plots
The print.trellis function, when called explicitly
with extra arguments, enables placing more than one
Lattice plot on the same page. For example, the fol-
lowing code places two 3d scatter plots together to
form a stereogram (figure 2):

data(iris)

print(cloud(Sepal.Length ~

Petal.Length * Petal.Width,

data = iris, perspective = FALSE,

groups = Species,

subpanel = panel.superpose,

main = "Stereo",

screen = list(z=20,x=-70,y=3)),

split = c(1,1,2,1), more = TRUE)

print(cloud(Sepal.Length ~

Petal.Length * Petal.Width,

data = iris, perspective = FALSE,

groups = Species,

subpanel = panel.superpose,

main = "Stereo",

screen = list(z=20,x=-70,y=0)),

split = c(2,1,2,1))
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Figure 2: 3d Scatter plots (using cloud) of the Iris
data, grouped by Species. Stare at the plot and fo-
cus your eyes behind the page so that the two im-
ages merge. The result should be the illusion of a 3D
image.

Settings: Modifying the look and feel

The choice of various parameters, such as color,
line type, text size, etc can change the look and

feel of the plots obtained. These can be controlled
to an extent by passing desired values as argu-
ments named col, lty, cex, etc to high level func-
tions. It is also possible to change the settings
globally, by modifying a list that determines these
parameters. The default settings are device spe-
cific — screen devices get a grey background with
mostly light colors, while postscript output has a
white background with darker colors. It is pos-
sible to change these settings, and to define en-
tirely new ‘themes’ suited to particular tastes and
purposes — for example, someone using the pros-
per package to create presentations in LATEX might
want to set all the foreground colors to white and
use larger text. The functions trellis.device,
trellis.par.set, lset and show.settings can be
useful in this context. Lattice currently comes with
one predefined theme that can be loaded by calling
lset(col.whitebg()), and it is fairly easy to create
new ones.

Using Lattice as a tool

Trellis was designed for a specific purpose, namely,
to provide effective graphical presentation of the re-
lationship between several variables through condi-
tioning; and that is what it does best. It is a high
level graphics package, and makes several assump-
tions about the form of the display it produces. In
that respect, it is not always suitable as a tool for de-
veloping new graphical methods. It is quite flexibile
in its own way, however, and can be particularly use-
ful for creating custom display functions for specific
types of data — the pkgnlme package, for example,
uses Lattice functions extensively for its plot meth-
ods.

Conclusion

This article provides a brief overview of the func-
tionality in the Lattice package, but is by no means a
comprehensive introduction. For those interested in
learning more, an excellent place to start is Bell Lab’s
Trellis webpage at http://cm.bell-labs.com/cm/
ms/departments/sia/project/trellis/; although
specific to the S-PLUS implementation, most of it
is also applicable to Lattice. Gory details are of
course available from the documentation accompa-
nying the Lattice package, ?Lattice is the recom-
mended launching point. Finally, Lattice has its
own webpage at http://packages.r-project.org/
lattice/.

Deepayan Sarkar
University of Wisconsin, U.S.A.
deepayan@stat.wisc.edu
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Figure 3: Two well known examples from Cleveland (1993). The left figure shows the yield of 10 different va-
rieties of barley in 6 farms recorded for two consecutive years. The data has been around since Fisher, but this
plot suggested a possible mistake in recording the data from Morris. The plots on the right show the usefulness
of banking. The top figure is what an usual time series plot of the average yearly sunspots from 1749 to 1983
would look like. The bottom plot uses banking to adjust the aspect ratio. The resulting plot emphasizes an
important feature, namely, that the ascending slope approaching a peak is steeper than the descending slope.
[This plot was created using print.trellis for the layout. See accompanying code for details. The colour
schemes used here, as well as in the other plots, are not the defaults. See the section on Settings for references
on how to set ‘themes’.]

data(barley)

plot1 <- dotplot(variety ~ yield | site, data = barley, groups = year, aspect = .5,

panel = "panel.superpose", panel.groups = "panel.dotplot", layout = c(1, 6),

col.line = c("grey", "transparent"), xlab = "Barley Yield\n(Bushels per Acre)",

key = list( text = list(c("1932", "1931")),

points = Rows(trellis.par.get("superpose.symbol"), 1:2)))

data(sunspots)

spots <- by(sunspots, gl(235, 12, lab = 1749:1983), mean)

plot2 <- xyplot(spots~1749:1983, xlab = "", type = "l", main = "Average Yearly Sunspots",

scales = list(x = list(alternating = 2)),

plot3 <- xyplot(spots~1749:1983, xlab = "Year", type = "l", aspect = "xy")

print(plot1, position = c(0, 0, .3, ,1), more = TRUE)

print(plot2, position = c(.28, .12, 1, 1), more = TRUE)

print(plot3, position = c(.28, 0, 1, .13))
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Programmer’s Niche
Mind Your Language

Bill Venables

Introduction

John Chambers once told me that with S (including
R) you have the choice of typing a command and im-
plicitly presenting it to the evaluator or getting the
engine to construct the command and explicitly pre-
senting to the evaluator. The first is what everyone
does when they use R and the second seemed to me
at the time to be an esoteric possibility that might
only be used in the most arcane situations imagin-
able. However it is not so. Language manipulation
within R is a live possibility to consider for every-
day data analysis and can be a boon to lazy typists.
There is also one situation where without trying to
do anything extreme or extraordinary you must use
the second of John’s alternatives to achieve the result
you need.

In S ProgrammingVenables and Ripley (2000) there
is a discussion on language manipulation and its
uses (see §3.4) which I do not want to repeat that
here. Rather, what I would like to do is give a real ex-
ample of a data analysis problem where a language
manipulation solution offers an elegant, natural and
practical solution. If you have the book you may
wish to go back afterwards and read more, but the
example should still make sense even if you have
never heard of that book and intend never to go any-
where near it.

The problem

In biodiversity studies samples are taken from many
different sites and, in the simplest case, a record is
taken of whether or not each member of a suite of
biological taxa is present or not. At the same time
environmental variables are measured at each site to
be used as predictor variables in building models for
the probability that a taxon, say, is present at any
site. In the particular case I will discuss here there are
1194 sites on the Great Barrier Reef from a study con-
ducted by the Queensland Department of Primary
Industry. The data frame containing the variables is
called QDPI. There are 60 variables in the frame, the
first three are location variables, the next 30 are pos-
sible environmental predictors and the final 27 are
0/1 variables indicating the presence/absence of 27
marine taxa.

We will consider separate models for each taxon.
It would be natural to consider either logistic regres-
sion models or perhaps generalized additive mod-
els (in package mgcv) for example. For our purposes

here tree models (using package rpart) have several
advantages. So the problem is to construct separate
tree models for each of 27 taxa where each model will
have the full suite of 30 possible predictor variables
from which to choose.

A strategy
Let’s agree that we will put the fitted tree model ob-
jects in a list, say tList. We set up a dummy list to
take them first

> nam <- names(QDPI)

> namX <- nam[4:33]

> namY <- nam[34:60]

> tList <- vector("list", length(namY))

> names(tList) <- namY

So far so good. Now for a bit of language manipu-
lation. First we construct a character string version
of an assignment to an element of tList of an rpart
object, which will be evaluated at each cycle of a for
loop:

> tAsgn <- paste("tList[[n]] <- try(rpart(X ~",

paste(namX, collapse = " + "),

", QDPI, method = ’class’))", sep = "")

> tAsgn <- parse(text = tAsgn)[[1]]

(Notice how quotes within character strings can be
handled by single quotes enclosed within doubles.)
Turning character versions of commands into lan-
guage objects is done by parse(text = string) but
the result is an expression which in this case is
rather like a list of language objects of length 1. It
is not strictly necessary to extract the first object as
we have done above, but it makes things look a little
neater, at least. Here is the assignment object that we
have constructed:

> tAsgn

tList[[n]] <- try(rpart(X ~ Depth +

GBR.Bathyetry + GBR.Aspect +

GBR.Slope + M.BenthicStress +

SW.ChlorophyllA +

SW.ChlorophyllA.SD + SW.K490 +

SW.K490.SD + SW.BenthicIrradiance +

OSI.CaCO3 + OSI.GrainSize +

OSI.Rock + OSI.Gravel + OSI.Sand +

OSI.Mud + CARS.Nitrate +

CARS.Nitrate.SD + CARS.Oxygen +

CARS.Oxygen.SD + CARS.Phosphate +

CARS.Phosphate.SD + CARS.Salinity +

CARS.Salinity.SD + CARS.Silica +

CARS.Silica.SD + CARS.Temperature +

CARS.Temperature.SD + Effort +

TopographyCode, QDPI, method = "class"))

You can probably see now why I was not keen to type
it all out. The index n will be supplied as a loop vari-
able but the X dummy response variable will need
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to be replaced the by the name of each taxon in turn.
Note that here name is a technical term. Language
elements are composed of objects of a variety of spe-
cial modes (and some, line numbers, not so special)
and an object of mode "name" is the appropriate con-
stituent of a language object to stand for a variable
name.

Now for the main loop:

> for(n in namY) {

TAsgn <- do.call("substitute",

list(tAsgn, list(n = n, X = as.name(n))))

eval(TAsgn)

}

Error in matrix(c(rp$isplit[, 2:3], rp$dsplit),

ncol = 5, dimnames = list(tname[rp$isplit[,:

length of dimnames[1] not equal to array extent

There has been a problem with one of the modelling
computations. We can find out which one it is by
seeing which object does not have the correct mode
at the finish:

> namY[which(sapply(tList, class) != "rpart")]

[1] "Anemone"

So Anemones were un able to have a tree model con-
structed for their presence/absence. [I am using an
older version of R here and this seems to be a bug in
pkgrpart that has since been corrected. It serves as
an example here, though.]

Notes on do.call, substitute and
eval

The three crucial functions we have used above, so
far with no explanation are do.call, substitute and
eval. We will not go into an extended explanation
here but some pointers may be useful. First of all
do.call. This used to be a well-kept secret but in
recent years it has become fairly familiar to readers
of R-news. It is perhaps the simplest to use function
that constructs and evaluates a language object, so it
is usually the first one people meet in their travels in
R programming.

The function do.call is used to evaluate a func-
tion call where the name of the function is given as
a character string as the first argument and the argu-
ments to be used for the call to that function are given
as a list in the second argument. It is probably use-
ful to know that this second argument can be a list
of objects, or a list of names of objects, or a mixture of
both.

Nearly everyone knows of substitute through
the idiom deparse(substitute(arg)) for getting a
character string version of the actual bit of code used
for a formal argument, arg, on a call to a function.
In this case substitute(arg) merely grabs the ac-
tual argument supplied without evaluating it and the

deparse(...) step turns it back from a language ob-
ject into a character string equivalent, essentially as
it might have been typed.

This is only one use of substitute though. In
general it may be used to take an expression and do
a bit of surgery on it. Any of the names appearing in
the first argument may be changed to something else,
as defined by a second argument, which has to be a
named list. Here is a much simpler example than the
one above:

> substitute(a+b+c,

list(a=1, c = as.name("foo")))

1 + b + foo

The small detail often overlooked in this kind of
demonstration is that the first argument is quoted,
that is, the surgery is done on the object verbatim.
What happens if the thing we want to do surgery
upon is a long, complicated expression that we are
holding as a language object, such as the case above?

At first sight it may seem that the following
should work:

> substitute(tAsgn, list(n = "Anemone",

X = as.name("Anemone")))

tAsgn

but you can see the result is a disappointment. The
quoting prevents the first argument from being eval-
uated. So how do we say “evaluate the first argu-
ment, dummy”? The solution is to use R to construct
a call to substitute as we might have typed it and
evaluate that. This is what do.call does, and here it
is essential to use this indirect approach.

> do.call("substitute",

list(tAsgn, list(n = "Anemone",

X = as.name("Anemone"))))

tList[["Anemone"]] <- try(rpart(Anemone ~

CARS.Nitrate + CARS.Nitrate.SD + ... +

SW.K490 + SW.K490.SD + TopographyCode,

QDPI, method = "class"))

The third in the trio of functions is eval. As the
name suggests this can be used for explicitly submit-
ting a language object to the evaluator for, well, eval-
uation within the current environment. There are
more general and subtle facilities for modifying the
environment using a second or third argument, but
they need not bother us here. There is no deep mys-
tery, but it is important to know that such a function
exists.

Final comments
It is possible to think of simpler ways that might
achieve the same result as ours. For example we
could put all the X variables into one data frame,
say QDPI.X and all the response variables into QDPI.Y
and then use a loop like

> for(n in namY)

tList[[n]] <- try(rpart(QDPI.Y[, n] ~ .,

QDPI.X, method = "class"))
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and it would work. The problem with this is that
the objects we construct have a formula that has, lit-
erally QDPI.Y[, n] as the dependent variable in the
formula. If we want to do anything with the objects
afterwards, such as prune them, update them, &c,
we need to re-establish what n is in this particular
case. The original object n was the loop variable and
that is long gone. This is not difficult, of course, but
it is an extra detail we need to carry along that we
don’t need. Essentially the formula part of the object
we generate would not be self-contained and this can
cause problems.

The strategy we have adopted has kept all the
variables together in one data frame and explicitly
encoded the correct response variable by name into

the formula of each object as we go. At the end each
fitted rpart object may be manipulated in the usual
way witout this complication involving the now de-
funct loop variable.
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geoRglm: A Package for Generalised
Linear Spatial Models
by Ole F. Christensen and Paulo J. Ribeiro Jr

geoRglm is a package for inference in gener-
alised linear spatial models using Markov chain
Monte Carlo (MCMC) methods. It has been de-
veloped at the Department of Mathematical Sci-
ences, Aalborg University, Denmark and the De-
partment of Mathematics and Statistics, Lancaster
University, UK. A web site with further informa-
tion can be found at http://www.maths.lancs.ac.
uk/~christen/geoRglm. geoRglm is an extension to
the geoR package (Ribeiro, Jr. and Diggle, 2001).
Maximum compatibility between the two packages
has been intended and geoRglm also uses several of
geoR’s internal functions.

Generalised linear spatial models

The classical geostatistical model assumes Gaussian-
ity, which may be an unrealistic assumption for some
data sets. The generalised linear spatial model (GLSM)
as presented in Diggle et al. (1998), Zhang (2002) and
Christensen and Waagepetersen (2002) provides a
natural extension to deal with response variables for
which a standard distribution other than the Gaus-
sian more accurately describes the sampling mecha-
nism involved.

The GLSM is a generalised linear mixed model in
which the random effects are derived from a spatial
process S(·). This leads to the following model spec-
ification.

Let S(·) = {S(x) : x ∈ A} be a Gaussian stochas-
tic process with E[S(x)] = d(x)Tβ, Var{S(x)} =
σ2 and correlation function Corr{S(x), S(x′)} =
ρ(u;φ) where u = ‖x− x′‖ and φ is a parameter. As-

sume that the responses Y1, . . . , Yn observed at loca-
tions x1, . . . , xn in the sampling design, are condition-
ally independent given S(·), with conditional expec-
tations µ1, . . . , µn, where h(µi) = S(xi), i = 1, . . . , n,
for a known link function h(·).

We write S = (S(x1), . . . , S(xn))T for the unob-
served values of the underlying process at x1, . . . , xn,
and S∗ for the values of S(·) at all other locations of
interest, typically a fine grid of locations covering the
study region.

The conditional independence structure of the
GLSM is then indicated by the following graph.

Y S

(β, σ2, φ )

S*

The likelihood for a model of this kind is in gen-
eral not expressible in closed form, but only as a
high-dimensional integral

L(β,σ2,φ) =
∫ n

∏
i=1

f (yi ; h−1(si))p(s; β,σ2,φ)ds,

where f (y; µ) denotes the density of the error
distribution parameterised by the mean µ, and
p(s; β,σ2,φ) is the multivariate Gaussian density
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for the vector S. The integral above is also the
normalising constant in the conditional distribution
[S|y, β,σ2,φ],

p(s | y, β,σ2,φ) ∝
n

∏
i=1

f (yi ; h−1(si))p(s; β,σ2,φ).

In practice, the high dimensionality of the in-
tegral prevents direct calculation of the predic-
tive distribution [S∗ | y, β,σ2,φ]. Markov chain
Monte Carlo provides a solution to this. First by
simulating a Markov chain we obtain a sample
s(1), . . . , s(m) from [S|y, β,σ2,φ], where each s( j)
is an n-dimensional vector. Second, by direct sam-
pling from [S∗|s( j), β,σ2,φ], j = 1, . . . , m we obtain
a sample s∗(1), . . . , s∗(m) from [S∗|y, β,σ2,φ]. The
MCMC algorithm uses Langevin-Hastings updates
of S which are simultaneous updates based on gra-
dient information.

In a Bayesian analysis priors must be assigned to
the parameters in the model. For (β,σ2) a conju-
gate prior exists such that these parameters can be
integrated out analytically, whereas for φ one has to
extend the MCMC algorithm above with updates of
this parameter. We use a Metropolis random walk-
type proposal for updating φ.

In its current version geoRglm implements the
spatial Poisson model and the spatial binomial
model.

Package features

The following example gives a short demonstration
of an analysis for a binomial spatial model with logis-
tic link using the function binom.krige.bayes. We
omit the specific commands here, but refer to the
geoRglm homepage for further details. Consider the
simulated data set shown below which consists of bi-
nomial data of size 4 at 64 locations.
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Priors for the parameters and options
for the MCMC algorithm are set using the
prior.glm.control and mcmc.control functions,
respectively. As a rule of thumb the proposal vari-
ances must be tuned such that the acceptance rates
for updating the random effects and the parameter φ

are approximately 60% and 25%, respectively.
Output from the MCMC algorithm is presented

below for the parameter φ and for the two random
effects at locations marked with a circle in the figure
above.

0 200 400 600 800 1000

0.
0

0.
4

0.
8

S
(0

.0
56

, 0
.0

56
)

0 200 400 600 800 1000

0.
1

0.
4

0.
7

S
(0

.5
63

, 0
.4

36
)

0 200 400 600 800 1000

0.
00

0.
15

0.
30

ph
i

Predicted values of the probabilities p(x) =
exp(S(x))/(1 + exp(S(x))) at 1600 locations are
plotted below using the function image.kriging
from geoR.
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Further details about this example and an in-
troduction to the models can be found in Diggle
et al. (2002) and in the files ‘inst/doc/bookchap.pdf’
and ‘inst/doc/geoRglm.intro.pdf’ distributed with the
package.
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Future developments

Work in progress with Gareth Roberts and Martin
Sköld aims to improve convergence and mixing of
the MCMC algorithm by using a more appropriate
parameterisation.
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Querying PubMed
Web Services

by Robert Gentleman and Jeff Gentry

Introduction

While many view the world wide web (WWW) as
an interactive environment primarily designed for
interactive use, more and more sites are providing
web services that can be accessed programmatically.
In this article we describe some preliminary tools
that have been added to the annotate package in the
Bioconductor project www.bioconductor.org. These
tools facilitate interaction with resources provided at
the National Center for Biotechnology Information
(NCBI) located at www.ncbi.nlm.nih.gov. These
ideas represent only a very early exploration of a
single site and we welcome any contributions to the
project in the form of enhancements, new tools, or
tools adapted to other sites providing web services.

We believe that web services will play a very im-
portant role in computational biology. In part this is
because the data are complex and gain much of their
relevance by association with other data sources. For
example, knowing that there is a particularly high
level of messenger RNA (mRNA) for some gene (or
set of genes) does not provide us with much insight.
However, associating these genes with the relevant
scientific literature and finding common themes of-
ten does provide new insight into how these genes

interact.
We can think of a cellular pathway as a set of

genes that interact (through the proteins that they
produce) to provide a particular function or protein.
A second way of obtaining insight into the role of
certain genes would be to examine the expression of
mRNA for a set of genes in a particular pathway, or
to take a set of genes and determine whether there
is a particular pathway that contains (most of) these
genes.

Both of these examples rely on associating experi-
mental data with data that are available in databases
or in textual form. These latter data sources are often
large and are continually evolving. Thus, it does not
seem practical nor prudent to keep local versions of
them suitable for querying. Rather, we should rely
on retrieving the data when it is wanted and on tools
to process the data that are obtained from on-line
sources.

It is important to note that most of the processes
we are interested in can be carried out interactively.
However, there are two main advantages to design-
ing programmatic interfaces. First, interactive use in-
troduces a rate limiting step. The analysis of genomic
data needs to be high throughput. A second reason
to prefer programmatic access is that it allows for the
possibility of combining data from several sources,
possibly filtered through online resources, to provide
a new product. Another reason to prefer a program-
matic approach is that it makes fewer mistakes and
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gets bored or distracted somewhat less easily than a
human.

In this article we describe the features added to
the annotate package that facilitate interactions with
abstracts made available from the PubMed archive
supplied by the National Library of Medicine. There
are many other functions in annotate such as
genbank and locuslinkQuery that provide web ser-
vices tools that we will not discuss here.

Querying PubMed

We have written very little code to provide a very
powerful tool for analysing textual information but
rather have relied on some well written tools to pro-
vide basic services. Our tools are still in development
and are likely to change over the next few months as
we gain experience but we believe that the ideas are
of interest to many researchers in the area of Bioin-
formatics and computational biology.

We will focus on the analysis of microarray data
but this is just to provide some specific examples, the
ideas are much more widely applicable. A very sim-
plified view of the biology is that DNA makes RNA
which in turn is translated into proteins. Proteins
and their interactions basically provide mechanisms
for all cellular functions and hence are of great inter-
est.

DNA microarray experiments give us a static
view of the level of messenger RNA in a set of bi-
ological samples. We are often interested in finding
sets of mRNA that are highly expressed or not ex-
pressed in particular subsets of our samples. A typi-
cal experiment involves the study of a small number
of samples (usually less than 100) and a large number
of genes (usually more than 10,000).

There are several reasons why we would like to
bring more biologically relevant information into the
data analytic process. This can be done in many
ways, one of which we will discuss next. There is
a large repository of biological knowledge available
in the published scientific literature. We are becom-
ing more capable of processing and dealing with that
literature in some specific ways.

We have exploited connections, a publicly avail-
able resource PubMed and the XML package to con-
struct a tool for obtaining PubMed abstracts in a stan-
dard format. This is possible since PubMed pro-
vides tools for downloading their data in XML for-
mat. This makes the processing on our end much
simpler and less error prone.

Once we have the abstracts we can process them
in many ways. We can provide the data analyst with
a set of titles or of keywords or of any other compo-
nents. In addition, if the abstract is provided we can
do some plain text searching of it using tools such as
grep and regexp. In some cases the text of the entire
document is available and that also can be obtained

electronically and processed in a similar fashion.
In the annotate package we have produced a sim-

ple interface from microarray data to the PubMed
abstracts. A user can select a set of genes that they
find interesting and map these to an appropriate set
of identifiers. These identifiers are then used to ob-
tain the PubMed identifiers for associated abstracts.
Finally PubMed is queried and these abstracts are
downloaded into a particular form than can be pro-
cessed using standard tools in R.

The code for a simple example is given below.
In this example we have simply selected some in-
teresting genes and then retrieved the abstracts and
searched them for the word protein.

library(Biobase)

library(annotate)

## load up our test data set

data(eset)

## generally these would come from a filtering

## or other selection procedure

int.genes <- geneNames(eset)[273:283]

absts <- pm.getabst(int.genes, "hgu95A")

pm.titles(absts)

## which abstracts mention the word protein

wh.Protein <- sapply(absts,

function(x) pm.abstGrep("[Pp]rotein", x))

It would also be nice to go in the other direction
and we are actively developing tools that will help
a researcher go from a gene of interest to a set of re-
lated genes. These can then be used to examine the
available data to see if it concurs with the scientific
literature.

This is a work in progress in almost every
sense. Our programs need to be further devel-
oped. PubMed is growing and expanding the data
resources it provides. New text processing algo-
rithms are being developed that we would like to
adapt to R so that they can be used to provide context
for some of the queries being made. We believe that
tools of this nature will become essential for compu-
tational biology.

The amount of processing that can currently be
done is limited by a lack of algorithms and available
data. There are a large number of data bases that ex-
ist but for which there is no programmatic way to
access the data they contain or to perform queries
remotely. Essentially we hope that more database
providers see themselves as web services providers
rather than as interactive tool providers. Making a
tool interactive introduces a rate limiting step in our
search for high throughput analysis tools. On the al-
gorithm front it will be essential to start exploring
ways of providing contextual information. We are
currently limited to testing whether a gene’s name
(in one of its many forms) appears but cannot eas-
ily tell whether it is a passing reference or if there is
substantial information being provided.
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The details

The ability of the query functions to interact with
the NCBI databases is provided by a set of well
documented utilities provided by NCBI that work
through standard HTTP connections. We describe
some of them here, but refer the interested reader to
the NCBI web site for definitive documentation.

All of our query functions can have the results of
the query returned as an R object or have it rendered
in the user’s web browser. The NCBI resources are
queried through CGI scripts which take various ‘&’
separated parameters.

The LocusLink functions locuslinkByID and
locuslinkQuery provide the ability to perform Lo-
cusLink searches either via a set of specific ID values
or an actual text search respectively. In the former
case, the URL to use is simple, http://www.ncbi.
nih.gov/LocusLink/LocRpt.cgi?l=<id1>,<id2>
,<id3>.... For all comma separated lists we use the
HTML symbol ‘%2c’ to circumvent browser issues.

The ability to run a text search is slightly more
complicated, as the LocusLink database is divided by
species. The R function locuslinkQuery takes a text
query, and a set of zero or more species (the default
is HS, human). Each supplied species is pasted to the
string ‘&ORG=’, and then appended to the query itself.
Finally this string is pasted to the base URL to yield:
http://www.ncbi.nih.gov/LocusLink/list.cgi?
Q=<query>&ORG=<S1>&ORG=<S2>.... This URL is
then sent to the user’s browser, and the proper Lo-
cusLink page is displayed. The interactions with
LocusLink are limited because LocusLink does not
provide for programmatic querying.

The pubmed and genbank functions both utilize a
set of CGI tools known as Entrez. Entrez provides
the same basic searching mechanisms that are avail-
able to the interactive user, as well as a set of utilities
designed for downloading the results programmati-
cally.

To render the output into the user’s browser we
use the query tool provided by Entrez. query under-
stands either Pubmed ID values or Genbank acces-
sion numbers, although the structure of the query is
slightly different depending on which is used. For
Pubmed the option is,

cmd=Retrieve&db=<id1>,<id2>...

and for Genbank it is

cmd=Search&db=<acc1>,<acc2>...

In either case, this is attached to form the full URL
http://www.ncbi.nih.gov/entrez/query.fcgi?
tool=bioconductor&cmd=Retrieve&db=<id1>....
Note the use of the tool directive, which is requested
by NCBI to mark automated usage of their Entrez
tools to help them track usage information, etc.

Other forms of output are available if requests
are made using the pmfetch tool provided by En-
trez. Since XML is one of the formats available and
R has the XML package (D. Temple Lang) we prefer
to obtain the data in XML. The results of a query are
a list of XML objects that can be further processed.
The interactive tools discussed above (pm.getAbst)
rely on pubmed. The pmFetch utility has four dif-
ferent options that can be set by the user. The first
is what format to display the data in, and is noted
in the URL by report=type , where type is one of
a variety of options (e.g., brief, Medline, Docsum,
xml). The next option determines what format the
data should be rendered in (text, file, or html —
which is the default) and is set using mode=type .
Third is a field to set which NCBI database to re-
trieve the data from (PubMed, Protein, Nucleotide,
or Popset), and is called with db=type . Lastly, one
needs to specify which IDs to use, which can be
either PubMed IDs (PMID), MEDLINE Identifiers
(UI), or molecular biology database (GI) and this is
done with the command id=<id1>,<id2>,... or
id=<id1>&<id2>&.... Note that these four parame-
ters can be in any order within the URL and are sep-
arated using the ‘&’ symbol.

For these functions we are always using text
mode and a display value of XML. The database flag
is currently set to either PubMed or Nucleotide de-
pending on if this is being constructed by pubmed
or genbank and we are using the comma separated
method for the ID flags. As an example, if one were
to make the call within R:

pubmed("11780146","11886385","11884611",

disp="data")

the actual URL constructed to be sent to NCBI will
be:

http://www.ncbi.nih.gov/entrez/utils/pmfetch.

fcgi?report=xml&mode=text&tool=bioconductor&db=

PubMed&id=11780146\%2c11886385\%2c11884611

Opening an http connection to this URL would pro-
vide the requested data. This is stored in XML objects
and a list returned to the user for further processing.
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evd: Extreme Value Distributions
by Alec Stephenson

Extreme value distributions arise as the limiting dis-
tributions of normalized maxima. They are often
used to model extreme behaviour; for example, joint
flooding at various coastal locations.

evd contains simulation, distribution, quantile
and density functions for univariate and multivari-
ate parametric extreme value distributions.

It also provides functions that calculate maxi-
mum likelihood estimates for univariate and bivari-
ate models.

A user’s guide is included in the package. It can
also be downloaded directly (in postscript or pdf)
from http://www.maths.lancs.ac.uk/~stephena/.

Introduction

Let X1, . . . , Xm be iid random variables with distribu-
tion function F. Let Mm = max{X1, . . . , Xm}. Sup-
pose there exists normalizing sequences am and bm
such that am > 0 and as m → ∞

Pr(Zm ≤ z) = [F(amz + bm)]m → G(z)

for z ∈ R, where G is a non-degenerate distribution
function and Zm = (Mm − bm)/am is a sequence of
normalized maxima. It follows that the distribution
function G is generalized extreme value, namely

G(z) = exp
[
−{1 +ξ (z −µ) /σ}−1/ξ

+

]
,

where (µ,σ ,ξ) are location, scale and shape param-
eters, σ > 0 and h+ = max(h, 0). The case ξ = 0 is
defined by continuity.

Multivariate extreme value distributions arise in
a similar fashion (see Kotz and Nadarajah (2000) for
details). In particular, any bivariate extreme value
distribution can be expressed as

G(z1, z2) = exp
{
−(y1 + y2)A

(
y1

y1 + y2

)}
,

where

y j = y j(z j) = {1 +ξ j(z j −µ j)/σ j}
−1/ξ j
+

for j = 1, 2. The dependence function A character-
izes the dependence structure of G. A(·) is a con-
vex function on [0, 1] with A(0) = A(1) = 1 and
max(ω, 1 −ω) ≤ A(ω) ≤ 1 for all 0 ≤ ω ≤ 1.
The jth univariate marginal distribution is general-
ized extreme value, with parameters (µ j,σ j,ξ j).

Parametric models for the dependence function
are commonly used for inference. The logistic model
appears to be the most widely used. The correspond-
ing distribution function is

G(z1, z2;α) = exp
{
−(y1/α

1 + y1/α
2 )α

}
, (1)

where the dependence parameter α ∈ (0, 1]. Inde-
pendence is obtained when α = 1. Complete depen-
dence is obtained as α ↓ 0. Non-parametric estima-
tors of A also exist, most of which are based on the
estimator of Pickands (1981).

Features

• Simulation, distribution, quantile, density and
fitting functions for the generalized extreme
value and related models. This includes mod-
els such as [F(·)]m for a given integer m and dis-
tribution function F, which enable e.g. simula-
tion of block maxima.

• Simulation, distribution, density and fitting
functions for eight parametric bivariate ex-
treme value models. Non-parametric estimates
of the dependence function can also be calcu-
lated and plotted.

• Simulation and distribution functions for two
parametric multivariate extreme value models.

• Linear models for the generalized extreme
value location parameter(s) can be imple-
mented within maximum likelihood estima-
tion. (This incorporates the forms of non-
stationary most often used in the literature.)

• All fitting functions allow any of the parame-
ters to be held fixed, so that nested models can
easily be compared.

• Model diagnostics and profile deviances can be
calculated/plotted using plot, anova, profile
and profile2d.

Application

The sealevel data frame (Coles and Tawn, 1990) is
included in the package. It has two columns con-
taining annual sea level maxima from 1912 to 1992 at
Dover and Harwich, two sites on the coast of Britain.
There are 39 missing maxima in total; nine at Dover
and thirty at Harwich.

The maxima on both margins appear to be in-
creasing with time. The following snippet fits the
logistic model (1) with simple linear trend terms on
each marginal location parameter.

data(sealevel) ; sl <- sealevel

tt <- (1912:1992 - 1950)/100

lg <- fbvlog(sl, nsloc1 = tt, nsloc2 = tt)}
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The fitted model contains maximum likelihood
estimates for (γ1, β1,σ1,ξ1, γ2, β2,σ2,ξ2,α) where,
for the ith observation, the marginal location param-
eters are

µ j(i) = γ j + β jti

for j = 1, 2 and ti = tt[i]. The significance of the
trend parameters can be tested using the following
analysis of deviance.

lg2 <- fbvlog(sl)

anova(lg, lg2)

This yields a p-value of about 10−6 for the hypothesis
β1 = β2 = 0.

More complex models for the marginal location
parameters can be fitted. Further tests suggest that a
quadratic trend could be implemented for the Har-
wich maxima, but we retain the model lg for fur-
ther analysis. The profile deviance of the depen-
dence parameter α from (1), which corresponds to
element "dep" in lg$estimate, can be produced us-
ing profile, as shown below.

pr <- profile(lg, "dep", xmax = 1)

plot(pr)

0.5 0.6 0.7 0.8 0.9 1.0

−
36

−
34

−
32

−
30

−
28

−
26

−
24

Profile Deviance of dep Parameter

dep

pr
of

ile
 d

ev
ia

nc
e

Figure 1: Profile deviance for α.

The horizontal line on the plot represents the 95%
confidence interval (0.53, 0.89), which can be calcu-
lated explicitly by pcint(pr).

Diagnostic plots for the dependence structure
and for the generalized extreme value margins can
be produced as follows. The diagnostic plots for the
dependence structure include Figure 2, which com-
pares the fitted estimate of the dependence function
A to the non-parametric estimator of Capéraà et al.
(1997).

plot(lg)

plot(lg, mar = 1)

plot(lg, mar = 2)

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Dependence Function

Figure 2: Estimates for the dependence function
A(·); the logistic model (solid line), and the non-
parametric estimator of Capéraà et al. (1997) (dashed
line). The dotted border represents the constraint
max(ω, 1−ω) ≤ A(ω) ≤ 1 for all 0 ≤ ω ≤ 1.

Alternative parametric models for the depen-
dence structure can be fitted in a similar manner. The
logistic model has the lowest deviance (evaluated at
the maximum likelihood estimates) amongst those
models included in the package that contain one de-
pendence parameter. The models that contain two
dependence parameters produce similar fits com-
pared to the logistic. The models that contain three
dependence parameters produce unrealistic fits, as
they contain a near singular component. Amongst all
models included in the package, the logistic is seen
to give the best fit under a number of widely used
criteria.
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ipred: Improved Predictors
by Andrea Peters, Torsten Hothorn and Berthold Lausen

Introduction

In classification problems, there are several attempts
to create rules which assign future observations to
certain classes. Common methods are for example
linear discriminant analysis or classification trees.
Recent developments lead to substantial reduction of
misclassification error in many applications. Boot-
strap aggregation (“bagging”, Breiman, 1996a) com-
bines classifiers trained on bootstrap samples of the
original data. Another approach is indirect classifi-
cation, which incorporates a priori knowledge into a
classification rule (Hand et al., 2001). Since the mis-
classification error is a criterion to assess the classi-
fication techniques, its estimation is of main impor-
tance. A nearly unbiased but highly variable esti-
mator can be calculated by cross validation. Efron
and Tibshirani (1997) discuss bootstrap estimates of
misclassification error. As a by-product of bagging,
Breiman (1996b) proposes the out-of-bag estimator.

However, the calculation of the desired classifica-
tion models and their misclassification errors is often
aggravated by different and specialized interfaces of
the various procedures. We propose the ipred pack-
age as a first attempt to create a unified interface for
improved predictors and various error rate estima-
tors. In the following we demonstrate the functional-
ity of the package in the example of glaucoma classi-
fication. We start with an overview about the disease
and data and review the implemented classification
and estimation methods in context with their appli-
cation to glaucoma diagnosis.

Glaucoma

Glaucoma is a slowly processing and irreversible dis-
ease that affects the optic nerve head. It is the second
most reason for blindness worldwide. Glaucoma is
usually diagnosed based on a reduced visual field,
assessed by a medical examination of perimetry and
a smaller number of intact nerve fibers at the optic
nerve head.

One opportunity to examine the amount of intact
nerve fibers is using the Heidelberg Retina Tomo-
graph (HRT), a confocal laser scanning tomograph,
which does a three dimensional topographical anal-
ysis of the optic nerve head morphology. It produces
a series of 32 images, each of 256× 256 pixels, which
are converted to a single topographic image, see Fig-
ure 1. A less complex, but although a less infor-
mative examination tool is the 2-dimensional fundus
photography.

Figure 1: Topographic image of the optic nerve head,
obtained by an examination with the Heidelberg
Retina Tomograph.

However, in cooperation with clinicians and a
priori analysis we derived a diagnosis of glau-
coma based on three variables only: wlora repre-
sents the loss of nerve fibers and is obtained by a
2-dimensional fundus photography, wcs and wclv de-
scribe the visual field defect (Peters et al., 2002).

wclv ≥ 5.1

wlora ≥ 49.23 wlora ≥ 58.55

glaucoma normal wcs < 1.405 normal

glaucoma normal
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Figure 2: Glaucoma diagnosis.

Figure 2 represents the diagnosis of glaucoma in
terms of a medical decision tree. A complication of
the disease is that a damage in the optic nerve head
morphology precedes a measurable visual field de-
fect. Furthermore, an early detection is of main im-
portance, since an adequate therapy can only slow
down the progression of the disease. Hence, a clas-
sification rule for detecting early damages should in-
clude morphological informations, rather than visual
field data only. Therfore, we construct classification
rules based on 64 HRT variables and 7 anamnestic
variables to predict the class membership of future
observations. We use data accumulated at the Er-
langer Eye Hospital (Hothorn et al., 2002) and match
170 observations of 85 normal and 85 glaucoma eyes
by age and sex to prevent for possible confounding.

Bootstrap aggregation

Referring to the example of glaucoma diagnosis we
first demonstrate the functionality of bagging and
predict.bagging. We fit a bootstrap aggregated
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classification tree with nbagg = 50 bootstrap repli-
cations by

R> fit <- bagging(diagnosis ~ ., nbagg = 50,

+ data = study.group, coob=TRUE)

where study.group contains explanatory HRT and
anamnestic variables and the response of glau-
coma diagnosis, a factor at two levels normal
and glaucoma. print.bagging returns informa-
tions about the bagging object, i.e., the number of
bootstrap replications used and, as requested by
coob=TRUE, the out-of-bag estimate of misclassifica-
tion error (Breiman, 1996b).

R> fit

Bagging classification trees

with 50 bootstrap replications

Out-of-bag misclassification error: 0.2242

The out-of-bag estimate uses the observations which
are left out in a bootstrap sample to estimate the
misclassification error at almost no additional com-
putational costs. Hothorn and Lausen (2002) pro-
pose to use the out-of-bag samples for a combina-
tion of linear discriminant analysis and classification
trees, called “Double-Bagging”, which is available by
choosing method="double".

predict.bagging predicts future observations
according to the fitted model.

R> predict(fit,

+ newdata=study.group[c(1:3, 86:88), ])

[1] normal normal normal

glaucoma glaucoma glaucoma

Levels: glaucoma normal

Both bagging and predict.bagging rely on the
rpart routines. The rpart routine for each bootstrap
sample can be controlled in the usual way. By default
rpart.control is used with minsplit=2 and cp=0.
The function prune.bagging can be used to prune
each of the trees in a bagging object to an appropri-
ate size.

Indirect classification

Especially in a medical context it often occurs that
a priori knowledge about a classifying structure is
given. For example it might be known that a disease
is assessed on a subgroup of the given variables or,
moreover, that class memberships are assigned by a
deterministically known classifying function. Hand
et al. (2001) proposes the framework of indirect clas-
sification which incorporates this a priori knowledge
into a classification rule. In this framework we sub-
divide a given data set into three groups of vari-
ables: those to be used predicting the class mem-
bership (explanatory), those to be used defining the

class membership (intermediate) and the class mem-
bership variable itself (response). For future observa-
tions, an indirect classifier predicts values for the ap-
pointed intermediate variables based on explanatory
variables only. The observation is classified based
on their predicted intermediate variables and a fixed
classifying function. This indirect way of classifica-
tion using the predicted intermediate variables offers
possibilities to incorporate a priori knowledge by the
subdivision of variables and by the construction of a
fixed classifying function.

We apply indirect classification by using the func-
tion inclass. Referring to the glaucoma example,
explanatory variables are HRT and anamnestic vari-
ables only, intermediate variables are wlora, wcs and
wclv. The response is the diagnosis of glaucoma
which is determined by a fixed classifying function
and therefore not included in the learning sample
study.groupI. We assign the given variables to ex-
planatory and intermediate by specifying the input
formula.

R> formula.indirect <- clv + lora + cs ~ .

The variables on the left-hand side represent the in-
termediate variables, modeled by the explanatory
variables on the right-hand side. Almost each model-
ing technique can be used to predict the intermediate
variables. We chose a linear model by pFUN = lm.

R> fit <- inclass(formula.indirect,

+ pFUN = lm, data = study.groupI)

print.inclass displays the subdivision of variables
and the chosen modeling technique

R> fit

Indirect classification, with 3

intermediate variables:

clv lora cs

Predictive model per intermediate is lm

Indirect classification predicts the intermediate vari-
ables based on the explanatory variables and classi-
fies them according to a fixed classifying function in
a second step, that means a deterministically known
function for the class membership has to be specified.
In our example this function is given in Figure 2 and
implemented in the function classify.

R> classify <- function (data) {

+ clv <- data$clv

+ lora <- data$lora

+ cs <- data$cs

+ res <- ifelse(

+ (!is.na(clv) & !is.na(lora) & clv >= 5.1 &

+ lora >= 49.23372) |

+ (!is.na(clv) & !is.na(lora) & !is.na(cs) &

+ clv < 5.1 & lora >= 58.55409 &

+ cs < 1.405) |

+ (is.na(clv) & !is.na(lora) & !is.na(cs)

+ & lora >= 58.55409 & cs < 1.405) |

+ (!is.na(clv) & is.na(lora) & cs < 1.405),
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+ 0, 1)

+ factor(res, labels = c("normal", "glaucoma"))

+ }

Prediction of future observations is now performed
by

R> predict(object = fit, cFUN = classify,

+ newdata = study.group[c(1:3, 86:88),])

[1] normal normal normal

glaucoma glaucoma glaucoma

We execute a bagged indirect classification approach
by choosing pFUN = bagging and specifying the
number of bootstrap samples (Peters et al., 2002). Re-
gression or classification trees are fitted for each boot-
strap sample, with respect to the measurement scale
of the specified intermediate variables

R> fit <- inclass(formula.indirect,

+ pFUN = bagging, nbagg = 50,

+ data = study.groupI)

R> fit

Indirect classification, with 3

intermediate variables:

lora cs clv

Predictive model per intermediate

is bagging with 50 bootstrap replications

The call for the prediction of values remains un-
changed.

Error rate estimation

Classification rules are usually assessed by their mis-
classification rate. Hence, error rate estimation is
of main importance. The function errorest im-
plements a unified interface to several resampling
based estimators. Referring to the example, we ap-
ply a linear discriminant analysis and specify the er-
ror rate estimator by estimator = "cv", "boot" or
"632plus", respectively. A 10-fold cross validation
is performed by choosing estimator = "cv" and
est.para = list(k = 10). The options estimator
= "boot" or estimator = "632plus" deliver a boot-
strap estimator and its bias corrected version .632+
(see Efron and Tibshirani, 1997), we specify the num-
ber of bootstrap samples to be drawn by est.para =
list(nboot = 50). Further arguments are required
to particularize the classification technique. The ar-
gument predict represents the chosen predictive
function. For a unified interface predict has to be
based on the arguments object and newdata only,
therefore a wrapper function mypredict is necessary
for classifiers which require more than those argu-
ments or do not return the predicted classes by de-
fault. For a linear discriminant analysis with lda, we
need to specify

R> mypredict.lda <- function(object, newdata){

+ predict(object, newdata = newdata)$class}

and calculate a 10-fold-cross-validated error rate es-
timator for a linear discriminant analysis by calling

R> errorest(diagnosis ~ ., data= study.group,

+ model=lda, estimator = "cv",

+ predict= mypredict.lda)

10-fold cross-validation estimator

of misclassification error

Data: diagnosis on .

Error 0.2675

For the indirect approach the specification of the call
becomes slightly more complicated. Again for a uni-
fied interface a wrapper function has to be used,
which incorporates the fixed classification rule

R> mypredict.inclass <-

+ function(object, newdata){

+ predict.inclass(object = object,

+ cFUN = classify, newdata = newdata)

+ }

The bias corrected estimator .632+ is computed by

R> errorest(formula.indirect,

+ data = study.groupI, model = inclass,

+ predict = mypredict.inclass,

+ estimator = "632plus",

+ iclass = "diagnosis", pFUN = lm)

.632+ Bootstrap estimator of misclassification

error with 25 bootstrap replications

Data: diagnosis

Error 0.2658

Because of the subdivision of variables and a for-
mula describing the modeling between explanatory
and intermediate variables only, we must call the
class membership variable. Hence, in contrast to
the function inclass the data set study.groupI used
in errorest must contain explanatory, intermediate
and response variables.

To summarize the performance of different clas-
sification techniques in the considered example of
glaucoma diagnosis, the 10-fold cross-validated error
estimator delivers the results given in the following
table:

method error estimate
lda 0.2237

rpart 0.2529
bagging 0.1882

double-bagging 0.1941
inclass-bagging 0.2059

inclass-lm 0.2294
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lda denotes the linear discriminant analysis, rpart a
classification tree, bagging bagging with 50 bootstrap
samples, double-bagging bagging with 50 bootstrap
samples, combined with LDA, inclass-bagging indi-
rect classification using bagging and inclass-lm indi-
rect classification using linear modeling.

Note that an estimator of the variance is
available for the ordinary bootstrap estimator
(estimator="boot") only, see Efron and Tibshirani
(1997).

Summary

ipred tries to implement a unified interface to some
recent developments in classification and error rate
estimation. It is by no means finished nor perfect
and we very much appreciate comments, sugges-
tions and criticism. Currently, the major drawback
is speed. Calling rpart 50 times for each bootstrap
sample is relatively inefficient but the design of in-
terfaces was our main focus instead of optimization.
Beside the examples shown, bagging can be used to
compute bagged regression trees and errorest com-
putes estimators of the mean squared error for re-
gression models.
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Changes in R
by the R Core Team

User-visible changes

• XDR support is now guaranteed to be avail-
able, so the default save format will always be
XDR binary files, and it is safe to distribute data
in that format. (We are unaware of any plat-
form that did not support XDR in recent ver-
sions of R.)

gzfile() is guaranteed to be available, so the
preferred method to distribute sizeable data
objects is now via save(compress = TRUE).

• pie() replaces piechart() and defaults to us-
ing pastel colours.

• formatC() has new arguments (see below)
and formatC(*, d = <dig>) is no longer valid

and must be written as formatC(*, digits =
<dig>).

• Missingness of character strings is treated
much more consistently, and the character
string "NA" can be used as a non-missing value.

• summary.factor() now uses a stable sort, so
the output will change where there are ties in
the frequencies.

New features

• Changes in handling missing character strings:

– "NA" is no longer automatically coerced to
a missing value for a character string. Use
as.character(NA) where a missing value
is required, and test via is.na(x), not x
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== "NA". String "NA" is still converted to
missing by scan() and read.table() un-
less ‘na.strings’ is changed from the de-
fault.

– A missing character string is now printed
as ‘NA’ (no quotes) amongst quoted char-
acter strings, and ‘<NA>’ if amongst un-
quoted character strings.

– axis() and text.default() omit missing
values of their ‘labels’ argument (rather
than plotting "NA").

– Missing character strings are treated as
missing much more consistently, e.g.,
in logical comparisons and in sorts.
identical() now differentiates "NA"
from the missing string.

• Changes in package methods:

– New function validSlotNames().
– Classes can explicitly have a “data part”,

formally represented as a .Data slot in the
class definition, but implemented consis-
tently with informal structures. While the
implementation is different, the user-level
behavior largely follows the discussion in
Programming with Data.

– A “next method” facility has
been provided, via the function
callNextMethod(). This calls the method
that would have been selected if the cur-
rently active method didn’t exist. See
?callNextMethod. This is an extension
to the API.

– Classes can have initialize methods,
which will be called when the function
new() is used to create an object from the
class. See ?initialize. This is an exten-
sion to the API.

– The logic of setGeneric() has been clar-
ified, simplifying nonstandard generic
functions and default methods.

• Changes in package tcltk:

– Now works with the GNOME user inter-
face.

– Several new functions allow access to C
level Tcl objects. These are implemented
using a new ‘tclObj’ class, and this is now
the class of the return value from .Tcl()
and tkcmd().

• Changes in package ts:

– More emphasis on handling time series
with missing values where possible, for
example in acf() and in the ARIMA-
fitting functions.

– New function arima() which will replace
arima0() in due course. Meanwhile,
arima0() has been enhanced in several
ways. Missing values are accepted. Pa-
rameter values can be initialized and can
held fixed during fitting. There is a
new argument ‘method’ giving the option
to use conditional-sum-of-squares estima-
tion.

– New function arima.sim().

– New datasets AirPassengers, Nile, UKgas
and WWWusage, and a expanded version
of UKDriverDeaths (as a multiple time se-
ries Seatbelts).

– New generic function tsdiag() and
methods for arima and arima0, to pro-
duce diagnostic plots. Supersedes
arima0.diag().

– New functions ARMAacf() and
ARMAtoMA() to compute theoretical quan-
tities for an ARMA process.

– New function acf2AR() to compute the
AR process with a given autocorrelation
function.

– New function StructTS() to fit struc-
tural time series, and new generic func-
tion tsSmooth() for fixed-interval state-
space smoothing of such models.

– New function monthplot() (contributed
by Duncan Murdoch).

– New functions decompose() and
HoltWinters() (contributed by David
Meyer) for classical seasonal decompo-
sition and exponentially-weighted fore-
casting.

• An extensible approach to safe predic-
tion for models with e.g. poly(), bs() or
ns() terms, using the new generic function
makepredictcall(). Used by most model-
fitting functions including lm() and glm(). See
?poly, ?cars and ?ns for examples.

• acosh(), asinh(), atanh() are guaranteed to
be available.

• axis() now omits labels which are NA (but
still draws the tick mark.

• Connections to bzip2-ed files via bzfile().

• chol() allows pivoting via new argument
‘pivot’.

• cmdscale() now takes rownames from a dist
object ‘d’ as well as from a matrix; it has new
arguments ‘add’ (as S) and ‘x.ret’.
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• crossprod() handles the case of real matrices
with y = x separately (by accepting y = NULL).
This gives a small performance gain (sugges-
tion of Jonathan Rougier).

• deriv() and deriv3() can now handle expres-
sions involving pnorm and dnorm (with a sin-
gle argument), as in S-PLUS.

• New function expm1() both in R and in C API,
for accurate exp(x) − 1; precision improve-
ment in pexp() and pweibull() in some cases.
(PR#1334-5)

• New function findInterval() using new C
entry point findInterval, see below.

• formatDL() now also works if both items and
descriptions are given in a suitable list or ma-
trix.

• gzfile() is guaranteed to be available, and
hence the ‘compress’ option to save() and
save.image().

• hist() now has a method for date-time objects.

• library() now checks the dependence on R
version (if any) and warns if the package was
built under a later version of R.

• library(help = PKG) now also returns the in-
formation about the package PKG.

• Added function logb(), same as log() but for
S-PLUS compatibility (where log now has only
one argument).

• New na.action function na.pass() passes
through NAs unaltered.

• piechart() has been renamed to pie(), as
piechart is a Trellis function for arrays of pie
charts. The default fill colours are now a set of
pastel shades, rather than par("bg").

• plclust() in package mva, for more S-PLUS
compatibility.

• poly() now works with more than one vector
or a matrix as input, and has a predict method
for objects created from a single vector.

• polyroot() now handles coefficient vectors
with terminal zeroes (as in S).

• New prettyNum() function used in formatC()
and format.default() which have new op-
tional arguments ‘big.mark’, ‘big.interval’,
‘small.mark’, ‘small.interval’, and ‘deci-
mal.mark’.

• print.coefmat() has a new argument
’eps.Pvalue’ for determining when small P-
values should be printed as ‘< {. . . }’.

• The recover() function has been moved to
the base package. This is an interactive de-
bugging function, usually a good choice for
options(error=). See ?recover.

• rep() has a new argument ‘each’ for S-PLUS
compatibility. The internal call is made avail-
able as rep.int(), again for help in porting
code.

• New functions rowSums(), colSums(),
rowMeans() and colMeans(): versions of
apply() optimized for these cases.

• rug() now has a ‘...’ argument allowing its
location to be specified.

• scan() can have NULL elements in ‘what’, use-
ful to save space when columns need to be dis-
carded.

• New option ‘by = "DSTday"’ for seq.POSIXt().

• Changes to sorting:

– sort(), sort.list() and order() have
a new argument ‘decreasing’ to allow the
order to be reversed whilst still preserving
ties.

– sort() has an option to use quicksort
in some cases (currently numeric vectors
and increasing order).

– The default Shell sort is Sedgewick’s vari-
ant, around 20% faster, and pre-screening
for NAs speeds cases without any NAs
several-fold.

– sort.list() (and order with just one vec-
tor) is several times faster for numeric, in-
teger and logical vectors, and faster for
character vectors.

• New assignment forms of split(); new func-
tion unsplit().

• New sprintf() function for general C like for-
matting, from Jonathan Rougier.

• Argument ‘split’ of both summary.aov and
summary.aovlist is now implemented.

• summary.princomp() now has a separate print
method, and ‘digits’ is now an argument to the
print method and not to summary.princomp it-
self.

• An extended version of the trace() function
is available, compatible with the function in S-
PLUS. Calls to R functions can be inserted on
entry, on exit, and before any subexpressions.
Calls to browser() and recover() are useful.
See ?trace.
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• New function TukeyHSD() for multiple com-
parisons in the results of aov(). (Formerly
function Tukey in package Devore5 by Douglas
Bates.)

• New read-only connections to files in zip files
via unz().

• warning() has new argument ‘call.’, like
stop()’s.

• zip.file.extract() is no longer provisional
and has an "internal" method available on all
platforms.

• Methods for [, [<- and as.data.frame() for
class "POSIXlt".

• Much improved printing of matrices and ar-
rays of type "list".

• The "Knuth-TAOCP" option for random num-
ber generation has been given an option of us-
ing the 2002 revision. See ?RNG for the details:
the R usage already protected against the re-
ported ‘weakness’.

• min/max of integer(0) (or NULL) is now
Inf/-Inf, not an extreme integer.

Deprecated & defunct

• .Alias(), reshapeLong(), reshapeWide() are
defunct.

• arima0.diag() (package ts) is deprecated: use
tsdiag() instead.

• piechart() is deprecated; renamed to pie().

Documentation changes

• Writing R Extensions now has an example of
calling R’s random numbers from FORTRAN
via C.

• R itself and all R manuals now have ISBN num-
bers, please use them when citing R or one of
the manuals.

Installation changes

• The configure script used when building R
from source under Unix is now generated us-
ing Autoconf 2.50 or later, which has the fol-
lowing ‘visible’ consequences:

– By default, configure no longer uses a
cache file. Use the command line option
‘–config-cache’ (or ‘-C’) to enable caching.

– Key configuration variables such as CC are
now precious, implying that the variables

∗ no longer need to be exported to the
environment and can and should be
set as command line arguments;

∗ are kept in the cache even if not
specified on the command line, and
checked for consistency between two
configure runs (provided that caching
is used, see above);

∗ are kept during automatic reconfig-
uration as if having been passed as
command line arguments, even if no
cache is used.

See the variable output section of ‘config-
ure –help’ for a list of all these variables.

• Configure variable FC is deprecated, and op-
tions ‘–with-g77’, ‘–with-f77’ and ‘–with-f2c’
are defunct. Use configure variable F77 to spec-
ify the FORTRAN 77 compiler, and F2C to spec-
ify the FORTRAN-to-C compiler and/or that it
should be used even if a FORTRAN 77 com-
piler is available.

• Non-standard directories containing libraries
are specified using configure variable LDFLAGS
(not LIBS).

Utilities

• Sweave(), Stangle() and friends in package
tools. Sweave allows mixing LATEX documen-
tation and R code in a single source file: the
R code can be replaced by its output (text,
figures) to allow automatic report generation.
Sweave files found in package subdir ‘inst/doc’
are automatically tested by R CMD check and
converted to PDF by R CMD build, see the sec-
tion on package vignettes in Writing R Exten-
sions.

• Rdconv can convert to the S4 ‘.sgml’ format.

• ‘R::Utils.pm’ masks some platform dependen-
cies in Perl code by providing global vari-
ables like R_OSTYPE or wrapper functions like
R_runR().

• If a directory ‘inst/doc’ is present in the sources
of a package, the HTML index of the installed
package has a link to the respective subdirec-
tory.

• R CMD check is more stringent: it now also
fails on malformed ‘Depends’ and ‘Maintainer’
fields in ‘DESCRIPTION’ files, and on unbal-
anced braces in Rd files. It now also provides
pointers to documentation for problems it re-
ports.
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• R CMD check, build and INSTALL produce
outline-type output.

• QA functions in package tools now return the
results of their computations as objects with
suitable print() methods. By default, output
is only produced if a problem was found.

• New utility R CMD config to get the values of
basic R configure variables, or the header and
library flags necessary for linking against R.

• Rdindex and ‘maketitle.pl’ require Perl 5.005,
as ‘Text::Wrap::fill’ was only introduced at
5.004_05.

C-level facilities

• All the double-precision BLAS routines are
now available, and package writers are encour-
aged not to include their own (so enhanced
ones will be used if requested at configuration).

• findInterval(xt[],n,x,...) gives the index
(or interval number) of x in the sorted sequence
xt[]. There’s an F77_SUB(interv)(.) to be
called from FORTRAN; this used to be part
of predict.smooth.spline’s underlying FOR-
TRAN code.

• Substitutes for (v)snprintf will be used if
the OS does not supply one, so tests for
HAVE_(V)SNPRINTF are no longer needed.

• The DUP and NAOK arguments in a .C() call
are not passed on to the native routine being
invoked. Any code that relied on the old be-
haviour will need to be modified.

• log1p is only provided in ‘Rmath.h’ if it
is not provided by the platform, in which
case its name is not remapped, but a back-
compatibility entry point Rf_log1p is pro-
vided. Applications using libRmath may need
to be re-compiled.

• The methods used by integrate() and
optim() have entry points in ‘R ext/Applic.h’
and have a more general interface documented
in Writing R Extensions.

• The bessel_? entry points are now suitable to
be called repeatedly from code loaded by .C().
(They did not free memory until .C() returned
in earlier versions of R.)

• Server sockets on non-Windows platforms now
set the SO_REUSEADDR socket option. This
allows a server to create simultanous connec-
tions to several clients.

• New quicksort sorting (for numeric no-NA
data), accessible from C as R_qsort() etc and
from FORTRAN as qsort4() and qsort3().

• ‘Rinternals.h’ no longer includes ‘fcntl.h’, as this
is not an ISO C header and cannot be guaran-
teed to exist.

• FORTRAN subroutines are more correctly de-
clared as ‘extern void’ in ‘R exts/Applic.h’ and
‘R exts/Linpack.h’.

Bug fixes

• The calculation of which axes to label on a
persp() plot was incorrect in some cases.

• Insufficient information was being recorded in
the display list for the identify() function.
In particular, the ‘plot’ argument was ignored
when replaying the display list. (PR#1157)

• The vertical alignment of mathematical annota-
tions was wrong. When a vertical adjustment
was not given, it was bottom-adjusting i.e,. it
was treating adj=0 as adj=c(0, 0). It now
treats adj=0 as adj=c(0, 0.5) as for “normal”
text. (PR#1302)

• the man page (‘doc/R.1’) wasn’t updated with
the proper R version.

• smooth.spline() had a ‘df = 5’ default which
was never used and hence extraneous and mis-
leading.

• read.fwf() was interpreting comment chars
in its call to scan: replaced by a call to
readLines(). (PR#1297/8)

• The default comment char in scan() has been
changed to ‘""’ for consistency with earlier
code (as in the previous item).

• bxp(*, notch.frac = f) now draws the me-
dian line correctly.

• Current versions of gs were rotating the out-
put of bitmap(type = "pdfwrite") and when
converting the output of postscript() to PDF;
this has been circumvented by suppressing the
‘%%Orientation’ comment for non-standard
paper sizes.

• plot.ts(x, log = "y") works again when x
has 0s, also for matrix x.

• add1(), drop1(), step() work again on glm
objects with formulae with rhs’s containing ‘.’.
(Broken by a ‘bug fix’ (in reality an API change)
in 1.2.1.)

• optim(method="BFGS") was not reporting
reaching ‘maxit’ iterations in the convergence
component of the return value.
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• aov() and model.tables() were failing on
multistrata models with excessively long Error
formula. (PR#1315)

• Transparent backgrounds on png() devices on
Unix-alikes had been broken during the driver
changes just prior to 1.4.0. (They worked cor-
rectly on Windows.)

• demo(is.things) didn’t work properly when
the methods package was attached.

• match(), unique() and duplicated()were not
declaring all NaNs to be equal, yet not always
distinguishing NA and NaN. This was very rare
except for data imported as binary numbers.

• The error handler recover() protects itself
against errors in dump.frames and uses a new
utility, limitedLabels, to generate names for
the dump that don’t inadvertently blow the
limit on symbol length. (TODO: either fix
dump.frames accordingly or remove the limit–
say by truncating very long symbols?)

• se.contrasts() works more reliably with
multistratum models, and its help page has an
example.

• summary.lm() was not returning r.squared nor
adj.r.squared for intercept-only models, but
summary.lm.null() was returning r.squared
but not adj.r.squared. Now both are always re-
turned. Neither returned f.statistic, and that is
now documented.

• Subsetting of matrices of mode "list" (or
other non-atomic modes) was not imple-
mented and gave incorrect results without
warning. (PR#1329). Under some circum-
stances subsetting of a character matrix in-
serted NA in the wrong place.

• abs() was not being treated as member of the
Math group generic function, so e.g. its method
for data frames was not being used.

• set.seed(seed, "default") was not using
the ‘seed’ value (only for ‘kind = "default"’).

• logLik.lm() now uses ‘df = p + 1’ again (‘+
sigma’!).

• logLik.glm() was incorrect for families with
estimated dispersion.

• Added strptime() workaround for those plat-
forms (such as Solaris) that returned missing
components as 0. Missing days are now de-
tected, but missing years will still be inter-
preted as 1900 on such platforms.

• Inheritance in formal classes (the meth-
ods package) works breadth-first as intuition
would expect.

• The new() function in package methods works
better (maybe even correctly?) for the various
combinations of super-classes and prototypes
that can be supplied as unnamed arguments.

• Internal code allowed one more connection to
be allocated than the table size, leading to seg-
faults. (PR#1333)

• If a user asks to open a connection when it is
created and it cannot be opened, the connection
is destroyed before returning from the creation
call. (related to PR#1333)

• Sys.putenv() was not using permanent stor-
age. (PR#1371)

• La.svd() was not coercing integer matrices.
(PR#1363)

• deriv(3) now reports correctly the function it
cannot find the derivatives table.

• The GNOME user interface was over-
enthusiastic about setting locale information.
Now only LC_CTYPE, LC_COLLATE and LC_TIME
are determined by the user’s environment vari-
ables (PR#1321).

• In X11, locator() would sound the bell even if
xset b off had been set.

• merge() could be confused by inconsistent use
of as.character() giving leading spaces.

• [pqr]binom() no longer silently round the
‘size’ argument, but return NaN (as dbinom()
does). (PR#1377)

• Fixed socket writing code to block until all data
is written. Fixed socket reading code to prop-
erly handle long reads and reads with part of
the data in the connection buffer.

• Allow sockets to be opened in binary mode
with both ‘open="ab"’ and ‘open="a+b"’.

• levels<-.factor() was using incorrectly list
values longer than the number of levels
(PR#1394), and incorrectly documented that a
character value could not be longer than the ex-
isting levels.

• The pdf() device was running out of objects
before the documented 500 page limit. Now
there is no limit.

• legend() did not deal correctly with ‘angle’ ar-
guments. (PR#1404)

• sum() tried to give an integer result for integer
arguments, but (PR#1408)
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– this was not documented
– it sometimes warned on overflow, some-

times not
– it was order-dependent for a mixture of

integer and numeric args.

• mean() gave (numeric) NA if integer overflow
occurred in sum(), but now always works in-
ternally with numeric (or complex) numbers.

• sort.list() and order() were treating
NA_STRING as "NA".

• sort.list(na.last = NA) was not imple-
mented.

• seq.default() was returning only one ele-
ment for a relative range of less than about 1e-8,
which was excessively conservative. (PR#1416)

• tsp(x) <- NULL now also works after attach-
ing the methods package.

• persp(shade=) was not working correctly with
the default col=NULL if this was transparent.
(PR#1419)

• min(complex(0)) and max(complex(0)) were
returning random values.

• range() gave c(1, 1).

• range(numeric(0)) is now c(Inf, -Inf), as it
was documented to be.

• print.ts() was occasionally making round-
ing errors in the labels for multiple calendar
time series.

• Rdconv was not handling nested \describe{}
constructs in conversion to HTML (PR#1257)
and not fixing up mal-formed \item fields in
\describe{} in conversion to text (PR#1330).

• filled.contour() was not checking consis-
tency of x, y, z. (PR#1432)

• persp.default() no longer crashes with non-
character labels. (PR#1431)

• fft() gave incorrect answers for input sizes
392, 588, 968, 980, . . . (PR#1429)

• det(method = "qr") gave incorrect results for
numerically singular matrices. (PR#1244)

• barplot() now allows the user to control
‘xpd’. (PR#1088, 1398)

• library() (with no arguments) no longer fails
on empty ‘TITLE’ files.

• glm() was failing if both offset() and start
were specified. (PR#1421)

• glm() might have gotten confused if both
step-shortening and pivoting had occurred
(PR#1331). Step-halving to avoid the boundary
of feasible values was not working.

• Internal representation of logical values was
not being treated consistently. (Related to
PR#1439)

• The c() function sometimes inserted garbage
in the name vector for some types of objects,
e.g. names(c(ls, a=1)).

• Fixed bug in ‘$’ that could cause mutations on
assignment (PR#1450).

• Some X servers displayed random bytes in the
window title of graphics windows (PR#1451)

• The X11 data editor would segfault if closed
with window manager controls (PR#1453)

• Interrupt of Sys.sleep() on UNIX no longer
causes subsequent Sys.sleep() calls to seg-
fault due to infinite recusion.

• Eliminated a race condition that could cause
segfaults when a SIGINT was received while
handling an earlier SIGINT.

• rect(lty = "blank") was incorrectly draw-
ing with a dashed line.

• type.convert() was not reporting incorrectly
formatted complex inputs. (PR#1477)

• readChar() was not resetting vmax, so causing
memory build-up. (PR#1483)
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Changes on CRAN
by Kurt Hornik

CRAN packages

DBI A common database interface (DBI) class and
method definitions. All classes in this package
are virtual and need to be extended by the var-
ious DBMS implementatios. By the R Special
Interest Group on Databases (R-SIG-DB).

Rmpi Rmpi provides an interface (wrapper) to MPI
APIs. It also provides interactive R slave func-
tionalities to make MPI programming easier in
R than in C(++) or FORTRAN. By Hao Yu.

VLMC Functions, classes & methods for estima-
tion, prediction, and simulation (bootstrap)
of VLMC – Variable Length Markov Chain –
Models. By Martin Maechler.

brlr Fits logistic regression models by maximum pe-
nalized likelihood. By David Firth.

cobs Qualitatively Constrained (Regression)
Smoothing via Linear Programming. By Pin
T. Ng and Xuming He, U. Illinois; R port by
Martin Maechler.

dblcens Use EM algorithm to compute the NPMLE
of CDF and also the two censoring distribu-
tions. Data can be doubly censored. You can
also specify a constraint, it will return the con-
strained NPMLE and the −2 log likelihood ra-
tio. This can be used to test the hypothesis and
find confidence interval for F(K) via empirical
likelihood ratio theorem. Influence function
may be calculated (but slow). By Mai Zhou, Li
Lee, Kun Chen.

dichromat Collapse red-green distinctions to simu-
late the effects of colour-blindness. By Thomas
Lumley.

gllm Routines for log-linear models of incomplete
contingency tables, including some latent class
models via EM and Fisher scoring approaches.
By David Duffy.

gtkDevice GTK graphics device driver that may be
used independently of the R-GNOME interface
and can be used to create R devices as embed-
ded components in a GUI using a Gtk draw-
ing area widget, e.g., using RGtk. By Lyndon
Drake; packaging and extensions by Martyn
Plummer and Duncan Temple Lang.

knnTree Construct or predict with k-nearest-
neighbor classifiers, using cross-validation to

select k, choose variables (by forward or back-
wards selection), and choose scaling (from
among no scaling, scaling each column by its
SD, or scaling each column by its MAD). The
finished classifier will consist of a classification
tree with one such k-nn classifier in each leaf.
By Sam Buttrey.

ipred Improved predictive models by direct and in-
direct bootstrap aggregation in classification
and regression as well as resampling based es-
timators of prediction error. By Andrea Peters
and Torsten Hothorn.

npmc Provides simultaneous rank test procedures
for the one-way layout without presuming a
certain distribution. By Joerg Helms, Ullrich
Munzel.

randomForest Classification based on a forest of
classification trees using random inputs. FOR-
TRAN original by Leo Breiman and Adele Cut-
ler, R port by Andy Liaw and Matthew Wiener.

rsprng Provides interface to SPRNG APIs, and ex-
amples and documentation for its use. By Na
(Michael) Li.

serialize Simple interfce for serializing to connec-
tions. By Luke Tierney.

spdep A collection of functions to create spatial
weights matrix objects from polygon contigu-
ities, from point patterns by distance and tes-
selations, for summarising these objects, and
for permitting their use in spatial data analy-
sis; a collection of tests for spatial autocorre-
lation, including global Moran’s I and Geary’s
C, local Moran’s I, saddlepoint approximations
for global and local Moran’s I; and functions
for estimating spatial simultaneous autoregres-
sive (SAR) models. Was formerly the three
packages: spweights, sptests, and spsarlm. By
Roger Bivand, with contributions by Nicholas
Lewin-Koh and Michael Tiefelsdorf.

subselect A collection of functions which assess the
quality of variable subsets as surrogates for
a full data set, and search for subsets which
are optimal under various criteria. By Jorge
Orestes Cerdeira, Jorge Cadima and Manuel
Minhoto.

systemfit This package contains functions for fitting
simultaneous systems of equations using Or-
dinary Least Sqaures (OLS), Two-Stage Least
Squares (2SLS), and Three-Stage Least Squares
(3SLS). By Jeff D. Hamann.
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tkrplot simple mechanism for placing R graphics in
a Tk widget. By Luke Tierney.

CRAN mirrors the R packages from the Omega-
hat project in directory ‘src/contrib/Omegahat’. The
following is a recent addition:

RGtkViewers GUI tools for viewing databases, S4

class hierarchies, etc. By Duncan Temple Lang.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org

Upcoming Events
by Kurt Hornik and Friedrich Leisch

JSM 2002

The Joint Statistical Meetings taking place in New
York on August 11–15, 2002 will feature a number of
R-related activities. Paul Murrell will chair a session
on “R Graphics” with talks on R graphics desiderata
(Vincent Carey), scatterplot3d (Uwe Ligges), an R in-
terface to OpenGL (Duncan Murdoch), embedding
R graphics in Excel (Erich Neuwirth) and GGobi & R
(Deborah Swayne). In addition, Paul will give a talk
on using color in graphs.

Brian Yandell has organized a session entitled
“The Future of Electronic Publication: Show Me ALL
the Data”. It consists of talks on extensible for-
mats for data analysis & documentation (Friedrich
Leisch), analysis of microarray data (Robert Gentle-
man), strategies for software quality assurance (Kurt
Hornik) and dynamic statistical documents (Duncan
Temple Lang).

DSC 2003

The third international workshop on ‘Distributed
Statistical Computing’ (DSC 2003) will take place at

the Technische Universität Wien in Vienna, Austria
from 2003-03-19 to 2003-03-21. This workshop will
deal with future directions in statistical computing
and graphics.

Particular emphasis will be given to R and
open-source projects related R, including Omega-
hat (http://www.omegahat.org/) and BioConductor
(http://www.bioconductor.org/). DSC 2003 builds
on the spirit and success of DSC 1999 and DSC 2001,
which were seminal to the further development of R
and Omegahat.

This should be an exciting meeting for everyone
interested in statistical computing with R.

The conference home page at http://www.ci.
tuwien.ac.at/Conferences/DSC-2003/ gives more
information.
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