basiSet.MAG |
basiSet.MAG |
CI.algorithm |
The CI.algorithm function |
DAG.to.MAG.in.pwSEM |
Title DAG.to.MAG.in.pwSEM |
generalized.covariance |
Generalized covariance function |
get.AIC |
Title get.AIC |
MAG.to.DAG.in.pwSEM |
Title MAG.to.DAG.in.pwSEM |
MCX2 |
Title Monte Carlo chi-square (MCX2) |
nested_data |
nested_data: |
perm.generalized.covariance |
perm.generalized.covariance |
pwSEM |
The pwSEM function |
sim_normal.no.nesting |
sim_normal.no.nesting Simulated data with correlated errors involving endogenous variables, normally-distributed data and without any grouping structure Data generated using this mixed acyclic graph: X1->X2->X3->X4 and X2<->X4 |
sim_normal.with.nesting |
sim_normal.with.nesting: Simulated data with correlated errors involving endogenous variables, normally-distributed data and without any grouping structure Data generated using this mixed acyclic graph: X1->X2->X3->X4 and X2<->X4 |
sim_poisson.no.nesting |
sim_poisson.no.nesting: Simulated data with correlated errors involving endogenous variables, Poisson-distributed data and without any grouping structure Data generated using this mixed acyclic graph: X1->X2->X3->X4 and X2<->X4 |
sim_tetrads |
sim_tetrads: Simulated data to be used with the vanishing.tetrads function Data generated using this directed acyclic graph, with L being latent: L->X1, L->X2, L->X3->X4 |
summary.pwSEM.class |
Summary Method for pwSEM Class |
vanishing.tetrads |
The vanishing.tetrads function |
view.paths |
view.paths |