R Language Definition

Version 4.6.0 Under development (2025-07-11) DRAFT

R Core Team

This manual is for R, version 4.6.0 Under development (2025-07-11).
Copyright (©) 2000-2025 R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into an-
other language, under the above conditions for modified versions, except that this
permission notice may be stated in a translation approved by the R Core Team.

Table of Contents

1 Introduction.......... 1
2 Objectso 2
2.1 BaSIC By DS ettt 3
2.0 1 Ve CtOTS o oottt 3
2.1 2 LSS . oottt 3
2.1.3 Language objectst 3
2.1.3.1 Symbol 0bJects.t 4

2.1.4 ExXpression Objectso.uiiii i 4
2.1.5 Function objects e 4
2.0.6 NULL ..o 5
2.1.7 Builtin objects and special forms......... 5
2.1.8 Promise 0bJeCtSt)
2.1.9 Dot-dot-dob. ..o 5
2.1.10 Environments. e 6
2.1.11 Pairlist 0bjects.o 6
2.1.12 The “Any” GYPe - oottt e e e e 6
2.2 ABET DU ES . ettt 6
2.2.1 NS . o vttt ettt e e 7
2.2.2 DIMenSIONS . . oottt 7
2.2.3 DIMNAIMES . . o oottt e 7
2.2.4 CIASSES « o ettt et 7
2.2.5 Time series attributes 7
2.2.6 Copying of attributes e 8
2.3 Special compound ObJECtSt 8
2.3 1 FaCtOTS e 8
2.3.2 Data frame objects. 8

3 Evaluation of expressions 9
3.1 Simple evaluation 9
.11 ComStamES . vt 9
3.1.2 Symbol looKUDo ot 9
3.1.3 Function calls. 9
.14 OPETators ..ttt 10
3.2 Control SEIUCHUTES . . . ottt et e e e e e e e e e e e 11
B2 L 12
3.2.2 LOOPINE o oottt e 13
3.2.3 TEPEAL « oo 13
3.2.4 While ..o 13
3.2 D O . 13
3.2.6 SWILCN . . oo 13
3.3 Elementary arithmetic operations.......... i i 14
3.3.1 Recycling rules 14
3.3.2 Propagation of names......... ... 15
3.3.3 Dimensional attributes. i e 15
3.3.4 NA handling.ot 15

34 INdexing. . ..o oottt e 15

ii

3.4.1 Indexing Dy VECTOTSottt e e 16
3.4.2 Indexing matrices and arTays.uueeuntet et 17
3.4.3 Indexing other structures o 18
3.4.4 Subset asSIGNINENtttt 18
3.5 Scope of variables. 20
3.5.1 Global environment 20
3.5.2 Lexical environment 20
3.5.3 The call stack.i i e 20
3.5.4 Search path. 21
Functions. 22
4.1 Writing functionso 22
4.1.1 Syntax and examplesoo i e 22
4.1.2 ATGUIMENES . . o ottt e 22
4.2 Functions as obJectSo 22
4.3 Evaluation. e 23
4.3.1 Evaluation environmentt e 23
4.3.2 Argument matching. 23
4.3.3 Argument evaluation. 23
S B T oY 24
Object-oriented programming................................ 26
5.1 Definition e 26
5.2 INREribance e 28
5.3 Method dispatching. ... 28
0.4 USEMETIOA. . .ottt 28
0.0 NeXTMetThod . .. oo e 29
5.6 Group methods. 30
5.7 Writing methods. 30
Computing on the language 32
6.1 Direct manipulation of language objects.......... ... o i i 32
6.2 SUDSEITULIONS .« . o ottt e 33
6.3 More on evaluationouiiii e 35
6.4 Evaluation of expression objects 36
6.5 Manipulation of function calls.......... .. i 36
6.6 Manipulation of functions......... ... 38
System and foreign language interfaces...................... 40
7.1 Operating SYSTEIN ACCESS .+« vttt ettt ettt et et e ettt ettt 40
7.2 Foreign language interfaceso 40
7.3 Internal and .Primitive. e 41
Exception handling............. 42
G 1 10 o X 42
8.2 WAITHIIIE - . vttt et ettt e 42
B3 O Xt .o 42

8.4 Error OptionS . .« oottt e 42

iii

9 Debugging........ ... 43
LS o3 01T 43
0.2 debug/UNAEDUEot ettt ettt 43
0.3 tTACE/UNETACE . . . o\ ottt e e 44
9.4 traceback 44

10 Parser........ ... 45
10.1 The ParSINg PrOCESS .« .« ettt ettt ettt e e e e e e e ettt e et e 45

10.1.1 Modes of Parsingvvin it 45
10.1.2 Internal representation.ouiut ot 45
10.1.3 DeParsing . ..o ovve ittt e 45
10.2 COMIMENES . .« o ottt ettt e e e e e e e e e e e e e e e e 46
10.3 TOKENS . oottt 46
10.3.1 ComStants . ..o ottt e 46
10.3.2 Identiflerso 47
10.3.3 Reserved Wordst 48
10.3.4 Special Operators 48
10.3.5 SEPATAtOTS . . . v vttt ettt et et e e 48
10.3.6 Operator tOKemsS 48
10.3.7 GrOUDIIE . - v e ettt et e e e ettt et e e 48
10.3.8 Indexing toKeNS.ttt e 49
10,4 EXPTESSIONS . « o oottt et e e e e e 49
10.4.1 Function calls. i e 49
10.4.2 Infix and prefix Operatorst e 49
10.4.3 Index construCtionSot e 50
10.4.4 Compound eXPIeSSIONS . « .« uvt vttt ettt ettt e 50
10.4.5 Flow control elements.o 50
10.4.6 Function definitions.ooiii 51
10.5 DIreCHIVES . oo ettt e 51
References.......... 52
Function and variable index...................................... 53

Concept indexX........ 55

1 Introduction

R is a system for statistical computation and graphics. It provides, among other things, a pro-
gramming language, high level graphics, interfaces to other languages and debugging facilities.
This manual details and defines the R language.

The R language is a dialect of S which was designed in the 1980s and has been in widespread
use in the statistical community since. Its principal designer, John M. Chambers, was awarded
the 1998 ACM Software Systems Award for S.

The language syntax has a superficial similarity with C, but the semantics are of the FPL
(functional programming language) variety with stronger affinities with Lisp and APL. In par-
ticular, it allows “computing on the language”, which in turn makes it possible to write functions
that take expressions as input, something that is often useful for statistical modeling and graph-
ics.

It is possible to get quite far using R interactively, executing simple expressions from the
command line. Some users may never need to go beyond that level, others will want to write
their own functions either in an ad hoc fashion to systematize repetitive work or with the
perspective of writing add-on packages for new functionality.

The purpose of this manual is to document the language per se. That is, the objects that it
works on, and the details of the expression evaluation process, which are useful to know when
programming R functions. Major subsystems for specific tasks, such as graphics, are only briefly
described in this manual and will be documented separately.

Although much of the text will equally apply to S, there are also some substantial differences,
and in order not to confuse the issue we shall concentrate on describing R.

The design of the language contains a number of fine points and common pitfalls which may
surprise the user. Most of these are due to consistency considerations at a deeper level, as we
shall explain. There are also a number of useful shortcuts and idioms, which allow the user
to express quite complicated operations succinctly. Many of these become natural once one is
familiar with the underlying concepts. In some cases, there are multiple ways of performing a
task, but some of the techniques will rely on the language implementation, and others work at
a higher level of abstraction. In such cases we shall indicate the preferred usage.

Some familiarity with R is assumed. This is not an introduction to R but rather a pro-
grammers’ reference manual. Other manuals provide complementary information: in particular
An Introduction to R provides an introduction to R and Section “System and foreign language
interfaces” in Writing R Extensions details how to extend R using compiled code.

2 Objects

In every computer language variables provide a means of accessing the data stored in memory.
R does not provide direct access to the computer’s memory but rather provides a number
of specialized data structures we will refer to as objects. These objects are referred to through
symbols or variables. In R, however, the symbols are themselves objects and can be manipulated
in the same way as any other object. This is different from many other languages and has wide
ranging effects.

In this chapter we provide preliminary descriptions of the various data structures provided
in R. More detailed discussions of many of them will be found in the subsequent chapters. The
R specific function typeof returns the type of an R object. Note that in the C code underlying
R, all objects are pointers to a structure with typedef SEXPREC; the different R data types are
represented in C by SEXPTYPE, which determines how the information in the various parts of
the structure is used.

The following table describes the possible values returned by typeof and what they are.

"NULL" NULL

"symbol" a variable name

"pairlist" a pairlist object (mainly internal)

"closure" a function

"environment" an environment

"promise" an object used to implement lazy evaluation

"language" an R language construct

"special™ an internal function that does not evaluate its arguments

"builtin" an internal function that evaluates its arguments

"char" a ‘scalar’ string object (internal only) ***

"logical" a vector containing logical values

"integer" a vector containing integer values

"double" a vector containing real values

"complex" a vector containing complex values

"character" a vector containing character values

mLLn the special variable length argument ***

"any" a special type that matches all types: there are no objects
of this type

"expression" an expression object

"list" a list

"bytecode" byte code (internal only) ***

"externalptr" an external pointer object

"weakref" a weak reference object

"raw" a vector containing bytes

"s4n an S4 object which is not a simple object

Users cannot easily get hold of objects of types marked with a “***’,

Function mode gives information about the mode of an object in the sense of Becker, Cham-
bers & Wilks (1988), and is more compatible with other implementations of the S language.
Finally, the function storage.mode returns the storage mode of its argument in the sense of
Becker et al. (1988). It is generally used when calling functions written in another language,
such as C or FORTRAN, to ensure that R objects have the data type expected by the routine
being called. (In the S language, vectors with integer or real values are both of mode "numeric",
so their storage modes need to be distinguished.)

> x <= 1:3
> typeof (x)

Chapter 2: Objects 3

[1] "integer"

> mode (x)

[1] "numeric"

> storage.mode (x)
[1] "integer"

R objects are often coerced to different types during computations. There are also many
functions available to perform explicit coercion. When programming in the R language the
type of an object generally doesn’t affect the computations, however, when dealing with foreign
languages or the operating system it is often necessary to ensure that an object is of the correct

type.
2.1 Basic types

2.1.1 Vectors

Vectors can be thought of as contiguous cells containing data. Cells are accessed through
indexing operations such as x[6]. More details are given in Section 3.4 [Indexing], page 15.

R has six basic (‘atomic’) vector types: logical, integer, real, complex, character (in C aka
‘string’) and raw. The modes and storage modes for the different vector types are listed in the
following table.

typeof mode storage.mode
logical logical logical
integer numeric integer
double numeric double
complex complex complex
character character character
raw raw raw

Single numbers, such as 4.2, and strings, such as "four point two" are still vectors, of length
1; there are no more basic types. Vectors with length zero are possible (and useful).

A single element of a character vector is often referred to as a character string or short
string.t

2.1.2 Lists

Lists (“generic vectors”) are another kind of data storage. Lists have elements, each of which
can contain any type of R object, i.e. the elements of a list do not have to be of the same type.
List elements are accessed through three different indexing operations. These are explained in
detail in Section 3.4 [Indexing], page 15.

Lists are vectors, and the basic vector types are referred to as atomic vectors where it is
necessary to exclude lists.

2.1.3 Language objects

There are three types of objects that constitute the R language. They are calls, expressions,
and names. Since R has objects of type "expression" we will try to avoid the use of the word
expression in other contexts. In particular syntactically correct expressions will be referred to
as statements.

These objects have modes "call", "expression", and "name", respectively.

I Note that, internally, character vectors are of type STRSXP and each element is of type CHARSXP (with internal
only typeof(.) == "char", see [typeof-char]|, page 2). Thus, an R string is internally a STRSXP with one
element, a CHARSXP.

Chapter 2: Objects 4

They can be created directly from expressions using the quote mechanism and converted to
and from lists by the as.list and as.call functions. Components of the parse tree can be
extracted using the standard indexing operations.

2.1.3.1 Symbol objects

Symbols refer to R objects. The name of any R object is usually a symbol. Symbols can be
created through the functions as.name and quote.

Symbols have mode "name", storage mode "symbol", and type "symbol". They can be
coerced to and from character strings using as.character and as.name. They naturally appear
as atoms of parsed expressions, try e.g. as.list(quote(x + y)).

2.1.4 Expression objects

In R one can have objects of type "expression". An expression contains one or more state-
ments. A statement is a syntactically correct collection of tokens. Expression objects are special
language objects which contain parsed but unevaluated R statements. The main difference is
that an expression object can contain several such expressions. Another more subtle difference
is that objects of type "expression" are only evaluated when explicitly passed to eval, whereas
other language objects may get evaluated in some unexpected cases.

An expression object behaves much like a list and its components should be accessed in the
same way as the components of a list.

2.1.5 Function objects

In R functions are objects and can be manipulated in much the same way as any other object.
Functions (or more precisely, function closures) have three basic components: a formal argument
list, a body and an environment. The argument list is a comma-separated list of arguments.
An argument can be a symbol, or a ‘symbol = default’ construct, or the special argument
The second form of argument is used to specify a default value for an argument. This value
will be used if the function is called without any value specified for that argument. The ...
argument is special and can contain any number of arguments. It is generally used if the number
of arguments is unknown or in cases where the arguments will be passed on to another function.

The body is a parsed R statement. It is usually a collection of statements in braces but it
can be a single statement, a symbol or even a constant.

A function’s environment is the environment that was active at the time that the function was
created. Any symbols bound in that environment are captured and available to the function. This
combination of the code of the function and the bindings in its environment is called a ‘function
closure’, a term from functional programming theory. In this document we generally use the
term ‘function’, but use ‘closure’ to emphasize the importance of the attached environment.

It is possible to extract and manipulate the three parts of a closure object using formals,
body, and environment constructs (all three can also be used on the left hand side of assign-
ments). The last of these can be used to remove unwanted environment capture.

When a function is called, a new environment (called the evaluation environment) is created,
whose enclosure (see Section 2.1.10 [Environment objects|, page 6) is the environment from the
function closure. This new environment is initially populated with the unevaluated arguments
to the function; as evaluation proceeds, local variables are created within it.

There is also a facility for converting functions to and from list structures using as.list
and as.function. These have been included to provide compatibility with S and their use is
discouraged.

Chapter 2: Objects 5

2.1.6 NULL

There is a special object called NULL. It is used whenever there is a need to indicate or specify
that an object is absent. It should not be confused with a vector or list of zero length.

The NULL object has no type and no modifiable properties. There is only one NULL object
in R, to which all instances refer. To test for NULL use is.null. You cannot set attributes on
NULL.

2.1.7 Builtin objects and special forms

These two kinds of object contain the builtin functions of R, i.e., those that are displayed as
.Primitive in code listings (as well as those accessed via the . Internal function and hence not
user-visible as objects). The difference between the two lies in the argument handling. Builtin
functions have all their arguments evaluated and passed to the internal function, in accordance
with call-by-value, whereas special functions pass the unevaluated arguments to the internal
function.

From the R language, these objects are just another kind of function. The is.primitive
function can distinguish them from interpreted functions.

2.1.8 Promise objects

Promise objects are part of R’s lazy evaluation mechanism. They contain three slots: a value,
an expression, and an environment. When a function is called the arguments are matched and
then each of the formal arguments is bound to a promise. The expression that was given for
that formal argument and a pointer to the environment the function was called from are stored
in the promise.

Until that argument is accessed there is no wvalue associated with the promise. When the
argument is accessed, the stored expression is evaluated in the stored environment, and the result
is returned. The result is also saved by the promise. The substitute function will extract the
content of the expression slot. This allows the programmer to access either the value or the
expression associated with the promise.

Within the R language, promise objects are almost only seen implicitly: actual function
arguments are of this type. There is also a delayedAssign function that will make a promise
out of an expression. There is generally no way in R code to check whether an object is a
promise or not, nor is there a way to use R code to determine the environment of a promise.

2.1.9 Dot-dot-dot

The ... object type is stored as a type of pairlist. The components of ... can be accessed in
the usual pairlist manner from C code, but ... is not easily accessed as an object in interpreted
code, and even the existence of such an object should typically not be assumed, as that may
change in the future.

The object can be captured (with promises being forced!) as a list, so for example in table
one sees

args <- list(...)

#t ...
for (a in args) {
.. ..
Note that the implementation of ... as a pairlist object is not to be considered part of the
R API, and code outside base R should not rely on this current description of On the
other hand, the above 1list(...) access, and the other “dot-access” functions ...length(),
...elt(), ...names(), and “reserved words” ..1, ..2, etc, see also help page ?dots, are part

of the stable R API.

Chapter 2: Objects 6

If a function has ... as a formal argument then any actual arguments that do not match a
formal argument are matched with

2.1.10 Environments

Environments can be thought of as consisting of two things. A frame, consisting of a set of
symbol-value pairs, and an enclosure, a pointer to an enclosing environment. When R looks
up the value for a symbol the frame is examined and if a matching symbol is found its value
will be returned. If not, the enclosing environment is then accessed and the process repeated.
Environments form a tree structure in which the enclosures play the role of parents. The tree
of environments is rooted in an empty environment, available through emptyenv (), which has
no parent. It is the direct parent of the environment of the base package (available through the
baseenv () function).

Environments are created implicitly by function calls, as described in Section 2.1.5 [Function
objects|, page 4, and Section 3.5.2 [Lexical environment|, page 20. In this case the environment
contains the variables local to the function (including the arguments), and its enclosure is the
environment of the currently called function. Environments may also be created directly by
new.env. The frame content of an environment can be accessed by use of 1s, names, $, [, [[,
get, and getO, and manipulated by $<-, [[<-, and assign as well as eval and evalg.

The parent.env function may be used to access the enclosure of an environment.

Unlike most other R objects, environments are not copied when passed to functions or used
in assignments. Thus, if you assign the same environment to several symbols and change one,
the others will change too. In particular, assigning attributes to an environment can lead to
surprises.

2.1.11 Pairlist objects

Pairlist objects are similar to Lisp’s dotted-pair lists. They are used extensively in the internals
of R, but are rarely visible in interpreted code, although they are returned by formals, and can
be created by (e.g.) the pairlist function. A zero-length pairlist is NULL, as would be expected
in Lisp but in contrast to a zero-length list. Each such object has three slots, a CAR value,
a CDR value and a TAG value. The TAG value is a text string and CAR and CDR usually
represent, respectively, a list item (head) and the remainder (tail) of the list with a NULL
object as terminator (the CAR/CDR terminology is traditional Lisp and originally referred to
the address and decrement registers on an early 60’s IBM computer).

Pairlists are handled in the R language in exactly the same way as generic vectors (“lists”). In
particular, elements are accessed using the same [[1] syntax. The use of pairlists is deprecated
since generic vectors are usually more efficient to use. When an internal pairlist is accessed from
R it is generally (including when subsetted) converted to a generic vector.

In a very few cases pairlists are user-visible: one is .Options.

2.1.12 The “Any” type

It is not really possible for an object to be of “Any” type, but it is nevertheless a valid type
value. It gets used in certain (rather rare) circumstances, e.g. as.vector(x, "any"), indicating
that type coercion should not be done.

2.2 Attributes

All objects except NULL can have one or more attributes attached to them. Attributes are stored
as a pairlist where all elements are named, but should be thought of as a set of name=value
pairs. A listing of the attributes can be obtained using attributes and set by attributes<-,
individual components are accessed using attr and attr<-.

Chapter 2: Objects 7

Some attributes have special accessor functions (e.g. levels<- for factors) and these should
be used when available. In addition to hiding details of implementation they may perform
additional operations. R attempts to intercept calls to attr<- and to attributes<- that
involve the special attributes and enforces the consistency checks.

Matrices and arrays are simply vectors with the attribute dim and optionally dimnames
attached to the vector.

Attributes are used to implement the class structure used in R. If an object has a class
attribute then that attribute will be examined during evaluation. The class structure in R is
described in detail in Chapter 5 [Object-oriented programming], page 26.

2.2.1 Names

A names attribute, when present, labels the individual elements of a vector or list. When an
object is printed the names attribute, when present, is used to label the elements. The names
attribute can also be used for indexing purposes, for example, quantile(x) ["25%"].

One may get and set the names using names and names<- constructions. The latter will
perform the necessary consistency checks to ensure that the names attribute has the proper
type and length.

Pairlists and one-dimensional arrays are treated specially. For pairlist objects, a virtual names
attribute is used; the names attribute is really constructed from the tags of the list components.
For one-dimensional arrays the names attribute really accesses dimnames[[1]].

2.2.2 Dimensions

The dim attribute is used to implement arrays. The content of the array is stored in a vector
in column-major order and the dim attribute is a vector of integers specifying the respective
extents of the array. R ensures that the length of the vector is the product of the lengths of the
dimensions. The length of one or more dimensions may be zero.

A vector is not the same as a one-dimensional array since the latter has a dim attribute of
length one, whereas the former has no dim attribute.

2.2.3 Dimnames

Arrays may name each dimension separately using the dimnames attribute which is a list of
character vectors. The dimnames list may itself have names which are then used for extent
headings when printing arrays.

2.2.4 Classes

R has an elaborate class system?, principally controlled via the class attribute. This attribute
is a character vector containing the list of classes that an object inherits from. This forms the
basis of the “generic methods” functionality in R.

This attribute can be accessed and manipulated virtually without restriction by users. There
is no checking that an object actually contains the components that class methods expect. Thus,
altering the class attribute should be done with caution, and when they are available specific
creation and coercion functions should be preferred.

2.2.5 Time series attributes

The tsp attribute is used to hold parameters of time series, start, end, and frequency. This
construction is mainly used to handle series with periodic substructure such as monthly or
quarterly data.

2 actually two, but this draft manual predates the methods package.

Chapter 2: Objects 8

2.2.6 Copying of attributes

Whether attributes should be copied when an object is altered is a complex area, but there are
some general rules (Becker, Chambers & Wilks, 1988, pp. 144-6).

Scalar functions (those which operate element-by-element on a vector and whose output is
similar to the input) should preserve attributes (except perhaps class).

Binary operations normally copy most attributes from the longer argument (and if they are
of the same length from both, preferring the values on the first). Here ‘most’ means all except
the names, dim and dimnames which are set appropriately by the code for the operator.

Subsetting (other than by an empty index) generally drops all attributes except names, dim
and dimnames which are reset as appropriate. On the other hand, subassignment generally
preserves attributes even if the length is changed. Coercion drops all attributes.

The default method for sorting drops all attributes except names, which are sorted along
with the object.

2.3 Special compound objects

2.3.1 Factors

Factors are used to describe items that can have a finite number of values (gender, social class,
etc.). A factor has a levels attribute and class "factor". Optionally, it may also contain
a contrasts attribute which controls the parametrisation used when the factor is used in a
modeling functions.

A factor may be purely nominal or may have ordered categories. In the latter case, it should
be defined as such and have a class vector c("ordered"," factor").

Factors are currently implemented using an integer array to specify the actual levels and
a second array of names that are mapped to the integers. Rather unfortunately users often
make use of the implementation in order to make some calculations easier. This, however, is an
implementation issue and is not guaranteed to hold in all implementations of R.

2.3.2 Data frame objects

Data frames are the R structures which most closely mimic the SAS or SPSS data set, i.e. a
“cases by variables” matrix of data.

A data frame is a list of vectors, factors, and/or matrices all having the same length (number
of rows in the case of matrices). In addition, a data frame generally has a names attribute
labeling the variables and a row.names attribute for labeling the cases.

A data frame can contain a list that is the same length as the other components. The list
can contain elements of differing lengths thereby providing a data structure for ragged arrays.
However, as of this writing such arrays are not generally handled correctly.

3 Evaluation of expressions

When a user types a command at the prompt (or when an expression is read from a file)
the first thing that happens to it is that the command is transformed by the parser into an
internal representation. The evaluator executes parsed R expressions and returns the value of
the expression. All expressions have a value. This is the core of the language.

This chapter describes the basic mechanisms of the evaluator, but avoids discussion of specific
functions or groups of functions which are described in separate chapters later on or where the
help pages should be sufficient documentation.

Users can construct expressions and invoke the evaluator on them.
3.1 Simple evaluation

3.1.1 Constants

Any number typed directly at the prompt is a constant and is evaluated.

> 1

(11 1
Perhaps unexpectedly, the number returned from the expression 1 is a numeric. In most cases,
the difference between an integer and a numeric value will be unimportant as R will do the
right thing when using the numbers. There are, however, times when we would like to explicitly
create an integer value for a constant. We can do this by calling the function as.integer or
using various other techniques. But perhaps the simplest approach is to qualify our constant
with the suffix character ‘L’. For example, to create the integer value 1, we might use

> 1L

(11 1

We can use the ‘L’ suffix to qualify any number with the intent of making it an explicit integer.

So ‘0x10L’ creates the integer value 16 from the hexadecimal representation. The constant 1e3L
gives 1000 as an integer rather than a numeric value and is equivalent to 1000L. (Note that the
‘L’ is treated as qualifying the term 1e3 and not the 3.) If we qualify a value with ‘L’ that is
not an integer value, e.g. 1e-3L, we get a warning and the numeric value is created. A warning
is also created if there is an unnecessary decimal point in the number, e.g. 1.L.

We get a syntax error when using ‘I’ with complex numbers, e.g. 12iL gives an error.

Constants are fairly boring and to do more we need symbols.

3.1.2 Symbol lookup

When a new variable is created it must have a name so it can be referenced and it usually has
a value. The name itself is a symbol. When a symbol is evaluated its value is returned. Later
we shall explain in detail how to determine the value associated with a symbol.

In this small example y is a symbol and its value is 4. A symbol is an R object too, but one
rarely needs to deal with symbols directly, except when doing “programming on the language”
(Chapter 6 [Computing on the language|, page 32).

>y <-4
>y
(1] 4

3.1.3 Function calls

Most of the computations carried out in R involve the evaluation of functions. We will also refer
to this as function invocation. Functions are invoked by name with a list of arguments separated
by commas.

> mean(1:10)

Chapter 3: Evaluation of expressions 10

[1] 5.5

In this example the function mean was called with one argument, the vector of integers from 1
to 10.

R contains a huge number of functions with different purposes. Most are used for producing
a result which is an R object, but others are used for their side effects, e.g., printing and plotting
functions.

Function calls can have tagged (or named) arguments, as in plot (x, y, pch = 3). Arguments
without tags are known as positional since the function must distinguish their meaning from
their sequential positions among the arguments of the call, e.g., that x denotes the abscissa
variable and y the ordinate. The use of tags/names is an obvious convenience for functions with
a large number of optional arguments.

A special type of function calls can appear on the left hand side of the assignment operator
as in

> class(x) <- "foo"
What this construction really does is to call the function class<- with the original object and
the right hand side. This function performs the modification of the object and returns the result
which is then stored back into the original variable. (At least conceptually, this is what happens.
Some additional effort is made to avoid unnecessary data duplication.)

3.1.4 Operators

R allows the use of arithmetic expressions using operators similar to those of the C programming
language, for instance

>1 4+ 2
[1] 3

Expressions can be grouped using parentheses, mixed with function calls, and assigned to
variables in a straightforward manner

>y <= 2 % (a + log(x))
R contains a number of operators. They are listed in the table below.

- Minus, can be unary or binary

+ Plus, can be unary or binary

! Unary not

- Tilde, used for model formulae, can be either unary or binary

? Help

: Sequence, binary (in model formulae: interaction)

* Multiplication, binary
Division, binary

- Exponentiation, binary

%hxh Special binary operators, x can be replaced by any valid
name

YA Modulus, binary

W% Integer divide, binary

yAYA Matrix product, binary

%o Outer product, binary

hxh Kronecker product, binary

%ind, Matching operator, binary (in model formulae: nesting)

YARYA Null coalescing operator, binary

< Less than, binary

> Greater than, binary

== Equal to, binary

Chapter 3: Evaluation of expressions 11

>= Greater than or equal to, binary
<= Less than or equal to, binary

& And, binary, vectorized

&& And, binary, not vectorized

| Or, binary, vectorized
Il Or, binary, not vectorized

<- Left assignment, binary
-> Right assignment, binary
$ List subset, binary

Except for the syntax, there is no difference between applying an operator and calling a
function. In fact, x + y can equivalently be written ~+” (x, y). Notice that since ‘+’ is a non-
standard function name, it needs to be quoted.

R deals with entire vectors of data at a time, and most of the elementary operators and basic
mathematical functions like log are vectorized (as indicated in the table above). This means
that e.g. adding two vectors of the same length will create a vector containing the element-wise
sums, implicitly looping over the vector index. This applies also to other operators like -, *,
and / as well as to higher dimensional structures. Notice in particular that multiplying two
matrices does not produce the usual matrix product (the %*7 operator exists for that purpose).
Some finer points relating to vectorized operations will be discussed in Section 3.3 [Elementary
arithmetic operations|, page 14.

To access individual elements of an atomic vector, one generally uses the x[i] construction.
> x <- rnorm(5)

> X
[1] -0.12526937 -0.27961154 -1.03718717 -0.08156527 1.37167090
> x[2]

[1] -0.2796115
List components are more commonly accessed using x$a or x[[i]].
> x <- options()
> x$prompt
(1] "> "
Indexing constructs can also appear on the right hand side of an assignment.

Like the other operators, indexing is really done by functions, and one could have used ~ [* (%,
2) instead of x[2].

R’s indexing operations contain many advanced features which are further described in Sec-
tion 3.4 [Indexing], page 15.

3.2 Control structures

Computation in R consists of sequentially evaluating statements. Statements, such as x<-1:10
or mean(y), can be separated by either a semi-colon or a new line. Whenever the evaluator
is presented with a syntactically complete statement that statement is evaluated and the value
returned. The result of evaluating a statement can be referred to as the value of the statement!
The value can always be assigned to a symbol.

Both semicolons and new lines can be used to separate statements. A semicolon always
indicates the end of a statement while a new line may indicate the end of a statement. If the
current statement is not syntactically complete new lines are simply ignored by the evaluator.
If the session is interactive the prompt changes from >’ to ‘+’.

>x<-0; x+5

I Evaluation always takes place in an environment. See Section 3.5 [Scope of variables|, page 20, for more
details.

Chapter 3: Evaluation of expressions 12

[1] 5

>y <-1:10

>1; 2

(1] 1

1] 2

Statements can be grouped together using braces ‘{’ and ‘}’. A group of statements is

sometimes called a block. Single statements are evaluated when a new line is typed at the end of
the syntactically complete statement. Blocks are not evaluated until a new line is entered after
the closing brace. In the remainder of this section, statement refers to either a single statement
or a block.

>{x<-0

+x+5

+ }

(11 5

3.2.1 if

The if/else statement conditionally evaluates two statements. There is a condition which is
evaluated and if the value is TRUE then the first statement is evaluated; otherwise the second
statement will be evaluated. The if/else statement returns, as its value, the value of the
statement that was selected. The formal syntax is

if (statementl)
statement?2
else
statement3

First, statementl is evaluated to yield valuel. If valuel is a logical vector with first element
TRUE then statement?2 is evaluated. If the first element of valuel is FALSE then statement3 is
evaluated. If valuel is a numeric vector then statement3 is evaluated when the first element of
valuel is zero and otherwise statement? is evaluated. Only the first element of valuel is used.
All other elements are ignored. If valuel has any type other than a logical or a numeric vector
an error is signalled.

if /else statements can be used to avoid numeric problems such as taking the logarithm of a
negative number. Because if /else statements are the same as other statements you can assign
the value of them. The two examples below are equivalent.

> if(any(x <= 0)) y <- log(l+x) else y <- log(x)
>y <= if (any(x <= 0)) log(l+x) else log(x)

The else clause is optional. The statement if (any(x <= 0)) x <- x[x <= 0] is valid. When
the if statement is not in a block the else, if present, must appear on the same line as the end
of statement2. Otherwise the new line at the end of statement2 completes the if and yields
a syntactically complete statement that is evaluated. A simple solution is to use a compound
statement wrapped in braces, putting the else on the same line as the closing brace that marks
the end of the statement.

if /else statements can be nested.

if (statementl) {
statement?2

} else if (statement3) {
statement4

} else if (statement5) {
statement6

} else
statement8

Chapter 3: Evaluation of expressions 13

One of the even numbered statements will be evaluated and the resulting value returned. If
the optional else clause is omitted and all the odd numbered statements evaluate to FALSE no
statement will be evaluated and NULL is returned.

The odd numbered statements are evaluated, in order, until one evaluates to TRUE and then
the associated even numbered statement is evaluated. In this example, statement6 will only be
evaluated if statementl is FALSE and statement3 is FALSE and statement5 is TRUE. There is no
limit to the number of else if clauses that are permitted.

3.2.2 Looping

R has three statements that provide explicit looping.? They are for, while and repeat. The
two built-in constructs, next and break, provide additional control over the evaluation. R
provides other functions for implicit looping such as tapply, apply, and lapply. In addition
many operations, especially arithmetic ones, are vectorized so you may not need to use a loop.

There are two statements that can be used to explicitly control looping. They are break
and next. The break statement causes an exit from the innermost loop that is currently being
executed. The next statement immediately causes control to return to the start of the loop.
The next iteration of the loop (if there is one) is then executed. No statement below next in
the current loop is evaluated.

The value returned by a loop statement is always NULL and is returned invisibly.

3.2.3 repeat

The repeat statement causes repeated evaluation of the body until a break is specifically re-
quested. This means that you need to be careful when using repeat because of the danger of
an infinite loop. The syntax of the repeat loop is

repeat statement

When using repeat, statement must be a block statement. You need to both perform some
computation and test whether or not to break from the loop and usually this requires two
statements.

3.2.4 while

The while statement is very similar to the repeat statement. The syntax of the while loop is
while (statementl) statement2

where statement] is evaluated and if its value is TRUE then statement?2 is evaluated. This process
continues until statementl evaluates to FALSE.

3.2.5 for
The syntax of the for loop is

for (name in vector)
statementl1

where vector can be either a vector or a list. For each element in vector the variable name is
set to the value of that element and statementl is evaluated. A side effect is that the variable
name still exists after the loop has concluded and it has the value of the last element of vector
that the loop was evaluated for.

3.2.6 switch

Technically speaking, switch is just another function, but its semantics are close to those of
control structures of other programming languages.

2 Looping is the repeated evaluation of a statement or block of statements.

Chapter 3: Evaluation of expressions 14

The syntax is
switch (statement, list)

where the elements of list may be named. First, statement is evaluated and the result, value,
obtained. If value is a number between 1 and the length of list then the corresponding element
of Iist is evaluated and the result returned. If value is too large or too small NULL is returned.

>x <- 3

> switch(x, 2+2, mean(1:10), rnorm(5))

[1] 2.2903605 2.3271663 -0.7060073 1.3622045 -0.2892720

> switch(2, 2+2, mean(1:10), rnorm(5))

[1] 5.5
> switch(6, 2+2, mean(1:10), rnorm(5))
NULL
If value is a character vector then the element of ... with a name that exactly matches value

is evaluated. If there is no match a single unnamed argument will be used as a default. If no
default is specified, NULL is returned.

>y <= "fruit"

> switch(y, fruit = "banana", vegetable = "broccoli", "Neither")

[1] "banana"

> y <_ llmeatll

> switch(y, fruit = "banana", vegetable = "broccoli", "Neither")

[1] "Neither"

A common use of switch is to branch according to the character value of one of the arguments
to a function.

> centre <- function(x, type) {

+ switch(type,

+ mean = mean(x),

+ median = median(x),

+ trimmed = mean(x, trim = .1))
+ 3

> x <- rcauchy(10)

> centre(x, "mean")

[1] 0.8760325
> centre(x, "median")
[1] 0.5360891
> centre(x, "trimmed")
[1] 0.6086504
switch returns either the value of the statement that was evaluated or NULL if no statement
was evaluated.
To choose from a list of alternatives that already exists switch may not be the best way to
select one for evaluation. It is often better to use eval and the subset operator, [[, directly via
eval (x[[condition]]).

3.3 Elementary arithmetic operations

In this section, we discuss the finer points of the rules that apply to basic operation like addition
or multiplication of two vectors or matrices.

3.3.1 Recycling rules

If one tries to add two structures with a different number of elements, then the shortest is
recycled to length of longest. That is, if for instance you add c(1, 2, 3) to a six-element vector

Chapter 3: Evaluation of expressions 15

then you will really add c(1, 2, 3, 1, 2, 3). If the length of the longer vector is not a multiple
of the shorter one, a warning is given.

As from R 1.4.0, any arithmetic operation involving a zero-length vector has a zero-length
result.

3.3.2 Propagation of names

propagation of names (first one wins, I think - also if it has no names?? —- first one *with
names™ wins, recycling causes shortest to lose names)

3.3.3 Dimensional attributes

(matrix+matrix, dimensions must match. vector+matrix: first recycle, then check if dims fit,
error if not)

3.3.4 NA handling

Missing values in the statistical sense, that is, variables whose value is not known, have the value
NA. This should not be confused with the missing property for a function argument that has
not been supplied (see Section 4.1.2 [Arguments], page 22).

As the elements of an atomic vector must be of the same type there are multiple types of
NA values. There is one case where this is particularly important to the user. The default type
of NA is logical, unless coerced to some other type, so the appearance of a missing value may
trigger logical rather than numeric indexing (see Section 3.4 [Indexing], page 15, for details).

Numeric and logical calculations with NA generally return NA. In cases where the result of
the operation would be the same for all possible values the NA could take, the operation may
return this value. In particular, ‘FALSE & NA’ is FALSE, ‘TRUE | NA’ is TRUE. NA is not equal to
any other value or to itself; testing for NA is done using is.na. However, an NA value will match
another NA value in match.

Numeric calculations whose result is undefined, such as ‘0/0’, produce the value NaN. This
exists only in the double type and for real or imaginary components of the complex type.
The function is.nan is provided to check specifically for NaN, is.na also returns TRUE for NaN.
Coercing NaN to logical or integer type gives an NA of the appropriate type, but coercion to
character gives the string "NaN". NaN values are incomparable so tests of equality or collation
involving NaN will result in NA. They are regarded as matching any NaN value (and no other
value, not even NA) by match.

The NA of character type is distinct from the string "NA". Programmers who need to specify
an explicit string NA should use ‘NA_character_’ rather than "NA", or set elements to NA using
is.na<-.

The constants NA_integer_, NA_real_, NA_complex_ and NA_character_ will generate (in
the parser) an NA value of the appropriate type, and will be used in deparsing when it is not
otherwise possible to identify the type of an NA (and the control options ask for this to be
done).

There is no NA value for raw vectors.

3.4 Indexing

R contains several constructs which allow access to individual elements or subsets through
indexing operations. In the case of the basic vector types one can access the i-th element using
x[i], but there is also indexing of lists, matrices, and multi-dimensional arrays. There are
several forms of indexing in addition to indexing with a single integer. Indexing can be used
both to extract part of an object and to replace parts of an object (or to add parts).

Chapter 3: Evaluation of expressions 16

R has three basic indexing operators, with syntax displayed by the following examples
x[i]
x[i, j]
x[[i]]
x[[1i, 311
x$a
x$"a"

For vectors and matrices the [[forms are rarely used, although they have some slight semantic
differences from the [form (e.g. it drops any names or dimnames attribute, and that partial
matching is used for character indices). When indexing multi-dimensional structures with a
single index, x[[1]] or x[i] will return the i-th sequential element of x.

For lists, one generally uses [[to select any single element, whereas [returns a list of the
selected elements.

The [[form allows only a single element to be selected using integer or character indices,
whereas [allows indexing by vectors. Note though that for a list or other recursive object, the
index can be a vector and each element of the vector is applied in turn to the list, the selected
component, the selected component of that component, and so on. The result is still a single
element.

The form using $ applies to recursive objects such as lists and pairlists. It allows only a
literal character string or a symbol as the index. That is, the index is not computable: for cases
where you need to evaluate an expression to find the index, use x[[expr]]. Applying $ to a
non-recursive object is an error.

3.4.1 Indexing by vectors

R allows some powerful constructions using vectors as indices. We shall discuss indexing of
simple vectors first. For simplicity, assume that the expression is x[i]. Then the following
possibilities exist according to the type of i.

e Integer. All elements of i must have the same sign. If they are positive, the elements of x
with those index numbers are selected. If i contains negative elements, all elements except
those indicated are selected.

If i is positive and exceeds length(x) then the corresponding selection is NA. Negative out
of bounds values for i are silently disregarded since R version 2.6.0, S compatibly, as they
mean to drop non-existing elements and that is an empty operation (“no-op”).

A special case is the zero index, which has null effects: x[0] is an empty vector and
otherwise including zeros among positive or negative indices has the same effect as if they
were omitted.

e Other numeric. Non-integer values are converted to integer (by truncation towards zero)
before use.

e Logical. The indexing i should generally have the same length as x. If it is shorter, then
its elements will be recycled as discussed in Section 3.3 [Elementary arithmetic operations],
page 14. If it is longer, then x is conceptually extended with NAs. The selected values of x
are those for which i is TRUE.

e Character. The strings in i are matched against the names attribute of x and the resulting
integers are used. For [[and $ partial matching is used if exact matching fails, so x$aa will
match x$aabb if x does not contain a component named "aa" and "aabb" is the only name
which has prefix "aa". For [[, partial matching can be controlled via the exact argument
which defaults to NA indicating that partial matching is allowed, but should result in a
warning when it occurs. Setting exact to TRUE prevents partial matching from occurring, a
FALSE value allows it and does not issue any warnings. Note that [always requires an exact

Chapter 3: Evaluation of expressions 17

match. The string "" is treated specially: it indicates ‘no name’ and matches no element
(not even those without a name). Note that partial matching is only used when extracting
and not when replacing.

e Factor. The result is identical to x[as.integer(i)]. The factor levels are never used. If
so desired, use x[as.character(i)] or a similar construction.

e Empty. The expression x[] returns x, but drops “irrelevant” attributes from the result.
Only names and in multi-dimensional arrays dim and dimnames attributes are retained.

e NULL. This is treated as if it were integer (0).

Indexing with a missing (i.e. NA) value gives an NA result. This rule applies also to the case
of logical indexing, i.e. the elements of x that have an NA selector in i get included in the result,
but their value will be NA.

Notice however, that there are different modes of NA—the literal constant is of mode
"logical", but it is frequently automatically coerced to other types. One effect of this is
that x[NA] has the length of x, but x[c(1, NA)] has length 2. That is because the rules for
logical indices apply in the former case, but those for integer indices in the latter.

Indexing with [will also carry out the relevant subsetting of any names attributes.

3.4.2 Indexing matrices and arrays

Subsetting multi-dimensional structures generally follows the same rules as single-dimensional
indexing for each index variable, with the relevant component of dimnames taking the place of
names. A couple of special rules apply, though:

Normally, a structure is accessed using the number of indices corresponding to its dimension.
It is however also possible to use a single index in which case the dim and dimnames attributes
are disregarded and the result is effectively that of c(m) [i]. Notice that m[1] is usually very
different from m[1,] or m[, 1].

It is possible to use a matrix of integers as an index. In this case, the number of columns
of the matrix should match the number of dimensions of the structure, and the result will be a
vector with length as the number of rows of the matrix. The following example shows how to
extract the elements m[1, 1] and m[2, 2] in one operation.
> m <- matrix(1:4, 2)
>m
[,11 [,2]
[1,] 1 3
[2,] 2 4
> i <- matrix(c(1, 1, 2, 2), 2, byrow = TRUE)
> i
[,11 [,2]
[1,] 1 1
[2,] 2 2
> m[i]
[1] 1 4

Indexing matrices may not contain negative indices. NA and zero values are allowed: rows in an
index matrix containing a zero are ignored, whereas rows containing an NA produce an NA in the
result.

Both in the case of using a single index and in matrix indexing, a names attribute is used if
present, as had the structure been one-dimensional.

If an indexing operation causes the result to have one of its extents of length one, as in
selecting a single slice of a three-dimensional matrix with (say) m[2, , 1, the corresponding
dimension is generally dropped from the result. If a single-dimensional structure results, a

Chapter 3: Evaluation of expressions 18

vector is obtained. This is occasionally undesirable and can be turned off by adding the ‘drop =
FALSE’ to the indexing operation. Notice that this is an additional argument to the [function
and doesn’t add to the index count. Hence the correct way of selecting the first row of a matrix
as a 1 by n matrix is m[1, , drop = FALSE]. Forgetting to disable the dropping feature is a
common cause of failure in general subroutines where an index occasionally, but not usually has
length one. This rule still applies to a one-dimensional array, where any subsetting will give a
vector result unless ‘drop = FALSE’ is used.

Notice that vectors are distinct from one-dimensional arrays in that the latter have dim and
dimnames attributes (both of length one). One-dimensional arrays are not easily obtained from
subsetting operations but they can be constructed explicitly and are returned by table. This
is sometimes useful because the elements of the dimnames list may themselves be named, which
is not the case for the names attribute.

Some operations such as m[FALSE,] result in structures in which a dimension has zero extent.
R generally tries to handle these structures sensibly.

3.4.3 Indexing other structures

The operator [is a generic function which allows class methods to be added, and the $ and
[[operators likewise. Thus, it is possible to have user-defined indexing operations for any
structure. Such a function, say [.foo is called with a set of arguments of which the first is the
structure being indexed and the rest are the indices. In the case of $, the index argument is
of mode "symbol" even when using the x$"abc" form. It is important to be aware that class
methods do not necessarily behave in the same way as the basic methods, for example with
respect to partial matching.

The most important example of a class method for [is that used for data frames. It is not
described in detail here (see the help page for [.data.frame), but in broad terms, if two indices
are supplied (even if one is empty) it creates matrix-like indexing for a structure that is basically
a list of vectors of the same length. If a single index is supplied, it is interpreted as indexing the
list of columns—in that case the drop argument is ignored, with a warning.

The basic operators $ and [[can be applied to environments. Only character indices are
allowed and no partial matching is done.

3.4.4 Subset assignment
Assignment to subsets of a structure is a special case of a general mechanism for complex
assignment:
x[3:5] <- 13:15
The result of this command is as if the following had been executed
Txtmp*T <- X
x <= "[<="(*tmp*>, 3:5, value=13:15)
rm (" *tmp*)
Note that the index is first converted to a numeric index and then the elements are replaced
sequentially along the numeric index, as if a for loop had been used. Any existing variable

called ~*tmp*~ will be overwritten and deleted, and this variable name should not be used in
code.

The same mechanism can be applied to functions other than [. The replacement function
has the same name with <- pasted on. Its last argument, which must be called value, is the
new value to be assigned. For example,

names(x) <- c("a","b“)
is equivalent to

Txtmp*T <- X

Chapter 3: Evaluation of expressions 19

X <= "names<-"(*tmp*", value=c("a","b"))
rm (" *tmp*)

Nesting of complex assignments is evaluated recursively
names (x) [3] <- "Three"

is equivalent to
Txtmp*”T <- X
X <- "names<-" (" *tmp*~, value="[<-"(names(*tmp*), 3, value="Three"))
rm (" *xtmp*")

Complex assignments in the enclosing environment (using <<-) are also permitted:
names (x) [3] <<- "Three"

is equivalent to
Txtmp*” <<- get(x, envir=parent.env(), inherits=TRUE)
names (" *tmp*~) [3] <- "Three"
X <<= Txtmp*"
rm (" *tmp*")

and also to
“*tmp*” <- get(x,envir=parent.env(), inherits=TRUE)
X <<- "names<-"("*tmp*~, value="[<-"(names(*tmp*), 3, value="Three"))
rm (" *tmp*")

Only the target variable is evaluated in the enclosing environment, so
e<-c(a=1,b=2)

i<-1
local({
e <- c(A=10,B=11)
i <=2
el[i] <<- e[il+1
13)

uses the local value of i on both the LHS and RHS, and the local value of e on the RHS of
the superassignment statement. It sets e in the outer environment to

a b
1 12
That is, the superassignment is equivalent to the four lines
“xtmp*” <- get(e, envir=parent.env(), inherits=TRUE)
“ktmp*xT [1] <- e[i]+1
e <<- “xtmp*x"
rm (" *tmp*)
Similarly
x[is.na(x)] <<- 0
is equivalent to
“xtmpx” <- get(x,envir=parent.env(), inherits=TRUE)
“xtmp*” [is.na(x)] <- 0
X <<= Txtmp*”
rm (" *xtmp*")
and not to
“xtmpx~ <- get(x,envir=parent.env(), inherits=TRUE)
“xtmp*” [is.na(T*tmpx~)] <- 0
X <<-= Txtmp*”

Chapter 3: Evaluation of expressions 20

rm (" *tmp*)
These two candidate interpretations differ only if there is also a local variable x. It is a
good idea to avoid having a local variable with the same name as the target variable of a

superassignment. As this case was handled incorrectly in versions 1.9.1 and earlier there must
not be a serious need for such code.

3.5 Scope of variables

Almost every programming language has a set of scoping rules, allowing the same name to be
used for different objects. This allows, e.g., a local variable in a function to have the same name
as a global object.

R uses a lezical scoping model, similar to languages like Pascal. However, R is a functional
programming language and allows dynamic creation and manipulation of functions and language
objects, and has additional features reflecting this fact.

3.5.1 Global environment

The global environment is the root of the user workspace. An assignment operation from the
command line will cause the relevant object to belong to the global environment. Its enclos-
ing environment is the next environment on the search path, and so on back to the empty
environment that is the enclosure of the base environment.

3.5.2 Lexical environment

Every call to a function creates a frame which contains the local variables created in the function,
and is evaluated in an environment, which in combination creates a new environment.

Notice the terminology: A frame is a set of variables, an environment is a nesting of frames
(or equivalently: the innermost frame plus the enclosing environment).

Environments may be assigned to variables or be contained in other objects. However, notice
that they are not standard objects—in particular, they are not copied on assignment.

A closure (mode "function") object will contain the environment in which it is created as
part of its definition (By default. The environment can be manipulated using environment<-).
When the function is subsequently called, its evaluation environment is created with the closure’s
environment as enclosure. Notice that this is not necessarily the environment of the caller!

Thus, when a variable is requested inside a function, it is first sought in the evaluation envi-
ronment, then in the enclosure, the enclosure of the enclosure, etc.; once the global environment
or the environment of a package is reached, the search continues up the search path to the
environment of the base package. If the variable is not found there, the search will proceed next
to the empty environment, and will fail.

3.5.3 The call stack

Every time a function is invoked a new evaluation frame is created. At any point in time during
the computation the currently active environments are accessible through the call stack. Each
time a function is invoked a special construct called a context is created internally and is placed
on a list of contexts. When a function has finished evaluating its context is removed from the
call stack.

Making variables defined higher up the call stack available is called dynamic scope. The
binding for a variable is then determined by the most recent (in time) definition of the variable.
This contradicts the default scoping rules in R, which use the bindings in the environment in
which the function was defined (lexical scope). Some functions, particularly those that use and
manipulate model formulas, need to simulate dynamic scope by directly accessing the call stack.

Chapter 3: Evaluation of expressions 21

Access to the call stack is provided through a family of functions which have names that
start with ‘sys.’. They are listed briefly below.

sys.call Get the call for the specified context.

sys.frame
Get the evaluation frame for the specified context.

sys.nframe
Get the environment frame for all active contexts.

sys.function
Get the function being invoked in the specified context.

Sys.parent
Get the parent of the current function invocation.

sys.calls
Get the calls for all the active contexts.

sys.frames
Get the evaluation frames for all the active contexts.

sys.parents
Get the numeric labels for all active contexts.

sys.on.exit
Set a function to be executed when the specified context is exited.

Sys.status
Calls sys.frames, sys.parents and sys.calls.

parent.frame
Get the evaluation frame for the specified parent context.

3.5.4 Search path

In addition to the evaluation environment structure, R has a search path of environments which
are searched for variables not found elsewhere. This is used for two things: packages of functions
and attached user data.

The first element of the search path is the global environment and the last is the base package.
An Autoloads environment is used for holding proxy objects that may be loaded on demand.
Other environments are inserted in the path using attach or library.

Packages which have a namespace have a different search path. When a search for an R object
is started from an object in such a package, the package itself is searched first, then its imports,
then the base namespace and finally the global environment and the rest of the regular search
path. The effect is that references to other objects in the same package will be resolved to the
package, and objects cannot be masked by objects of the same name in the global environment
or in other packages.

22

4 Functions

4.1 Writing functions

While R can be very useful as a data analysis tool most users very quickly find themselves
wanting to write their own functions. This is one of the real advantages of R. Users can program
it and they can, if they want to, change the system level functions to functions that they find
more appropriate.

R also provides facilities that make it easy to document any functions that you have created.
See Section “Writing R documentation” in Writing R Extensions.

4.1.1 Syntax and examples

The syntax for writing a function is
function (arglist) body

The first component of the function declaration is the keyword function which indicates to
R that you want to create a function.

An argument list is a comma separated list of formal arguments. A formal argument can be
a symbol, a statement of the form ‘symbol = expression’, or the special formal argument

The body can be any valid R expression. Generally, the body is a group of expressions
contained in curly braces (‘{’ and ‘}’).

Generally functions are assigned to symbols but they don’t need to be. The value returned by
the call to function is a function. If this is not given a name it is referred to as an anonymous
function. Anonymous functions are most frequently used as arguments to other functions such
as the apply family or outer.

Here is a simple function: echo <- function(x) print(x). So echo is a function that takes
a single argument and when echo is invoked it prints its argument.

4.1.2 Arguments

The formal arguments to the function define the variables whose values will be supplied at the
time the function is invoked. The names of these arguments can be used within the function
body where they obtain the value supplied at the time of function invocation.

Default values for arguments can be specified using the special form ‘name = expression’.
In this case, if the user does not specify a value for the argument when the function is invoked
the expression will be associated with the corresponding symbol. When a value is needed the
expression is evaluated in the evaluation frame of the function.

Default behaviours can also be specified by using the function missing. When missing is
called with the name of a formal argument it returns TRUE if the formal argument was not
matched with any actual argument and has not been subsequently modified in the body of the
function. An argument that is missing will thus have its default value, if any. The missing
function does not force evaluation of the argument.

The special type of argument ... can contain any number of supplied arguments. It is used
for a variety of purposes. It allows you to write a function that takes an arbitrary number of
arguments. It can be used to absorb some arguments into an intermediate function which can
then be extracted by functions called subsequently.

4.2 Functions as objects

Functions are first class objects in R. They can be used anywhere that an R object is required. In
particular they can be passed as arguments to functions and returned as values from functions.
See Section 2.1.5 [Function objects], page 4, for the details.

Chapter 4: Functions 23

4.3 Evaluation

4.3.1 Evaluation environment

When a function is called or invoked a new evaluation frame is created. In this frame the
formal arguments are matched with the supplied arguments according to the rules given in
Section 4.3.2 [Argument matching], page 23. The statements in the body of the function are
evaluated sequentially in this environment frame.

The enclosing frame of the evaluation frame is the environment frame associated with the
function being invoked. This may be different from S. While many functions have .GlobalEnv
as their environment this does not have to be true and functions defined in packages with
namespaces (normally) have the package namespace as their environment.

4.3.2 Argument matching

This subsection applies to closures but not to primitive functions. The latter typically ignore
tags and do positional matching, but their help pages should be consulted for exceptions, which
include log, round, signif, rep and seq.int.

The first thing that occurs in a function evaluation is the matching of formal to the actual
or supplied arguments. This is done by a three-pass process:

1. Exact matching on tags. For each named supplied argument the list of formal arguments is
searched for an item whose name matches exactly. It is an error to have the same formal
argument match several actuals or vice versa.

2. Partial matching on tags. Each remaining named supplied argument is compared to the
remaining formal arguments using partial matching. If the name of the supplied argument
matches exactly with the first part of a formal argument then the two arguments are con-
sidered to be matched. It is an error to have multiple partial matches. Notice that if £
<- function(fumble, fooey) fbody, then f(f = 1, fo = 2) is illegal, even though the 2nd
actual argument only matches fooey. £(f = 1, fooey = 2) is legal though since the sec-
ond argument matches exactly and is removed from consideration for partial matching. If
the formal arguments contain ... then partial matching is only applied to arguments that
precede it.

3. Positional matching. Any unmatched formal arguments are bound to unnamed supplied
arguments, in order. If there is a ... argument, it will take up the remaining arguments,
tagged or not.

If any arguments remain unmatched an error is declared.

Argument matching is augmented by the functions match.arg, match.call and match.fun.
Access to the partial matching algorithm used by R is via pmatch.

4.3.3 Argument evaluation

One of the most important things to know about the evaluation of arguments to a function is
that supplied arguments and default arguments are treated differently. The supplied arguments
to a function are evaluated in the evaluation frame of the calling function. The default arguments
to a function are evaluated in the evaluation frame of the function.

The semantics of invoking a function in R argument are call-by-value. In general, supplied
arguments behave as if they are local variables initialized with the value supplied and the name
of the corresponding formal argument. Changing the value of a supplied argument within a
function will not affect the value of the variable in the calling frame.

R has a form of lazy evaluation of function arguments. Arguments are not evaluated until

needed. It is important to realize that in some cases the argument will never be evaluated. Thus,
it is bad style to use arguments to functions to cause side-effects. While in C it is common to

Chapter 4: Functions 24

use the form, foo(x =y) to invoke foo with the value of y and simultaneously to assign the
value of y to x this same style should not be used in R. There is no guarantee that the argument
will ever be evaluated and hence the assignment may not take place.

It is also worth noting that the effect of foo (x <~ y) if the argument is evaluated is to change
the value of x in the calling environment and not in the evaluation environment of foo.

It is possible to access the actual (not default) expressions used as arguments inside the
function. The mechanism is implemented via promises. When a function is being evaluated
the actual expression used as an argument is stored in the promise together with a pointer
to the environment the function was called from. When (if) the argument is evaluated the
stored expression is evaluated in the environment that the function was called from. Since only
a pointer to the environment is used any changes made to that environment will be in effect
during this evaluation. The resulting value is then also stored in a separate spot in the promise.
Subsequent evaluations retrieve this stored value (a second evaluation is not carried out). Access
to the unevaluated expression is also available using substitute.

When a function is called, each formal argument is assigned a promise in the local environ-
ment of the call with the expression slot containing the actual argument (if it exists) and the
environment slot containing the environment of the caller. If no actual argument for a formal
argument is given in the call and there is a default expression, it is similarly assigned to the
expression slot of the formal argument, but with the environment set to the local environment.

The process of filling the value slot of a promise by evaluating the contents of the expression
slot in the promise’s environment is called forcing the promise. A promise will only be forced
once, the value slot content being used directly later on.

A promise is forced when its value is needed. This usually happens inside internal functions,
but a promise can also be forced by direct evaluation of the promise itself. This is occasionally
useful when a default expression depends on the value of another formal argument or other
variable in the local environment. This is seen in the following example where the lone label
ensures that the label is based on the value of x before it is changed in the next line.

function(x, label = deparse(x)) {
label
x <-x +1
print(label)

}

The expression slot of a promise can itself involve other promises. This happens whenever an
unevaluated argument is passed as an argument to another function. When forcing a promise,
other promises in its expression will also be forced recursively as they are evaluated.

4.3.4 Scope

Scope or the scoping rules are simply the set of rules used by the evaluator to find a value for a
symbol. Every computer language has a set of such rules. In R the rules are fairly simple but
there do exist mechanisms for subverting the usual, or default rules.

R adheres to a set of rules that are called lexical scope. This means the variable bindings in
effect at the time the expression was created are used to provide values for any unbound symbols
in the expression.

Most of the interesting properties of scope are involved with evaluating functions and we
concentrate on this issue. A symbol can be either bound or unbound. All of the formal arguments
to a function provide bound symbols in the body of the function. Any other symbols in the
body of the function are either local variables or unbound variables. A local variable is one
that is defined within the function. Because R has no formal definition of variables, they are
simply used as needed, it can be difficult to determine whether a variable is local or not. Local

Chapter 4: Functions 25

variables must first be defined, this is typically done by having them on the left-hand side of an
assignment.

During the evaluation process if an unbound symbol is detected then R attempts to find a
value for it. The scoping rules determine how this process proceeds. In R the environment of the
function is searched first, then its enclosure and so on until the global environment is reached.

The global environment heads a search list of environments that are searched sequentially
for a matching symbol. The value of the first match is then used.

When this set of rules is combined with the fact that functions can be returned as values
from other functions then some rather nice, but at first glance peculiar, properties obtain.

A simple example:

f <= function() {
y <- 10
g <- function(x) x + y
return(g)
}
h <- £0
h(3)
A rather interesting question is what happens when h is evaluated. When a function body
is evaluated there is no problem determining values for local variables or for bound variables.
Scoping rules determine how the language will find values for the unbound variables.

When h(3) is evaluated we see that its body is that of g. Within that body x is bound to
the formal argument and y is unbound. In a language with lexical scope x will be associated
with the value 3 and y with the value 10 local to £ so h(3) should return the value 13. In R
this is indeed what happens.

In S, because of the different scoping rules one will get an error indicating that y is not found,
unless there is a variable y in your workspace in which case its value will be used.

26

5 Object-oriented programming

Object-oriented programming is a style of programming that has become popular in recent
years. Much of the popularity comes from the fact that it makes it easier to write and maintain
complicated systems. It does this through several different mechanisms.

Central to any object-oriented language are the concepts of class and of methods. A class
is a definition of an object. Typically a class contains several slots that are used to hold class-
specific information. An object in the language must be an instance of some class. Programming
is based on objects or instances of classes.

Computations are carried out via methods. Methods are basically functions that are special-
ized to carry out specific calculations on objects, usually of a specific class. This is what makes
the language object oriented. In R, generic functions are used to determine the appropriate
method. The generic function is responsible for determining the class of its argument(s) and
uses that information to select the appropriate method.

Another feature of most object-oriented languages is the concept of inheritance. In most
programming problems there are usually many objects that are related to one another. The
programming is considerably simplified if some components can be reused.

If a class inherits from another class then generally it gets all the slots in the parent class
and can extend it by adding new slots. On method dispatching (via the generic functions) if a
method for the class does not exist then a method for the parent is sought.

In this chapter we discuss how this general strategy has been implemented in R and discuss
some of the limitations within the current design. One of the advantages that most object
systems impart is greater consistency. This is achieved via the rules that are checked by the
compiler or interpreter. Unfortunately because of the way that the object system is incorporated
into R this advantage does not obtain. Users are cautioned to use the object system in a
straightforward manner. While it is possible to perform some rather interesting feats these tend
to lead to obfuscated code and may depend on implementation details that will not be carried
forward.

The greatest use of object oriented programming in R is through print methods, summary
methods and plot methods. These methods allow us to have one generic function call, plot
say, that dispatches on the type of its argument and calls a plotting function that is specific to
the data supplied.

In order to make the concepts clear we will consider the implementation of a small system
designed to teach students about probability. In this system the objects are probability functions
and the methods we will consider are methods for finding moments and for plotting. Probabilities
can always be represented in terms of the cumulative distribution function but can often be
represented in other ways. For example as a density, when it exists or as a moment generating
function when it exists.

5.1 Definition

Rather than having a full-fledged object-oriented system R has a class system and a mechanism
for dispatching based on the class of an object. The dispatch mechanism for interpreted code
relies on four special objects that are stored in the evaluation frame. These special objects
are .Generic, .Class, .Method and .Group. There is a separate dispatch mechanism used for
internal functions and types that will be discussed elsewhere.

The class system is facilitated through the class attribute. This attribute is a character
vector of class names. So to create an object of class "foo" one simply attaches a class attribute
with the string ‘"foo"’ in it. Thus, virtually anything can be turned in to an object of class
llfooll'

Chapter 5: Object-oriented programming 27

The object system makes use of generic functions via two dispatching functions, UseMethod
and NextMethod. The typical use of the object system is to begin by calling a generic function.
This is typically a very simple function and consists of a single line of code. The system function
mean is just such a function,

> mean
function (x, ...)
UseMethod ("mean")

When mean is called it can have any number of arguments but its first argument is special
and the class of that first argument is used to determine which method should be called. The
variable .Class is set to the class attribute of x, .Generic is set to the string "mean" and a
search is made for the correct method to invoke. The class attributes of any other arguments to
mean are ignored.

Suppose that x had a class attribute that contained "foo" and "bar", in that order. Then
R would first search for a function called mean.foo and if it did not find one it would then
search for a function mean.bar and if that search was also unsuccessful then a final search for
mean.default would be made. If the last search is unsuccessful R reports an error. It is a good
idea to always write a default method. Note that the functions mean.foo etc. are referred to,
in this context, as methods.

NextMethod provides another mechanism for dispatching. A function may have a call to
NextMethod anywhere in it. The determination of which method should then be invoked is
based primarily on the current values of .Class and .Generic. This is somewhat problematic
since the method is really an ordinary function and users may call it directly. If they do so then
there will be no values for .Generic or .Class.

If a method is invoked directly and it contains a call to NextMethod then the first argument
to NextMethod is used to determine the generic function. An error is signalled if this argument
has not been supplied; it is therefore a good idea to always supply this argument.

In the case that a method is invoked directly the class attribute of the first argument to the
method is used as the value of .Class.

Methods themselves employ NextMethod to provide a form of inheritance. Commonly a spe-
cific method performs a few operations to set up the data and then it calls the next appropriate
method through a call to NextMethod.

Consider the following simple example. A point in two-dimensional Euclidean space can be
specified by its Cartesian (x-y) or polar (r-theta) coordinates. Hence, to store information about
the location of the point, we could define two classes, "xypoint" and "rthetapoint". All the
‘xypoint’ data structures are lists with an x-component and a y-component. All ‘rthetapoint’
objects are lists with an r-component and a theta-component.

Now, suppose we want to get the x-position from either type of object. This can easily be
achieved through generic functions. We define the generic function xpos as follows.
xpos <- function(x, ...)
UseMethod ("xpos")

Now we can define methods:

xpos.xypoint <- function(x) x$x
xpos.rthetapoint <- function(x) x$r * cos(x$theta)

The user simply calls the function xpos with either representation as the argument. The
internal dispatching method finds the class of the object and calls the appropriate methods.

It is pretty easy to add other representations. One need not write a new generic function only
the methods. This makes it easy to add to existing systems since the user is only responsible
for dealing with the new representation and not with any of the existing representations.

Chapter 5: Object-oriented programming 28

The bulk of the uses of this methodology are to provide specialized printing for objects of
different types; there are about 40 methods for print.

5.2 Inheritance

The class attribute of an object can have several elements. When a generic function is called the
first inheritance is mainly handled through NextMethod. NextMethod determines the method
currently being evaluated, finds the next class from the

FIXME: something is missing here

5.3 Method dispatching

Generic functions should consist of a single statement. They should usually be of the form
foo <- function(x, ...) UseMethod("foo", x). When UseMethod is called, it determines the
appropriate method and then that method is invoked with the same arguments, in the same
order as the call to the generic, as if the call had been made directly to the method.

In order to determine the correct method the class attribute of the first argument to the
generic is obtained and used to find the correct method. The name of the generic function
is combined with the first element of the class attribute into the form, generic.class and a
function with that name is sought. If the function is found then it is used. If no such function
is found then the second element of the class attribute is used, and so on until all the elements
of the class attribute have been exhausted. If no method has been found at that point then
the method generic.default is used. If the first argument to the generic function has no class
attribute then generic.default is used. Since the introduction of namespaces the methods
may not be accessible by their names (i.e. get("generic.class") may fail), but they will be
accessible by getS3method("generic","class").

Any object can have a class attribute. This attribute can have any number of elements.
Each of these is a string that defines a class. When a generic function is invoked the class of its
first argument is examined.

5.4 UseMethod

UseMethod is a special function and it behaves differently from other function calls. The syntax
of a call to it is UseMethod (generic, object), where generic is the name of the generic function,
object is the object used to determine which method should be chosen. UseMethod can only be
called from the body of a function.

UseMethod changes the evaluation model in two ways. First, when it is invoked it determines
the next method (function) to be called. It then invokes that function using the current evalu-
ation environment; this process will be described shortly. The second way in which UseMethod
changes the evaluation environment is that it does not return control to the calling function.
This means, that any statements after a call to UseMethod are guaranteed not to be executed.

When UseMethod is invoked the generic function is the specified value in the call to
UseMethod. The object to dispatch on is either the supplied second argument or the first
argument to the current function. The class of the argument is determined and the first element
of it is combined with the name of the generic to determine the appropriate method. So, if the
generic had name foo and the class of the object is "bar", then R will search for a method
named foo.bar. If no such method exists then the inheritance mechanism described above is
used to locate an appropriate method.

Once a method has been determined R invokes it in a special way. Rather than creating a
new evaluation environment R uses the environment of the current function call (the call to the
generic). Any assignments or evaluations that were made before the call to UseMethod will be

Chapter 5: Object-oriented programming 29

in effect. The arguments that were used in the call to the generic are rematched to the formal
arguments of the selected method.

When the method is invoked it is called with arguments that are the same in number and
have the same names as in the call to the generic. They are matched to the arguments of the
method according to the standard R rules for argument matching. However the object, i.e. the
first argument has been evaluated.

The call to UseMethod has the effect of placing some special objects in the evaluation frame.
They are .Class, .Generic and .Method. These special objects are used to by R to handle
the method dispatch and inheritance. .Class is the class of the object, .Generic is the name
of the generic function and .Method is the name of the method currently being invoked. If the
method was invoked through one of the internal interfaces then there may also be an object
called .Group. This will be described in Section Section 5.6 [Group methods], page 30. After
the initial call to UseMethod these special variables, not the object itself, control the selection
of subsequent methods.

The body of the method is then evaluated in the standard fashion. In particular variable
look-up in the body follows the rules for the method. So if the method has an associated
environment then that is used. In effect we have replaced the call to the generic by a call to the
method. [Prior to R 4.4.0 any local assignments in the frame of the generic would be carried
forward into the call to the method; this is no longer the case.] It is important to realize that
control will never return to the generic and hence any expressions after a call to UseMethod will
never be executed.

Any arguments to the generic that were evaluated prior to the call to UseMethod remain
evaluated.

If the first argument to UseMethod is not supplied it is assumed to be the name of the current
function. If two arguments are supplied to UseMethod then the first is the name of the method
and the second is assumed to be the object that will be dispatched on. It is evaluated so that the
required method can be determined. In this case the first argument in the call to the generic is
not evaluated and is discarded. There is no way to change the other arguments in the call to the
method; these remain as they were in the call to the generic. This is in contrast to NextMethod
where the arguments in the call to the next method can be altered.

5.5 NextMethod

NextMethod is used to provide a simple inheritance mechanism.

Methods invoked as a result of a call to NextMethod behave as if they had been invoked
from the previous method. The arguments to the inherited method are in the same order and
have the same names as the call to the current method. This means that they are the same
as for the call to the generic. However, the expressions for the arguments are the names of the
corresponding formal arguments of the current method. Thus the arguments will have values
that correspond to their value at the time NextMethod was invoked.

Unevaluated arguments remain unevaluated. Missing arguments remain missing.

The syntax for a call to NextMethod is NextMethod (generic, object, ...). If the generic
is not supplied the value of .Generic is used. If the object is not supplied the first argument
in the call to the current method is used. Values in the ... argument are used to modify the
arguments of the next method.

It is important to realize that the choice of the next method depends on the current values
of .Generic and .Class and not on the object. So changing the object in a call to NextMethod
affects the arguments received by the next method but does not affect the choice of the next
method.

Chapter 5: Object-oriented programming 30

Methods can be called directly. If they are then there will be no .Generic, .Class or
.Method. In this case the generic argument of NextMethod must be specified. The value of
.Class is taken to be the class attribute of the object which is the first argument to the current
function. The value of .Method is the name of the current function. These choices for default
values ensure that the behaviour of a method doesn’t change depending on whether it is called
directly or via a call to a generic.

An issue for discussion is the behaviour of the ... argument to NextMethod. The White
Book describes the behaviour as follows:

- named arguments replace the corresponding arguments in the call to the current method.
Unnamed arguments go at the start of the argument list.

What I would like to do is:

-first do the argument matching for NextMethod; -if the object or generic are changed fine
-first if a named list element matches an argument (named or not) the list value replaces the
argument value. - the first unnamed list element

Values for lookup: Class: comes first from .Class, second from the first argument to the
method and last from the object specified in the call to NextMethod

Generic: comes first from .Generic, if nothing then from the first argument to the method
and if it’s still missing from the call to NextMethod

Method: this should just be the current function name.

5.6 Group methods

For several types of internal functions R provides a dispatching mechanism for operators. This
means that operators such as == or < can have their behaviour modified for members of special
classes. The functions and operators have been grouped into three categories and group methods
can be written for each of these categories. There is currently no mechanism to add groups. It
is possible to write methods specific to any function within a group.

The following table lists the functions for the different Groups.

‘Math’ abs, acos, acosh, asin, asinh, atan, atanh, ceiling, cos, cosh, cospi, cumsum,
exp, floor, gamma, lgamma, log, loglO, round, signif, sin, sinh, sinpi, tan,
tanh, tanpi, trunc

‘Summary’ all, any, max, min, prod, range, sum
LOpS’ +7 _7 *7 /7 h? <7 >7 <=7 >=7 !=7 ==7 %%7 %/%7 &7 |7 !

For operators in the Ops group a special method is invoked if the two operands taken together
suggest a single method. Specifically, if both operands correspond to the same method or if one
operand corresponds to a method that takes precedence over that of the other operand. If they
do not suggest a single method then the default method is used. Either a group method or a
class method dominates if the other operand has no corresponding method. A class method
dominates a group method.

When the group is Ops the special variable .Method is a character vector with two elements.
The elements of .Method are set to the name of the method if the corresponding argument is
a member of the class that was used to determine the method. Otherwise the corresponding
element of .Method is set to the zero length string, "".

5.7 Writing methods

Users can easily write their own methods and generic functions. A generic function is simply
a function with a call to UseMethod. A method is simply a function that has been invoked via
method dispatch. This can be as a result of a call to either UseMethod or NextMethod.

Chapter 5: Object-oriented programming 31

It is worth remembering that methods can be called directly. That means that they can be
entered without a call to UseMethod having been made and hence the special variables .Generic,
.Class and .Method will not have been instantiated. In that case the default rules detailed above
will be used to determine these.

The most common use of generic functions is to provide print and summary methods for
statistical objects, generally the output of some model fitting process. To do this, each model
attaches a class attribute to its output and then provides a special method that takes that output
and provides a nice readable version of it. The user then needs only remember that print or
summary will provide nice output for the results of any analysis.

32

6 Computing on the language

R belongs to a class of programming languages in which subroutines have the ability to modify
or construct other subroutines and evaluate the result as an integral part of the language itself.
This is similar to Lisp and Scheme and other languages of the “functional programming” variety,
but in contrast to FORTRAN and the ALGOL family. The Lisp family takes this feature to the
extreme by the “everything is a list” paradigm in which there is no distinction between programs
and data.

R presents a friendlier interface to programming than Lisp does, at least to someone used to
mathematical formulas and C-like control structures, but the engine is really very Lisp-like. R
allows direct access to parsed expressions and functions and allows you to alter and subsequently
execute them, or create entirely new functions from scratch.

There is a number of standard applications of this facility, such as calculation of analytical
derivatives of expressions, or the generation of polynomial functions from a vector of coefficients.
However, there are also uses that are much more fundamental to the workings of the interpreted
part of R. Some of these are essential to the reuse of functions as components in other functions,
as the (admittedly not very pretty) calls to model.frame that are constructed in several modeling
and plotting routines. Other uses simply allow elegant interfaces to useful functionality. As an
example, consider the curve function, which allows you to draw the graph of a function given
as an expression like sin(x) or the facilities for plotting mathematical expressions.

In this chapter, we give an introduction to the set of facilities that are available for computing
on the language.

6.1 Direct manipulation of language objects

There are three kinds of language objects that are available for modification, calls, expressions,
and functions. At this point, we shall concentrate on the call objects. These are sometimes
referred to as “unevaluated expressions”, although this terminology is somewhat confusing. The
most direct method of obtaining a call object is to use quote with an expression argument, e.g.,

> el <- quote(2 + 2)
> e2 <- quote(plot(x, y))

The arguments are not evaluated, the result is simply the parsed argument. The objects el
and e2 may be evaluated later using eval, or simply manipulated as data. It is perhaps most
immediately obvious why the e2 object has mode "call", since it involves a call to the plot
function with some arguments. However, el actually has exactly the same structure as a call to
the binary operator + with two arguments, a fact that gets clearly displayed by the following

> quote("+" (2, 2))
2+ 2

The components of a call object are accessed using a list-like syntax, and may in fact be
converted to and from lists using as.list and as.call

> e2[[1]]
plot

> e2[[2]]
X

> e2[[3]]
y

When keyword argument matching is used, the keywords can be used as list tags:

> e3 <- quote(plot(x = age, y = weight))
> e3$x
age

Chapter 6: Computing on the language 33

> e3%y
weight
All the components of the call object have mode "name" in the preceding examples. This is
true for identifiers in calls, but the components of a call can also be constants—which can be
of any type, although the first component had better be a function if the call is to be evaluated
successfully—or other call objects, corresponding to subexpressions. Objects of mode name can
be constructed from character strings using as.name, so one might modify the e2 object as
follows
> e2[[1]] <- as.name("+"
> e2
X +y
To illustrate the fact that subexpressions are simply components that are themselves calls,
consider
> el[[2]] <- e2
> el
x+y+2
All grouping parentheses in input are preserved in parsed expressions. They are represented
as a function call with one argument, so that 4 - (2 - 2) becomes "-" (4, "(" ("-"(2, 2))) in
prefix notation. In evaluations, the ‘(’ operator just returns its argument.
This is a bit unfortunate, but it is not easy to write a parser/deparser combination that both
preserves user input, stores it in minimal form and ensures that parsing a deparsed expression
gives the same expression back.

As it happens, R’s parser is not perfectly invertible, nor is its deparser, as the following
examples show
> str(quote(c(1,2)))
language c(1, 2)
> str(c(1,2))
num [1:2] 1 2
> deparse(quote(c(1,2)))

[1] "C(l, 2)"

> deparse(c(1,2))
[1] "e(1, 2)"

> quote("-"(2, 2))
2 -2

> quote(2 - 2)

2 -2

Deparsed expressions should, however, evaluate to an equivalent value to the original expression
(up to rounding error).

...internal storage of flow control constructs...note Splus incompatibility...

6.2 Substitutions

It is in fact not often that one wants to modify the innards of an expression like in the previous
section. More frequently, one wants to simply get at an expression in order to deparse it and use
it for labeling plots, for instance. An example of this is seen at the beginning of plot.default:

xlabel <- if (!missing(x))
deparse (substitute(x))
This causes the variable or expression given as the x argument to plot to be used for labeling
the x-axis later on.

Chapter 6: Computing on the language 34

The function used to achieve this is substitute which takes the expression x and substitutes
the expression that was passed through the formal argument x. Notice that for this to happen,
x must carry information about the expression that creates its value. This is related to the
lazy evaluation scheme of R (see Section 2.1.8 [Promise objects], page 5). A formal argument
is really a promise, an object with three slots, one for the expression that defines it, one for
the environment in which to evaluate that expression, and one for the value of that expression
once evaluated. substitute will recognize a promise variable and substitute the value of its
expression slot. If substitute is invoked inside a function, the local variables of the function
are also subject to substitution.

The argument to substitute does not have to be a simple identifier, it can be an expression
involving several variables and substitution will occur for each of these. Also, substitute has
an additional argument which can be an environment or a list in which the variables are looked
up. For example:

> substitute(a + b, list(a = 1, b = quote(x)))
1 +x
Notice that quoting was necessary to substitute the x. This kind of construction comes in
handy in connection with the facilities for putting math expression in graphs, as the following
case shows

> plot(0)

> for (i in 1:4)

+ text(l, 0.2 * i,

+ substitute(x[ix] == y, list(ix = i, y = pnorm(i))))

It is important to realize that the substitutions are purely lexical; there is no checking that
the resulting call objects make sense if they are evaluated. substitute(x <- x + 1, list(x =
2)) will happily return 2 <- 2 + 1. However, some parts of R make up their own rules for what
makes sense and what does not and might actually have a use for such ill-formed expressions. For
example, using the “math in graphs” feature often involves constructions that are syntactically
correct, but which would be meaningless to evaluate, like ‘{}>=40%*" years"’.

Substitute will not evaluate its first argument. This leads to the puzzle of how to do sub-
stitutions on an object that is contained in a variable. The solution is to use substitute once
more, like this

> expr <- quote(x + y)

> substitute(substitute(e, list(x = 3)), list(e = expr))

substitute(x + y, list(x = 3))

> eval(substitute(substitute(e, list(x = 3)), list(e = expr)))

3 +y

The exact rules for substitutions are as follows: Each symbol in the parse tree for the first is

matched against the second argument, which can be a tagged list or an environment frame. If it
is a simple local object, its value is inserted, except if matching against the global environment.
If it is a promise (usually a function argument), the promise expression is substituted. If the
symbol is not matched, it is left untouched. The special exception for substituting at the top
level is admittedly peculiar. It has been inherited from S and the rationale is most likely that
there is no control over which variables might be bound at that level so that it would be better
to just make substitute act as quote.

The rule of promise substitution is slightly different from that of S if the local variable is
modified before substitute is used. R will then use the new value of the variable, whereas S will
unconditionally use the argument expression—unless it was a constant, which has the curious
consequence that £((1)) may be very different from £(1) in S. The R rule is considerably
cleaner, although it does have consequences in connection with lazy evaluation that comes as a
surprise to some. Consider

Chapter 6: Computing on the language 35

logplot <- function(y, ylab = deparse(substitute(y))) {
y <= log(y)
plot(y, ylab = ylab)

}

This looks straightforward, but one will discover that the y label becomes an ugly c(...)
expression. It happens because the rules of lazy evaluation cause the evaluation of the ylab
expression to happen after y has been modified. The solution is to force ylab to be evaluated
first, i.e.,

logplot <- function(y, ylab = deparse(substitute(y))) {
ylab
y <= log(y)
plot(y, ylab = ylab)

}

Notice that one should not use eval(ylab) in this situation. If ylab is a language or
expression object, then that would cause the object to be evaluated as well, which would not at
all be desirable if a math expression like quote (logle] (y)) was being passed.

A variant on substitute is bquote, which is used to replace some subexpressions with their
values. The example from above
> plot (0)
> for (i in 1:4)
+ text(l, 0.2 * i,

+ substitute(x[ix] == y, list(ix = i, y = pnorm(i))))
could be written more compactly as
plot (0)
for(i in 1:4)
text(1, 0.2*%i, bquote(x[.(i)] == . (pnorm(i))))

The expression is quoted except for the contents of . () subexpressions, which are replaced
with their values. There is an optional argument to compute the values in a different environ-
ment. The syntax for bquote is borrowed from the LISP backquote macro.

6.3 More on evaluation

The eval function was introduced earlier in this chapter as a means of evaluating call objects.
However, this is not the full story. It is also possible to specify the environment in which the
evaluation is to take place. By default this is the evaluation frame from which eval is called,
but quite frequently it needs to be set to something else.

Very often, the relevant evaluation frame is that of the parent of the current frame (cf. 777).
In particular, when the object to evaluate is the result of a substitute operation of the function
arguments, it will contain variables that make sense to the caller only (notice that there is no
reason to expect that the variables of the caller are in the lexical scope of the callee). Since
evaluation in the parent frame occurs frequently, an eval.parent function exists as a shorthand
for eval(expr, sys.frame(sys.parent())).

Another case that occurs frequently is evaluation in a list or a data frame. For instance, this
happens in connection with the model . frame function when a data argument is given. Generally,
the terms of the model formula need to be evaluated in data, but they may occasionally also
contain references to items in the caller of model.frame. This is sometimes useful in connection
with simulation studies. So for this purpose one needs not only to evaluate an expression in a
list, but also to specify an enclosure into which the search continues if the variable is not in the
list. Hence, the call has the form

eval (expr, data, sys.frame(sys.parent()))

Chapter 6: Computing on the language 36

Notice that evaluation in a given environment may actually change that environment, most
obviously in cases involving the assignment operator, such as

eval(quote(total <- 0), environment(robert$balance)) # rob Rob

This is also true when evaluating in lists, but the original list does not change because one is
really working on a copy.

6.4 Evaluation of expression objects

Objects of mode "expression" are defined in Section 2.1.4 [Expression objects|, page 4. They
are very similar to lists of call objects.

> ex <- expression(2 + 2, 3 + 4)
ex[[1]]

+ 2

ex[[2]]

+ 4

eval(ex)

(11 7

Notice that evaluating an expression object evaluates each call in turn, but the final value is
that of the last call. In this respect it behaves almost identically to the compound language object
quote ({2 + 2; 3 + 43}). However, there is a subtle difference: Call objects are indistinguishable
from subexpressions in a parse tree. This means that they are automatically evaluated in the
same way a subexpression would be. Expression objects can be recognized during evaluation
and in a sense retain their quotedness. The evaluator will not evaluate an expression object
recursively, only when it is passed directly to eval function as above. The difference can be
seen like this:

vV WV NV

> eval(substitute(mode(x), list(x
[1] "numeric"

> eval(substitute(mode(x), list(x = expression(2 + 2))))
[1] "expression"

quote(2 + 2))))

The deparser represents an expression object by the call that creates it. This is similar to the
way it handles numerical vectors and several other objects that do not have a specific external
representation. However, it does lead to the following bit of confusion:

> e <- quote(expression(2 + 2))

> e

expression(2 + 2)

> mode(e)

[1] "call"

> ee <- expression(2 + 2)

> ee

expression(2 + 2)

> mode (ee)

[1] "expression"
Le., e and ee look identical when printed, but one is a call that generates an expression object
and the other is the object itself.

6.5 Manipulation of function calls
It is possible for a function to find out how it has been called by looking at the result of sys.call
as in the following example of a function that simply returns its own call:

> f <- function(x, y, ...) sys.call()
> f(y =1, 2, z =3, 4

Chapter 6: Computing on the language 37

f(y =1, 2, z =3, 4)

However, this is not really useful except for debugging because it requires the function to
keep track of argument matching in order to interpret the call. For instance, it must be able to
see that the 2nd actual argument gets matched to the first formal one (x in the above example).

More often one requires the call with all actual arguments bound to the corresponding formals.
To this end, the function match.call is used. Here’s a variant of the preceding example, a
function that returns its own call with arguments matched

> f <~ function(x, y, ...) match.call()
> f(y =1, 2, z =3, 4)
fx=2,y=1, z=3, 4)

Notice that the second argument now gets matched to x and appears in the corresponding
position in the result.

The primary use of this technique is to call another function with the same arguments,
possibly deleting some and adding others. A typical application is seen at the start of the 1m
function:

mf <- cl <- match.call()

mf$singular.ok <- mf$model <- mf$method <- NULL
nf$x <- mf$y <- mf$qr <- mf$contrasts <- NULL
mf$drop.unused.levels <- TRUE

mf[[1]] <- as.name("model.frame")

mf <- eval(mf, sys.frame(sys.parent()))

Notice that the resulting call is evaluated in the parent frame, in which one can be certain
that the involved expressions make sense. The call can be treated as a list object where the first
element is the name of the function and the remaining elements are the actual argument expres-
sions, with the corresponding formal argument names as tags. Thus, the technique to eliminate
undesired arguments is to assign NULL, as seen in lines 2 and 3, and to add an argument one uses
tagged list assignment (here to pass drop.unused.levels = TRUE) as in line 4. To change the
name of the function called, assign to the first element of the list and make sure that the value is
a name, either using the as.name ("model.frame") construction here or quote (model.frame).

The match.call function has an expand.dots argument, a switch which if set to FALSE lets

all ... arguments be collected as a single argument with the tag

> f <- function(x, y, ...) match.call(expand.dots = FALSE)
> f(y =1, 2, z =3, 4)
f(x=2,y=1, ... = list(z = 3, 4))

The ... argument is a list (a pairlist to be precise), not a call to 1ist like it is in S:
>el <- f(y=1, 2, z=3, 4$...
> el
$z
(1] 3
[[2]]
(1] 4

One reason for using this form of match.call is simply to get rid of any ... arguments in

order not to be passing unspecified arguments on to functions that may not know them. Here’s
an example paraphrased from plot.formula:

m <- match.call(expand.dots = FALSE)

m$... <- NULL
m[[1]] <- "model.frame"

Chapter 6: Computing on the language 38

A more elaborate application is in update.default where a set of optional extra arguments
can add to, replace, or cancel those of the original call:

extras <- match.call(expand.dots = FALSE)S$...
if (length(extras) > 0) {
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras) [existing]) call[[al] <- extras[[al]
if (any('existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)

}

Notice that care is taken to modify existing arguments individually in case extras[[a]]
== NULL. Concatenation does not work on call objects without the coercion as shown; this is
arguably a bug.

Two further functions exist for the construction of function calls, namely call and do.call.

The function call allows creation of a call object from the function name and the list of
arguments

> x <- 10.5
> call("round", x)
round(10.5)

As seen, the value of x rather than the symbol is inserted in the call, so it is distinctly different
from round(x). The form is used rather rarely, but is occasionally useful where the name of a
function is available as a character variable.

The function do.call is related, but evaluates the call immediately and takes the arguments
from an object of mode "1list" containing all the arguments. A natural use of this is when one
wants to apply a function like cbind to all elements of a list or data frame.

is.na.data.frame <- function (x) {
y <- do.call(cbind, lapply(x, is.na))
rownames (y) <- row.names (x)
y

}

Other uses include variations over constructions like do.call("f", 1ist(...)). However,
one should be aware that this involves evaluation of the arguments before the actual function
call, which may defeat aspects of lazy evaluation and argument substitution in the function
itself. A similar remark applies to the call function.

6.6 Manipulation of functions

It is often useful to be able to manipulate the components of a function or closure. R provides
a set of interface functions for this purpose.

body Returns the expression that is the body of the function.
formals Returns a list of the formal arguments to the function. This is a pairlist.

environment
Returns the environment associated with the function.

body<- This sets the body of the function to the supplied expression.

formals<-
Sets the formal arguments of the function to the supplied list.

Chapter 6: Computing on the language 39

environment<-
Sets the environment of the function to the specified environment.

It is also possible to alter the bindings of different variables in the environment of the function,
using code along the lines of evalq(x <- 5, environment (f)).

It is also possible to convert a function to a list using as.list. The result is the concatenation
of the list of formal arguments with the function body. Conversely such a list can be converted
to a function using as.function. This functionality is mainly included for S compatibility.
Notice that environment information is lost when as.list is used, whereas as.function has
an argument that allows the environment to be set.

40

7 System and foreign language interfaces

7.1 Operating system access

Access to the operating system shell is via the R function system. The details will differ by
platform (see the on-line help), and about all that can safely be assumed is that the first argument
will be a string command that will be passed for execution (not necessarily by a shell) and the
second argument will be internal which if true will collect the output of the command into an
R character vector.

The functions system. time and proc.time are available for timing (although the information
available may be limited on non-Unix-like platforms).

Information from the operating system environment can be accessed and manipulated with

Sys.getenv OS environment variables
Sys.putenv
Sys.getlocale System locale

Sys.putlocale

Sys.localeconv

Sys.time Current time
Sys.timezone Time zone

A uniform set of file access functions is provided on all platforms:

file.access Ascertain File Accessibility
file.append Concatenate files
file.choose Prompt user for file name
file.copy Copy files

file.create Create or truncate a files
file.exists Test for existence
file.info Miscellaneous file information
file.remove remove files

file.rename rename files

file.show Display a text file

unlink Remove files or directories.

There are also functions for manipulating file names and paths in a platform-independent
way.

basename File name without directory
dirname Directory name

file.path Construct path to file
path.expand Expand ~ in Unix path

7.2 Foreign language interfaces

See Section “System and foreign language interfaces” in Writing R Extensions for the details of
adding functionality to R via compiled code.

Functions .C and .Fortran provide a standard interface to compiled code that has been
linked into R, either at build time or via dyn.load. They are primarily intended for compiled C
and FORTRAN code respectively, but the .C function can be used with other languages which
can generate C interfaces, for example C++.

Functions .Call and .External provide interfaces which allow compiled code (primarily
compiled C code) to manipulate R objects.

Chapter 7: System and foreign language interfaces 41

7.3 .Internal and .Primitive

The .Internal and .Primitive interfaces are used to call C code compiled into R at build
time. See Section “.Internal vs .Primitive” in R Internals.

42

8 Exception handling

The exception handling facilities in R are provided through two mechanisms. Functions such
as stop or warning can be called directly or options such as "warn" can be used to control the
handling of problems.

8.1 stop

A call to stop halts the evaluation of the current expression, prints the message argument and
returns execution to top-level.

8.2 warning

The function warning takes a single argument that is a character string. The behaviour of a
call to warning depends on the value of the option "warn". If "warn" is negative warnings are
ignored. If it is zero, they are stored and printed after the top-level function has completed. If
it is one, they are printed as they occur and if it is 2 (or larger) warnings are turned into errors.

If "warn" is zero (the default), a variable last.warning is created and the messages associ-
ated with each call to warning are stored, sequentially, in this vector. If there are fewer than 10
warnings they are printed after the function has finished evaluating. If there are more than 10
then a message indicating how many warnings occurred is printed. In either case last.warning
contains the vector of messages, and warnings provides a way to access and print it.

8.3 on.exit

A function can insert a call to on.exit at any point in the body of a function. The effect of a
call to on.exit is to store the value of the body so that it will be executed when the function
exits. This allows the function to change some system parameters and to ensure that they are
reset to appropriate values when the function is finished. The on.exit is guaranteed to be
executed when the function exits either directly or as the result of a warning.

An error in the evaluation of the on.exit code causes an immediate jump to top-level without
further processing of the on.exit code.

on.exit takes a single argument which is an expression to be evaluated when the function
is exited.

8.4 Error options

There are a number of options variables that can be used to control how R handles errors and
warnings. They are listed in the table below.

‘warn’ Controls the printing of warnings.

‘warning.expression’
Sets an expression that is to be evaluated when a warning occurs. The normal
printing of warnings is suppressed if this option is set.

‘error’ Installs an expression that will be evaluated when an error occurs. The normal
printing of error messages and warning messages precedes the evaluation of the
expression.

Expressions installed by options("error") are evaluated before calls to on.exit are carried
out.

One can use options(error = expression(q("yes"))) to get R to quit when an error has
been signalled. In this case an error will cause R to shut down and the global environment will
be saved.

43

9 Debugging

Debugging code has always been a bit of an art. R provides several tools that help users find
problems in their code. These tools halt execution at particular points in the code and the
current state of the computation can be inspected.

Most debugging takes place either through calls to browser or debug. Both of these functions
rely on the same internal mechanism and both provide the user with a special prompt. Any
command can be typed at the prompt. The evaluation environment for the command is the
currently active environment. This allows you to examine the current state of any variables etc.

There are five special commands that R interprets differently. They are,

‘RET’ Go to the next statement if the function is being debugged. Continue execution if
the browser was invoked.

c
‘cont’ Continue the execution.

‘n’ Execute the next statement in the function. This works from the browser as well.
‘where’ Show the call stack

‘Q Halt execution and jump to the top-level immediately.

If there is a local variable with the same name as one of the special commands listed above
then its value can be accessed by using get. A call to get with the name in quotes will retrieve
the value in the current environment.

The debugger provides access only to interpreted expressions. If a function calls a foreign
language (such as C) then no access to the statements in that language is provided. Execution
will halt on the next statement that is evaluated in R. A symbolic debugger such as gdb can be
used to debug compiled code.

9.1 browser

A call to the function browser causes R to halt execution at that point and to provide the user
with a special prompt. Arguments to browser are ignored.

> foo <- function(s) {
+ ¢c <- 3

+ browser ()

+ 3

> foo(4)

Called from: foo(4)
Browse[1]> s

[1] 4

Browse[1]> get("c")
[1] 3

Browse[1]>

9.2 debug/undebug

The debugger can be invoked on any function by using the command debug(fun). Subsequently,
each time that function is evaluated the debugger is invoked. The debugger allows you to control
the evaluation of the statements in the body of the function. Before each statement is executed
the statement is printed out and a special prompt provided. Any command can be given, those
in the table above have special meaning.

Chapter 9: Debugging 44

Debugging is turned off by a call to undebug with the function as an argument.

> debug(mean.default)
> mean(1:10)
debugging in: mean.default(1:10)
debug: {
if (na.rm)
x <= x['is.na(x)]
trim <- trim[1]
n <- length(c(x, recursive = TRUE))
if (trim > 0) {
if (trim >= 0.5)
return(median(x, na.rm = FALSE))
lo <- floor(n * trim) + 1
hi <-n+1 - 1o
x <- sort(x, partial = unique(c(lo, hi))) [lo:hi]
n <- hi - 10 + 1
}
sum(x) /n
}
Browse[1]>
debug: if (na.rm) x <- x[!is.na(x)]
Browse[1]>
debug: trim <- trim[1]
Browse[1]>
debug: n <- length(c(x, recursive = TRUE))
Browse[1]> ¢
exiting from: mean.default(1:10)
[1] 5.5

9.3 trace/untrace

Another way of monitoring the behaviour of R is through the trace mechanism. trace is called
with a single argument that is the name of the function you want to trace. The name does not
need to be quoted but for some functions you will need to quote the name in order to avoid a
syntax error.

When trace has been invoked on a function then every time that function is evaluated the
call to it is printed out. This mechanism is removed by calling untrace with the function as an
argument.

> trace("[<-")

> x <= 1:10

> x[3] <-4

trace: "[<-"(xtmp*, 3, value = 4)

9.4 traceback

When an error has caused a jump to top-level a special variable called .Traceback is placed into
the base environment. .Traceback is a character vector with one entry for each function call
that was active at the time the error occurred. An examination of .Traceback can be carried
out by a call to traceback.

45

10 Parser

The parser is what converts the textual representation of R code into an internal form which
may then be passed to the R evaluator which causes the specified instructions to be carried out.
The internal form is itself an R object and can be saved and otherwise manipulated within the
R system.

10.1 The parsing process

10.1.1 Modes of parsing

Parsing in R occurs in three different variants:

e The read-eval-print loop
e Parsing of text files

e Parsing of character strings

The read-eval-print loop forms the basic command line interface to R. Textual input is read
until a complete R expression is available. Expressions may be split over several input lines.
The primary prompt (by default ‘> ’) indicates that the parser is ready for a new expression,
and a continuation prompt (by default ‘+ ’) indicates that the parser expects the remainder of
an incomplete expression. The expression is converted to internal form during input and the
parsed expression is passed to the evaluator and the result is printed (unless specifically made
invisible). If the parser finds itself in a state which is incompatible with the language syntax, a
“Syntax Error” is flagged and the parser resets itself and resumes input at the beginning of the
next input line.

Text files can be parsed using the parse function. In particular, this is done during execution
of the source function, which allows commands to be stored in an external file and executed as
if they had been typed at the keyboard. Note, though, that the entire file is parsed and syntax
checked before any evaluation takes place.

Character strings, or vectors thereof, can be parsed using the text= argument to parse. The
strings are treated exactly as if they were the lines of an input file.

10.1.2 Internal representation

Parsed expressions are stored in an R object containing the parse tree. A fuller description
of such objects can be found in Section 2.1.3 [Language objects|, page 3, and Section 2.1.4
[Expression objects], page 4. Briefly, every elementary R expression is stored in function call
form, as a list with the first element containing the function name and the remainder containing
the arguments, which may in turn be further R expressions. The list elements can be named,
corresponding to tagged matching of formal and actual arguments. Note that all R syntax
elements are treated in this way, e.g. the assignment x <- 1 is encoded as "<-"(x, 1).

10.1.3 Deparsing

Any R object can be converted to an R expression using deparse. This is frequently used
in connection with output of results, e.g. for labeling plots. Notice that only objects of mode
"expression" can be expected to be unchanged by reparsing the output of deparsing. For
instance, the numeric vector 1:5 will deparse as "c(1, 2, 3, 4, 5)", which will reparse as a
call to the function c. As far as possible, evaluating the deparsed and reparsed expression gives
the same result as evaluating the original, but there are a couple of awkward exceptions, mostly
involving expressions that weren’t generated from a textual representation in the first place.

Chapter 10: Parser 46

10.2 Comments

Comments in R are ignored by the parser. Any text from a # character to the end of the line is
taken to be a comment, unless the # character is inside a quoted string. For example,

>x <- 1 # This is a comment...
>y <= " #... but this is not."

10.3 Tokens

Tokens are the elementary building blocks of a programming language. They are recognised
during lexical analysis which (conceptually, at least) takes place prior to the syntactic analysis
performed by the parser itself.

10.3.1 Constants

There are five types of constants: integer, logical, numeric, complex and string.

In addition, there is the special constant NULL. Also, the numeric Inf, and NaN, the logical
NA, and NA_character_, NA_integer_, NA_real_, and NA_complex_ deserve mentioning; for the
latter, see Section 3.3.4 [NA handling], page 15.

NULL is used to indicate the empty object. NA is used for absent (“Not Available”) data
values. Inf denotes infinity and NaN is not-a-number in the IEEE floating point calculus (results
of the operations respectively 1/0 and 0/0, for instance).

Logical constants are either TRUE, FALSE or NA.

Numeric constants follow a similar syntax to that of the C language. They consist of an
integer part consisting of zero or more digits, followed optionally by ‘.” and a fractional part
of zero or more digits optionally followed by an exponent part consisting of an ‘E’ or an ‘e’, an
optional sign and a string of one or more digits. Either the fractional or the decimal part can

be empty, but not both at once.
Valid numeric constants: 1 10 0.1 .2 1le-7 1.2e+7

Numeric constants can also be hexadecimal, starting with ‘0x’ or ‘0x’ followed by zero or more
digits, ‘a-f’ or ‘A-F’. Hexadecimal floating point constants are supported using C99 syntax, e.g.
‘0x1.1p1’.

There is now a separate class of integer constants. They are created by using the qualifier L
at the end of the number. For example, 123L gives an integer value rather than a numeric value.
The suffix L can be used to qualify any non-complex number with the intent of creating an
integer. So it can be used with numbers given by hexadecimal or scientific notation. However,
if the value is not a valid integer, a warning is emitted and the numeric value created. The
following shows examples of valid integer constants, values which will generate a warning and
give numeric constants and syntax errors.

Valid integer constants: 1L, 0x10L, 1000000L, 1e6L
Valid numeric constants: 1.1L, 1e-3L, 0xl.1p-2
Syntax error: 12iL 0x1.1
A warning is emitted for decimal values that contain an unnecessary decimal point, e.g. 1.L.
It is an error to have a decimal point in a hexadecimal constant without the binary exponent.

Note also that a preceding sign (+ or -) is treated as a unary operator, not as part of the
constant.

Up-to-date information on the currently accepted formats can be found by
?NumericConstants.

Complex constants have the form of a decimal numeric constant followed by ‘i’. Notice that
only purely imaginary numbers are actual constants, other complex numbers are parsed a unary
or binary operations on numeric and imaginary numbers.

Chapter 10: Parser 47

Valid complex constants: 2i 4.1i 1le-2i
String constants are delimited by a pair of single (‘'’) or double (‘"’) quotes and can contain
all other printable characters. Quotes and other special characters within strings are specified
using escape sequences:

\! single quote

\" double quote

\n newline (aka ‘line feed’, LF)

\r carriage return (CR)

\t tab character

\b backspace

\a bell

\f form feed

\v vertical tab

\\ backslash itself

\nnn character with given octal code — sequences of one, two or three digits in the range
0 ... 7 are accepted.

\xnn character with given hex code — sequences of one or two hex digits (with entries 0

...9A...Fa...f).

\unnnn \u{annn}
(where multibyte locales are supported, otherwise an error). Unicode character with
given hex code — sequences of up to four hex digits. The character needs to be valid
in the current locale.

\Unnnnnnnn \U{nnnnnnnn}
(where multibyte locales are supported, otherwise an error). Unicode character with
given hex code — sequences of up to eight hex digits.

A single quote may also be embedded directly in a double-quote delimited string and vice versa.

A NUL (\0) is not allowed in a character string, so using \0 in a string constant terminates
the constant (usually with a warning): further characters up to the closing quote are scanned
but ignored.

10.3.2 Identifiers

Identifiers consist of a sequence of letters, digits, the period (‘.’) and the underscore. They must
not start with a digit or an underscore, or with a period followed by a digit.

The definition of a letter depends on the current locale: the precise set of characters allowed
is given by the C expression (isalnum(c) || c=="'."' || ¢ =="'_"') and will include accented
letters in many Western European locales.

Notice that identifiers starting with a period are not by default listed by the 1s function and
that ... and ..1, ..2, etc. are special.

Notice also that objects can have names that are not identifiers. These are generally accessed
via get and assign, although they can also be represented by text strings in some limited cir-
cumstances when there is no ambiguity (e.g. "x" <- 1). As get and assign are not restricted to
names that are identifiers they do not recognise subscripting operators or replacement functions.
The following pairs are not equivalent

x$a<-1 assign("x$a",1)
x[[1]] get ("x[[111")

names (x)<-nm assign("names(x)",nm)

Chapter 10: Parser 48

10.3.3 Reserved words
The following identifiers have a special meaning and cannot be used for object names

if else repeat while function for in next break

TRUE FALSE NULL Inf NaN

NA NA_integer_ NA_real_ NA_complex_ NA_character_
.1 ..2 ete.

10.3.4 Special operators

R allows user-defined infix operators. These have the form of a string of characters delimited
by the ‘%’ character. The string can contain any printable character except ‘%4’. The escape
sequences for strings do not apply here.

Note that the following operators are predefined:
Wt %*% %/% hindk hoth hxh Nl 1%

10.3.5 Separators

Although not strictly tokens, stretches of whitespace characters (spaces, tabs and form feeds,
on Windows and UTF-8 locales other Unicode whitespace characters!) serve to delimit tokens
in case of ambiguity, (compare x<-5 and x < -5).

Newlines have a function which is a combination of token separator and expression terminator.
If an expression can terminate at the end of the line the parser will assume it does so, otherwise
the newline is treated as whitespace. Semicolons (‘;’) may be used to separate elementary
expressions on the same line.

Special rules apply to the else keyword: inside a compound expression, a newline before else
is discarded, whereas at the outermost level, the newline terminates the if construction and a
subsequent else causes a syntax error. This somewhat anomalous behaviour occurs because R
should be usable in interactive mode and then it must decide whether the input expression is
complete, incomplete, or invalid as soon as the user presses RET.

[

The comma (‘,’) is used to separate function arguments and multiple indices.

10.3.6 Operator tokens

R uses the following operator tokens

+=x /) Whh/h " arithmetic

>>=<K === I= relational

L& | logical

~ model formulae

-><- assignment

$ list indexing
sequence

(Several of the operators have different meaning inside model formulas)

10.3.7 Grouping

Ordinary parentheses—‘(’ and ‘)’—are used for explicit grouping within expressions and to
delimit the argument lists for function definitions and function calls.

Braces—{’ and ‘}’—delimit blocks of expressions in function definitions, conditional expres-
sions, and iterative constructs.

I such as U+A0, non-breaking space, and U+3000, ideographic space.

Chapter 10: Parser 49

10.3.8 Indexing tokens

Indexing of arrays and vectors is performed using the single and double brackets, ‘[1” and ‘[[1]’.
Also, indexing tagged lists may be done using the ‘$’ operator.

10.4 Expressions

An R program consists of a sequence of R expressions. An expression can be a simple expression
consisting of only a constant or an identifier, or it can be a compound expression constructed
from other parts (which may themselves be expressions).

The following sections detail the various syntactical constructs that are available.

10.4.1 Function calls

A function call takes the form of a function reference followed by a comma-separated list of
arguments within a set of parentheses.

function_reference (argl, arg2, , argn)
The function reference can be either
e an identifier (the name of the function)
e a text string (ditto, but handy if the function has a name which is not a valid identifier)
e an expression (which should evaluate to a function object)
Each argument can be tagged (tag=expr), or just be a simple expression. It can also be
empty or it can be one of the special tokens ..., ..2, etc.
A tag can be an identifier or a text string.
Examples:

f(x)

g(tag = value, , 5)

"odd name"("strange tag" = 5, y)
(function(x) x72)(5)

10.4.2 Infix and prefix operators
The order of precedence (highest first) of the operators is

5 o

-+ (unary)

hxyzh 1>

* /

+ - (binary)

> >= <K K= == |I=

|

& &&

1]

- (unary and binary)
-> ->>

<- <<=

= (as assignment)

Note that : precedes binary +/-, but not ~. Hence, 1:3-1 is 012, but 1:2°3 is 1:8.

Chapter 10: Parser 50

(~)

The exponentiation operator and the left assignment plus minus operators ‘<- - = <<=’
group right to left, all other operators group left to right. That is, 2 ~ 2 ~ 3 is 28, not 4, whereas
1-1-1is—1, not 1.

Notice that the operators %% and %/% for integer remainder and divide have higher precedence
than multiply and divide.

Although it is not strictly an operator, it also needs mentioning that the ‘=’ sign is used for
tagging arguments in function calls and for assigning default values in function definitions.

The ‘$’ sign is in some sense an operator, but does not allow arbitrary right hand sides and
is discussed under Section 10.4.3 [Index constructions|, page 50. It has higher precedence than
any of the other operators.

The parsed form of a unary or binary operation is completely equivalent to a function call
with the operator as the function name and the operands as the function arguments.

Parentheses are recorded as equivalent to a unary operator, with name " (", even in cases
where the parentheses could be inferred from operator precedence (e.g., a * (b + c)).

Notice that the assignment symbols are operators just like the arithmetic, relational, and
logical ones. Any expression is allowed also on the target side of an assignment, as far as the
parser is concerned (2 + 2 <- 5 is a valid expression as far as the parser is concerned. The
evaluator will object, though). Similar comments apply to the model formula operator.

10.4.3 Index constructions

R has three indexing constructs, two of which are syntactically similar although with somewhat
different semantics:

object [argl, , argn]
object [[argl, , argn 1]

The object can formally be any valid expression, but it is understood to denote or evaluate
to a subsettable object. The arguments generally evaluate to numerical or character indices,
but other kinds of arguments are possible (notably drop = FALSE).

Internally, these index constructs are stored as function calls with function name " [" respec-
tively " [[".
The third index construction is
object $ tag

Here, object is as above, whereas tag is an identifier or a text string. Internally, it is stored
as a function call with name "$"

10.4.4 Compound expressions
A compound expression is of the form
{ expr1l ; expr2 ; ; exprn }

The semicolons may be replaced by newlines. Internally, this is stored as a function call with
"{" as the function name and the expressions as arguments.

10.4.5 Flow control elements

R contains the following control structures as special syntactic constructs
if (cond) expr
if (cond) exprl else expr2
while (cond) expr
repeat expr
for (var in list) expr

The expressions in these constructs will typically be compound expressions.

Chapter 10: Parser 51

Within the loop constructs (while, repeat, for), one may use break (to terminate the loop)
and next (to skip to the next iteration).
Internally, the constructs are stored as function calls:
"if"(cond, expr)
"if"(cond, exprl, expr2)
"while" (cond, expr)
"repeat" (expr)
"for"(var, list, expr)
"break" ()
llneXt" ()

10.4.6 Function definitions

A function definition is of the form
function (arglist) body

The function body is an expression, often a compound expression. The arglist is a comma-
separated list of items each of which can be an identifier, or of the form ‘identifier = default’,
or the special token The default can be any valid expression.

Notice that function arguments unlike list tags, etc., cannot have “strange names” given as
text strings.

Internally, a function definition is stored as a function call with function name function and
two arguments, the arglist and the body. The arglist is stored as a tagged pairlist where the
tags are the argument names and the values are the default expressions.

10.5 Directives

The parser currently only supports one directive, #1ine. This is similar to the C-preprocessor
directive of the same name. The syntax is

#line nn ["filename"]

where nn is an integer line number, and the optional filename (in required double quotes)
names the source file.

Unlike the C directive, #1line must appear as the first five characters on a line. As in C, nn
and "filename" entries may be separated from it by whitespace. And unlike C, any following
text on the line will be treated as a comment and ignored.

This directive tells the parser that the following line should be assumed to be line nn of file
filename. (If the filename is not given, it is assumed to be the same as for the previous directive.)
This is not typically used by users, but may be used by preprocessors so that diagnostic messages
refer to the original file.

52

References

Richard A. Becker, John M. Chambers and Allan R. Wilks (1988), The New S Language. Chap-
man & Hall, New York. This book is often called the “Blue Book”.

53

Function and variable index

F

B 46 £ile.aCCeSS vt ittt 40

file.append............. ...l 40

file.choose ...t 40

$ file.copy....coovi 40

file.create ...t e 40

B 16, 50 file.eXisStsS .o it 40

file.info...... . oo 40

file.path............... i 40

° file.removet 40

O 40 file.renamet 40

LCald e 40 file.show. ... 40

External........coiuiiiii i 40 FOr o e 13

Fortran.........c. oot 40 formals ...t 4, 38

Internal.........ouuniiiiiiie i, 41 formals<—.o 38
Primitiveoiiiii i e 41

[B o e 6, 47
Do 16, 50 BetO L 6
LD 16, 50

= 0 -« PP 15
as.Call 4
as.characterot 4
as.functioniiiiii 4 M
8. LIST .o j MatCh.arg.t 23
as.r.lame """"""""""""""""""""""" match.call.........oiiiiiiiiiiiiieennnn 23, 37
BSSLBIL: v 6, 47 match.fun..........l 23
AL L e 6 ..

MiSSing........ ..o 15
AL LTS 6

) 11T Yo L= A 2

attributes....... ... 6
attributes<—........ 6
B TLAMES « v vttt e e et e e e e e 7

DAMESK™ Lottt 7
baseenv........... ... 6 NalN .o e 15
basename............ ... 40 N 15, 17
body......cooviiiii 4, 38 B =] =Y o PP 6
POAy<= . 38 415 2 13
Dreak .t e 13 NextMethod e 29
PrOWSeTo.iuiii i 43 11018 P P 5

AEDUE .« ot 43 on.exXxit...... ... 42
QiTrNAMe . .o oottt e 40
do.call... ..o 38 P

pairlist...... 6
E path.expand ... 40
GMPLYENV . ..ottt 6 PTOC.TME. .o.vuvhiiei e 40
environmenti it 4, 38
eNVIronment<—..........iiiiiiii e 39
VAL Lo 35 Q

Function and variable index

SO+ttt 42
storage.mode ... 2
substitutel 33
switch.... 13
Sys.getenv 40
Sys.getlocale............... ... 40
Sys.localeConV..........ooiiiiiiiiiiiii 40
Sys.putenv 40
Sys.putlocale.............. ...l 40
Sys.time........ ... 40
Sys.timezonecuiiiiiiiiiii 40
SYSEemM. ..ottt 40

system.time 40

54
T
175 =X o2 X 44
BracebaCK. . 44
TYPeOL 2
UNAEDUZ . vttt 43
UNLAnK .. e 40
UNETACE . oottt ettt e e 44
UseMethod........oiiiiiiii it 28
Warning......... ... 42
Warnings...........oiiiiiiiii i 42
While ... oo 13

Concept index

FENE. o 51
Internal....... 5
Primitiveo o 5

A

ATGUIMENT . . oottt 4, 22
argument, default values................... 22
assignment. 4, 10, 11, 18, 20, 24, 25, 28, 29, 36, 37, 50
AEOINIC .« v vt 3
attributes ... 6

B

binding...... ... 24

call. . o 3
call stack. o 21
COBTCION . . v vttt e 3,4,6,7,15
COMIMENES . .ottt 46
complex assignment oL 18

E

environment. 4, 5, 6, 11, 20, 21, 23, 24, 25, 28, 35, 38,

40, 43
environment, evaluation....................... 20, 24
evaluation.................. 21, 23, 24, 25, 28, 35, 37
evaluation, argument oL 23
evaluation, expression 4,5, 22
evaluation, lazy i, 2, 34
evaluation, statement....................... ... 11
evaluation, symbol............ 7,9, 24
EXPIESSION . .. 1, 3, 48
expression object i 4

frame 20
function.... 4, 5, 10, 20, 22, 23, 24, 25, 26, 27, 36, 38,
39, 45, 49, 51

function argument........... ... oL 5
function arguments...........o 10
function invocationcoiiiiiiiia, 9
function, accessor......... .ot 7
function, anonymousoiiiiiiiia... 22
function, assignment.............. o L 10
function, generic................... 26, 27, 28, 30, 31
function, internal 24, 30

function, modeling.......... oL 8

95

I

identifier 47

O

object ... 2,3,4,6, 28
object-oriented 26

P

pairlist ... 6
parsing..............ooii... 4,9, 32, 33, 34, 45
partial matching.......... ool 16
PTOIMUISE . oottt ettt ettt ettt e 5

SCOPE -« vttt 20, 24, 25, 35
search path....... 21
statement 3
symbol.......o i 4,9, 24, 34, 38

value 9
variable 2
VECHOT .« v vt 3,7, 11

	1 Introduction
	2 Objects
	Basic types
	Vectors
	Lists
	Language objects
	Symbol objects

	Expression objects
	Function objects
	NULL
	Builtin objects and special forms
	Promise objects
	Dot-dot-dot
	Environments
	Pairlist objects
	The ``Any'' type

	Attributes
	Names
	Dimensions
	Dimnames
	Classes
	Time series attributes
	Copying of attributes

	Special compound objects
	Factors
	Data frame objects

	3 Evaluation of expressions
	Simple evaluation
	Constants
	Symbol lookup
	Function calls
	Operators

	Control structures
	if
	Looping
	repeat
	while
	for
	switch

	Elementary arithmetic operations
	Recycling rules
	Propagation of names
	Dimensional attributes
	NA handling

	Indexing
	Indexing by vectors
	Indexing matrices and arrays
	Indexing other structures
	Subset assignment

	Scope of variables
	Global environment
	Lexical environment
	The call stack
	Search path

	4 Functions
	Writing functions
	Syntax and examples
	Arguments

	Functions as objects
	Evaluation
	Evaluation environment
	Argument matching
	Argument evaluation
	Scope

	5 Object-oriented programming
	Definition
	Inheritance
	Method dispatching
	UseMethod
	NextMethod
	Group methods
	Writing methods

	6 Computing on the language
	Direct manipulation of language objects
	Substitutions
	More on evaluation
	Evaluation of expression objects
	Manipulation of function calls
	Manipulation of functions

	7 System and foreign language interfaces
	Operating system access
	Foreign language interfaces
	.Internal and .Primitive

	8 Exception handling
	stop
	warning
	on.exit
	Error options

	9 Debugging
	browser
	debug/undebug
	trace/untrace
	traceback

	10 Parser
	The parsing process
	Modes of parsing
	Internal representation
	Deparsing

	Comments
	Tokens
	Constants
	Identifiers
	Reserved words
	Special operators
	Separators
	Operator tokens
	Grouping
	Indexing tokens

	Expressions
	Function calls
	Infix and prefix operators
	Index constructions
	Compound expressions
	Flow control elements
	Function definitions

	Directives

	References
	Function and variable index
	Concept index

