| agaricus.test | Test part from Mushroom Data Set | 
| agaricus.train | Training part from Mushroom Data Set | 
| bank | Bank Marketing Data Set | 
| dim.lgb.Dataset | Dimensions of an 'lgb.Dataset' | 
| dimnames.lgb.Dataset | Handling of column names of 'lgb.Dataset' | 
| dimnames<-.lgb.Dataset | Handling of column names of 'lgb.Dataset' | 
| getLGBMThreads | Get default number of threads used by LightGBM | 
| getLGBMthreads | Get default number of threads used by LightGBM | 
| get_field | Get one attribute of a 'lgb.Dataset' | 
| get_field.lgb.Dataset | Get one attribute of a 'lgb.Dataset' | 
| lgb.configure_fast_predict | Configure Fast Single-Row Predictions | 
| lgb.convert_with_rules | Data preparator for LightGBM datasets with rules (integer) | 
| lgb.cv | Main CV logic for LightGBM | 
| lgb.Dataset | Construct 'lgb.Dataset' object | 
| lgb.Dataset.construct | Construct Dataset explicitly | 
| lgb.Dataset.create.valid | Construct validation data | 
| lgb.Dataset.save | Save 'lgb.Dataset' to a binary file | 
| lgb.Dataset.set.categorical | Set categorical feature of 'lgb.Dataset' | 
| lgb.Dataset.set.reference | Set reference of 'lgb.Dataset' | 
| lgb.drop_serialized | Drop serialized raw bytes in a LightGBM model object | 
| lgb.dump | Dump LightGBM model to json | 
| lgb.get.eval.result | Get record evaluation result from booster | 
| lgb.importance | Compute feature importance in a model | 
| lgb.interprete | Compute feature contribution of prediction | 
| lgb.load | Load LightGBM model | 
| lgb.make_serializable | Make a LightGBM object serializable by keeping raw bytes | 
| lgb.model.dt.tree | Parse a LightGBM model json dump | 
| lgb.plot.importance | Plot feature importance as a bar graph | 
| lgb.plot.interpretation | Plot feature contribution as a bar graph | 
| lgb.restore_handle | Restore the C++ component of a de-serialized LightGBM model | 
| lgb.save | Save LightGBM model | 
| lgb.slice.Dataset | Slice a dataset | 
| lgb.train | Main training logic for LightGBM | 
| lightgbm | Train a LightGBM model | 
| predict.lgb.Booster | Predict method for LightGBM model | 
| print.lgb.Booster | Print method for LightGBM model | 
| setLGBMThreads | Set maximum number of threads used by LightGBM | 
| setLGBMthreads | Set maximum number of threads used by LightGBM | 
| set_field | Set one attribute of a 'lgb.Dataset' object | 
| set_field.lgb.Dataset | Set one attribute of a 'lgb.Dataset' object | 
| summary.lgb.Booster | Summary method for LightGBM model |