| as_params | Convert TensorFlow tensors to distribution parameters recursively | 
| as_trunc_obs | Define a set of truncated observations | 
| blended_transition | Transition functions for blended distributions | 
| blended_transition_inv | Transition functions for blended distributions | 
| callback_adaptive_lr | Keras Callback for adaptive learning rate with weight restoration | 
| callback_debug_dist_gradients | Callback to monitor likelihood gradient components | 
| dgpd | The Generalized Pareto Distribution (GPD) | 
| Distribution | Base class for Distributions | 
| dist_bdegp | Construct a BDEGP-Family | 
| dist_beta | Beta Distribution | 
| dist_binomial | Binomial Distribution | 
| dist_blended | Blended distribution | 
| dist_dirac | Dirac (degenerate point) Distribution | 
| dist_discrete | Discrete Distribution | 
| dist_empirical | Empirical distribution | 
| dist_erlangmix | Erlang Mixture distribution | 
| dist_exponential | Exponential distribution | 
| dist_gamma | Gamma distribution | 
| dist_genpareto | Generalized Pareto Distribution | 
| dist_genpareto1 | Generalized Pareto Distribution | 
| dist_lognormal | Log Normal distribution | 
| dist_mixture | Mixture distribution | 
| dist_negbinomial | Negative binomial Distribution | 
| dist_normal | Normal distribution | 
| dist_pareto | Pareto Distribution | 
| dist_poisson | Poisson Distribution | 
| dist_translate | Tranlsated distribution | 
| dist_trunc | Truncated distribution | 
| dist_uniform | Uniform distribution | 
| dist_weibull | Weibull Distribution | 
| dpareto | The Pareto Distribution | 
| dsoftmax | Soft-Max function | 
| fit.Distribution | Fit a general distribution to observations | 
| fit.reservr_keras_model | Fit a neural network based distribution model to data | 
| fit_blended | Fit a Blended mixture using an ECME-Algorithm | 
| fit_dist | Fit a general distribution to observations | 
| fit_dist_direct | Fit a general distribution to observations | 
| fit_dist_start | Find starting values for distribution parameters | 
| fit_dist_start.MixtureDistribution | Find starting values for distribution parameters | 
| fit_erlang_mixture | Fit an Erlang mixture using an ECME-Algorithm | 
| fit_mixture | Fit a generic mixture using an ECME-Algorithm | 
| flatten_bounds | Flatten / Inflate parameter lists / vectors | 
| flatten_params | Flatten / Inflate parameter lists / vectors | 
| flatten_params_matrix | Flatten / Inflate parameter lists / vectors | 
| GenPareto | The Generalized Pareto Distribution (GPD) | 
| inflate_params | Flatten / Inflate parameter lists / vectors | 
| integrate_gk | Adaptive Gauss-Kronrod Quadrature for multiple limits | 
| interval | Intervals | 
| interval-operations | Convex union and intersection of intervals | 
| interval_intersection | Convex union and intersection of intervals | 
| interval_union | Convex union and intersection of intervals | 
| is.Distribution | Test if object is a Distribution | 
| is.Interval | Intervals | 
| k_matrix | Cast to a TensorFlow matrix | 
| Pareto | The Pareto Distribution | 
| pgpd | The Generalized Pareto Distribution (GPD) | 
| plot_distributions | Plot several distributions | 
| ppareto | The Pareto Distribution | 
| predict.reservr_keras_model | Predict individual distribution parameters | 
| prob_report | Determine probability of reporting under a Poisson arrival Process | 
| qgpd | The Generalized Pareto Distribution (GPD) | 
| qpareto | The Pareto Distribution | 
| quantile.Distribution | Quantiles of Distributions | 
| repdel_obs | Define a set of truncated observations | 
| rgpd | The Generalized Pareto Distribution (GPD) | 
| rpareto | The Pareto Distribution | 
| softmax | Soft-Max function | 
| tf_compile_model | Compile a Keras model for truncated data under dist | 
| tf_initialise_model | Initialise model weights to a global parameter fit | 
| truncate_claims | Truncate claims data subject to reporting delay | 
| truncate_obs | Define a set of truncated observations | 
| trunc_obs | Define a set of truncated observations | 
| weighted_median | Compute weighted quantiles | 
| weighted_moments | Compute weighted moments | 
| weighted_quantile | Compute weighted quantiles | 
| weighted_tabulate | Compute weighted tabulations |