| MLmetrics-package | MLmetrics: Machine Learning Evaluation Metrics | 
| Accuracy | Accuracy | 
| Area_Under_Curve | Calculate the Area Under the Curve | 
| AUC | Area Under the Receiver Operating Characteristic Curve (ROC AUC) | 
| ConfusionMatrix | Confusion Matrix | 
| F1_Score | F1 Score | 
| FBeta_Score | F-Beta Score | 
| GainAUC | Area Under the Gain Chart | 
| Gini | Gini Coefficient | 
| KS_Stat | Kolmogorov-Smirnov Statistic | 
| LiftAUC | Area Under the Lift Chart | 
| LogLoss | Log loss / Cross-Entropy Loss | 
| MAE | Mean Absolute Error Loss | 
| MAPE | Mean Absolute Percentage Error Loss | 
| MedianAE | Median Absolute Error Loss | 
| MedianAPE | Median Absolute Percentage Error Loss | 
| MLmetrics | MLmetrics: Machine Learning Evaluation Metrics | 
| MSE | Mean Square Error Loss | 
| MultiLogLoss | Multi Class Log Loss | 
| NormalizedGini | Normalized Gini Coefficient | 
| Poisson_LogLoss | Poisson Log loss | 
| PRAUC | Area Under the Precision-Recall Curve (PR AUC) | 
| Precision | Precision | 
| R2_Score | R-Squared (Coefficient of Determination) Regression Score | 
| RAE | Relative Absolute Error Loss | 
| Recall | Recall | 
| RMSE | Root Mean Square Error Loss | 
| RMSLE | Root Mean Squared Logarithmic Error Loss | 
| RMSPE | Root Mean Square Percentage Error Loss | 
| RRSE | Root Relative Squared Error Loss | 
| Sensitivity | Sensitivity | 
| Specificity | Specificity | 
| ZeroOneLoss | Normalized Zero-One Loss (Classification Error Loss) |